Effects of Straw-returning on Phosphorus Morphology and Microbial Phosphorus-cycling Genes in Rice Paddy Soil
-
摘要:
目的 以南方酸性土壤连续8年秸秆还田定位试验田为研究对象,探究秸秆还田对水稻分蘖期与成熟期土壤磷循环微生物功能基因的影响。 方法 定位试验共设置5个处理:化肥+无秸秆还田(CK)、化肥+当季秸秆全量还田(CKS)、化肥+当季秸秆全量还田+秸秆替代10%钾肥(S10)、化肥+当季秸秆全量还田+秸秆替代20%钾肥(S20)和化肥+当季秸秆全量还田+秸秆替代30%钾肥(S30)。利用Guppy土壤磷素连续浸提法和宏基因组测序技术,分别测定土壤磷素组分和磷循环微生物功能基因数据。 结果 秸秆还田处理显著提高了Guppy土壤磷分级中可利用磷组分NaHCO3-Pi的含量(P<0.05),其中S10、S20处理较CK处理提升了5.88%~8.73%;中等可利用磷组分中NaOH-Pi为南方酸性稻田土壤最主要的磷素形态,含量为154.03~202.11 mg·kg−1。同时,秸秆还田还显著影响了土壤磷循环微生物功能基因的丰度,其中无机磷溶解基因pqqC对秸秆全量还田处理的响应更为明显。秸秆还田条件下磷循环功能基因(如phnW、phnO、pqqB、pqqC)促进了盐酸磷和残余磷向可利用磷库的活化,appA、phnX、ppx基因参与了稳定态磷的活化过程,NaOH-Pi为关键的过渡态磷素,参与长期的磷素转化过程。此外,土壤有机碳和pH是决定功能基因丰度的主要影响因子。 结论 秸秆还田通过影响土壤理化性质,改变了稻田土壤磷循环功能基因丰度,促进了南方酸性稻田土壤磷素转化过程。 Abstract:Objective Effects of straw-returning on phosphorus morphology and microbial phosphorus-cycling genes in paddy soil at rice tillering and maturing stages were investigated. Method In consecutive 7 years on a rice field in southern China under a positioning experiment, spent straws were returned to the acidic soil. The implemented treatments included: (1) chemical fertilizer without straw-returning (CK), (2) chemical fertilizer + 100% straw-returning in same season (CKS), (3) CKS+ straws to replace 10% potassium fertilizer (S10), (4) CKS + straws to replace 20% potassium fertilizer (S20) or (5) CKS + straws to replace 30% potassium fertilizer (S30). At end of the treatments, Guppy soil phosphorus continuous extraction method and metagenomic technology were applied to determine the composition of phosphorus of different forms and microbial phosphorus-cycling genes. Result Straw-returning significantly increased the available NaHCO3-Pi in soil (P<0.05)—the S10 and S20 treatments resulted in an increase by 5.88%-8.73% over CK. NaOH-Pi was the main form of phosphorus in the acid paddy soil in southern China with a content ranging from 154.03 mg·kg−1 to 202.11 mg·kg−1. By turning the spent straws into the field, the abundance of phosphorus-cycling genes, especially the inorganic phosphorus dissolution gene pqqC under CKS, was significantly affected. The genes, such as phnW, phnO, pqqB, and pqqC, activated the conversion of hydrochloric acid phosphorus and residual phosphorus into available form; those like appA, phnX, and ppx, participated in the formation of stable phosphorus; and NaOH-Pi played a key role in the long-term transformation of the mineral. And the main factors that governed the abundance of the functional genes appeared to be the organic carbon and pH of the soil. Conclusion Through altering the soil physiochemical properties, returning spent straws to the ground significantly enriched the microbial phosphorus-cycling genes that promoted the mineral transformation of the acidic paddy soil in southern China. -
Key words:
- Straw-returning /
- phosphorus forms /
- phosphorus-cycling genes /
- metagenomics
-
图 4 土壤有机磷矿化基因的相对丰度
A和B分别代表水稻分蘖期与成熟期编码酸性磷酸酶、碱性磷酸酶和植酸酶的基因,C和D分别表示水稻分蘖期与成熟期编码C-P键裂解酶的基因。*( P <0.05),**( P <0.01)。
Figure 4. Relative abundance of organic phosphorus-mineralizing genes in soil
A and B represent the genes encoding acid phosphatase, alkaline phosphatase and phytase at tillering and maturing stages, C and D represent the genes encoding C-P bond cleavage enzymes at tillering and maturing stages, respectively. * (P <0.05), ** (P <0.01).
表 1 不同处理化肥养分投入量
Table 1. Nutrients in treatment fertilizers
(kg·hm−2) 处理
Treatment早稻 Early rice 晚稻 Late rice 总计 Total N P2O5 K2O N P2O5 K2O N P2O5 K2O CK 155.3 47.3 135.0 155.3 47.3 135.0 310.5 94.5 270.0 CKS 155.3 47.3 135.0 155.3 47.3 135.0 310.5 94.5 270.0 S10 155.3 47.3 121.5 155.3 47.3 121.5 310.5 94.5 243.0 S20 155.3 47.3 108.0 155.3 47.3 108.0 310.5 94.5 216.0 S30 155.3 47.3 94.5 155.3 47.3 94.5 310.5 94.5 189.0 表 2 磷循环微生物功能基因
Table 2. Microbial phosphorus-cycling genes
功能基因分组
Functional gene grouping基因名称
Gene nameKEGG编号
KEGG number基因功能详情
Gene Function Detials有机磷矿化基因
Genes involved in organic P-mineralizationphoN K09474 酸性磷酸酶 (A) Acid phosphatase (class A) olpA K01078 酸性磷酸酶(C)acid phosphatase (class C) aphA K03788 酸性磷酸酶 (B) Acid phosphatase (class B) phoA K01077 碱性磷酸酶 Alkaline phosphatase phoD K01113 碱性磷酸酶 Alkaline phosphatase D phoX K02040 碱性磷酸酶 Alkaline phosphatase phyA K01083 3-植酸酶 3-phytase appA K01093 4-植酸酶/酸性磷酸酶 4-phytase/acid phosphatase phnW K03430 2-氨基乙基膦酸-丙酮酸转氨酶 2-aminoethylphosphonate-pyruvate transaminase phnX K05306 膦酸乙醛水解酶 Phosphonoacetaldehyde hydrolase phnA K06193 烷基膦酸酯利用操纵子 Alkylphosphonate utilization operon protein phnN K05774 碳-磷键裂解酶复合物 C-P lyase multienzyme complex phnL K05780 碳-磷键裂解酶复合物 C-P lyase multienzyme complex phnM K06162 碳-磷键裂解酶复合物 C-P lyase multienzyme complex phnF K02043 酸酯转运系统调控蛋白 Phosphonate transport system regulatory protein phnG K06166 碳-磷键裂解酶复合物 C-P lyase multienzyme complex phnH K06165 碳-磷键裂解酶复合物 C-P lyase multienzyme complex phnI K06164 碳-磷键裂解酶复合物 C-P lyase multienzyme complex phnJ K06163 碳-磷键裂解酶复合物 C-P lyase multienzyme complex phnO K09994 碳-磷键裂解酶复合物 C-P lyase multienzyme complex phnK K05781 C-P 裂解酶亚基,α-d-核糖 1-甲基膦酸 5-三磷酸合酶
C-P lyase subunit,alpha-D-ribose 1-methylphosphonate 5-triphosphate synthasephnP K06167 酸核糖基1,2-环磷酸二酯酶 Phosphoribosyl 1,2-cyclicphosphate phosphoDiesterase 无机磷溶解基因
Inorganic phosphate solubilizationppa K01507 无机焦磷酸酶 Inorganic pyrophosphatase ppx K01524 外切多聚磷酸酶 Exopolyphosphatase/鸟苷-5'-三磷酸,3'-二磷酸焦磷酸酶
Guanosine-5'-triphosphate 3'-diphosphate pyrophosphataseppk K00937 多聚磷酸激酶 Polyphosphate kinase gcd K00117 葡萄糖脱氢酶 Quinoprotein glucose dehydrogenase pqqB K06136 吡咯喹啉醌合成蛋白 B Pyrroloquinoline quinonebiosynthesis protein B pqqC K06137 吡咯喹啉醌合成酶 Pyrroloquinoline-quinone synthase pqqD K06138 吡咯喹啉醌合成蛋白 Pyrroloquinoline quinonebiosynthesis protein pqqE K06139 PqqA 肽环酶 PqqA peptide cyclase -
[1] TURNER B L, CHEESMAN A W, CONDRON L M, et al. Introduction to the special issue: Developments in soil organic phosphorus cycling in natural and agricultural ecosystems [J]. Geoderma, 2015, 257/258: 1−3. doi: 10.1016/j.geoderma.2015.06.008 [2] GEORGE T S, GILES C D, MENEZES-BLACKBURN D, et al. Organic phosphorus in the terrestrial environment: A perspective on the state of the art and future priorities [J]. Plant and Soil, 2018, 427(1/2): 191−208. [3] BERGKEMPER F, SCHÖLER A, ENGEL M, et al. Phosphorus depletion in forest soils shapes bacterial communities towards phosphorus recycling systems [J]. Environmental Microbiology, 2016, 18(8): 2767. doi: 10.1111/1462-2920.13442 [4] DAI Z M, LIU G F, CHEN H H, et al. Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems [J]. The ISME Journal, 2020, 14(3): 757−770. doi: 10.1038/s41396-019-0567-9 [5] BOLLE S, GEBREMIKAEL M T, MAERVOET V, et al. Performance of phosphate-solubilizing bacteria in soil under high phosphorus conditions [J]. Biology and Fertility of Soils, 2013, 49(6): 705−714. doi: 10.1007/s00374-012-0759-1 [6] LI J T, LU J L, WANG H Y, et al. A comprehensive synthesis unveils the mysteries of phosphate-solubilizing microbes [J]. Biological Reviews of the Cambridge Philosophical Society, 2021, 96(6): 2771−2793. doi: 10.1111/brv.12779 [7] 方凯, 孙丽丽, 周昌敏, 等. 长期秸秆还田对双季稻土壤有机碳组分及碳库管理指数的影响 [J]. 福建农业学报, 2022, 37(9):1216−1224.FANG K, SUN L L, ZHOU C M, et al. Effects of long-term spent straw incorporation on organic carbons in soil and carbon pool management at two-crop rice fields [J]. Fujian Journal of Agricultural Sciences, 2022, 37(9): 1216−1224.(in Chinese) [8] 周旦, 王欣, 郭小军, 等. 长期有机培肥对红壤有机碳组分及水稻产量的影响 [J]. 福建农业学报, 2021, 36(8):867−877.ZHOU D, WANG X, GUO X J, et al. Effects of long-term organic fertilization on organic carbon and microbial community in red soil and rice yield [J]. Fujian Journal of Agricultural Sciences, 2021, 36(8): 867−877.(in Chinese) [9] 颜双双. 寒地水稻秸秆还田对土壤碳磷组分与微生物影响效应的研究[D]. 哈尔滨: 东北农业大学, 2021.YAN S S. Effects of rice straw return on soil organic carbon fractions, phosphorus fractions and microbial community in cold region[D]. Harbin: Northeast Agricultural University, 2021. (in Chinese) [10] ROBLES-AGUILAR A A, PANG J Y, POSTMA J A, et al. The effect of pH on morphological and physiological root traits of Lupinus angustifolius treated with struvite as a recycled phosphorus source [J]. Plant and Soil, 2019, 434(1/2): 65−78. [11] YANG O Y, EVANS S E, FRIESEN M L, et al. Effect of nitrogen fertilization on the abundance of nitrogen cycling genes in agricultural soils: A meta-analysis of field studies [J]. Soil Biology and Biochemistry, 2018, 127: 71−78. doi: 10.1016/j.soilbio.2018.08.024 [12] RANJAN R, RANI A, METWALLY A, et al. Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing [J]. Biochemical and Biophysical Research Communications, 2016, 469(4): 967−977. doi: 10.1016/j.bbrc.2015.12.083 [13] NEAL A L, ROSSMANN M, BREARLEY C, et al. Land-use influences phosphatase gene microdiversity in soils [J]. Environmental Microbiology, 2017, 19(7): 2740−2753. doi: 10.1111/1462-2920.13778 [14] 唐治喜, 高菊生, 宋阿琳, 等. 用宏基因组学方法研究绿肥对水稻根际微生物磷循环功能基因的影响 [J]. 植物营养与肥料学报, 2020, 26(9):1578−1590.TANG Z X, GAO J S, SONG A L, et al. Impact of green manure on microbial phosphorus cycling genes in rice rhizosphere as investigated by metagenomics [J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(9): 1578−1590.(in Chinese) [15] LIANG J L, LIU J, JIA P, et al. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining [J]. The ISME Journal, 2020, 14(6): 1600−1613. doi: 10.1038/s41396-020-0632-4 [16] 龙方莉. 秸秆还田对稻田土壤磷循环微生物及关键功能基因的影响[D]. 武汉: 华中农业大学, 2022.LONG F L. Effects of straw returning on phosphorus cycling microorganisms and key functional genes in paddy soil[D]. Wuhan: Huazhong Agricultural University, 2022. (in Chinese) [17] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. [18] BROOKES P C, POWLSON D S, JENKINSON D S. Measurement of microbial biomass phosphorus in soil [J]. Soil Biology and Biochemistry, 1982, 14(4): 319−329. doi: 10.1016/0038-0717(82)90001-3 [19] GUPPY C N, MENZIES N W, MOODY P W, et al. Analytical methods and quality assurance [J]. Communications in Soil Science and Plant Analysis, 2000, 31(11/12/13/14): 1981−1991. [20] VON SPERBER C, STALLFORTH R, DU PREEZ C, et al. Changes in soil phosphorus pools during prolonged arable cropping in semiarid grasslands [J]. European Journal of Soil Science, 2017, 68(4): 462−471. doi: 10.1111/ejss.12433 [21] WANG G W, JIN Z X, WANG X X, et al. Simulated root exudates stimulate the abundance of Saccharimonadales to improve the alkaline phosphatase activity in maize rhizosphere [J]. Applied Soil Ecology, 2022, 170: 104274. doi: 10.1016/j.apsoil.2021.104274 [22] JAVOT H, PUMPLIN N, HARRISON M J. Phosphate in the arbuscular mycorrhizal symbiosis: Transport properties and regulatory roles [J]. Plant, Cell & Environment, 2007, 30(3): 310−322. [23] GARCIA-SANCHEZ M, BERTRAND I, BARAKAT A, et al. Improved rock phosphate dissolution from organic acids is driven by nitrate assimilation of bacteria isolated from nitrate and CaCO3-rich soil [J]. PLoS One, 2023, 18(3): e0283437. doi: 10.1371/journal.pone.0283437 [24] ILLMER P, SCHINNER F. Solubilization of inorganic calcium phosphates—Solubilization mechanisms [J]. Soil Biology and Biochemistry, 1995, 27(3): 257−263. doi: 10.1016/0038-0717(94)00190-C [25] 樊磊, 叶小梅, 何加骏, 等. 解磷微生物对土壤磷素作用的研究进展 [J]. 江苏农业科学, 2008, 36(5):261−263.FAN L, YE X M, HE J J, et al. Research progress on the effect of phosphorus-solubilizing microorganisms on soil phosphorus [J]. Jiangsu Agricultural Sciences, 2008, 36(5): 261−263.(in Chinese) [26] ZHENG M M, WANG C, LI W X, et al. Soil nutrients drive function and composition of phoC-harboring bacterial community in acidic soils of southern China [J]. Frontiers in Microbiology, 2019, 10: 2654. doi: 10.3389/fmicb.2019.02654 [27] 李益. 森林土壤磷循环功能基因变化特征及其影响因素[D]. 西安: 西北大学, 2022.LI Y. Variation characteristics and influencing factors of forest soil phosphorus cycle functional genes[D]. Xi 'an: Northwest University, 2022. (in Chinese) [28] LIU J Y, LI F Y, LIU J J, et al. Grazing promotes soil phosphorus cycling by enhancing soil microbial functional genes for phosphorus transformation in plant rhizosphere in a semi-arid natural grassland [J]. Geoderma, 2023, 430: 116303. doi: 10.1016/j.geoderma.2022.116303 [29] ZHANG N N, SAINJU U M, ZHAO F Z, et al. Mulching decreased the abundance of microbial functional genes in phosphorus cycling under maize [J]. Applied Soil Ecology, 2023, 187: 104833. doi: 10.1016/j.apsoil.2023.104833 [30] HU Y J, XIA Y H, SUN Q, et al. Effects of long-term fertilization on phoD-harboring bacterial community in Karst soils [J]. Science of the Total Environment, 2018, 628/629: 53−63. doi: 10.1016/j.scitotenv.2018.01.314 [31] RAGOT S A, KERTESZ M A, MÉSZÁROS É, et al. Soil phoD and phoX alkaline phosphatase gene diversity responds to multiple environmental factors [J]. FEMS Microbiology Ecology, 2017, 93(1): fiw212. doi: 10.1093/femsec/fiw212 [32] WAN W J, HAO X L, XING Y H, et al. Spatial differences in soil microbial diversity caused by pH-driven organic phosphorus mineralization [J]. Land Degradation & Development, 2021, 32(2): 766−776. [33] ZHENG W, ZHAO Z Y, LV F L, et al. Metagenomic exploration of the interactions between N and P cycling and SOM turnover in an apple orchard with a cover crop fertilized for 9 years [J]. Biology and Fertility of Soils, 2019, 55(4): 365−381. doi: 10.1007/s00374-019-01356-9 [34] YAO Q M, LI Z, SONG Y, et al. Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil [J]. Nature Ecology & Evolution, 2018, 2(3): 499−509. [35] LI H Y, WANG H, WANG H T, et al. Correction to: The chemodiversity of paddy soil dissolved organic matter correlates with microbial community at continental scales [J]. Microbiome, 2020, 8(1): 169. doi: 10.1186/s40168-020-00945-3 [36] HU M J, LE Y X, SARDANS J, et al. Moderate salinity improves the availability of soil P by regulating P-cycling microbial communities in coastal wetlands [J]. Global Change Biology, 2023, 29(1): 276−288. doi: 10.1111/gcb.16465 [37] MARANGUIT D, GUILLAUME T, KUZYAKOV Y. Land-use change affects phosphorus fractions in highly weathered tropical soils [J]. CATENA, 2017, 149: 385−393. doi: 10.1016/j.catena.2016.10.010 [38] YIN Y N, YANG C, LI M T, et al. Biochar reduces bioavailability of phosphorus during swine manure composting: Roles of phoD-harboring bacterial community [J]. Science of the Total Environment, 2023, 858: 159926. doi: 10.1016/j.scitotenv.2022.159926 [39] LUO G W, LING N, NANNIPIERI P, et al. Long-term fertilisation regimes affect the composition of the alkaline phosphomonoesterase encoding microbial community of a vertisol and its derivative soil fractions [J]. Biology and Fertility of Soils, 2017, 53(4): 375−388. doi: 10.1007/s00374-017-1183-3 [40] WEI Z M, ZUO H D, LI J, et al. Insight into the mechanisms of insoluble phosphate transformation driven by the interactions of compound microbes during composting [J]. Environmental Science and Pollution Research, 2021, 28(25): 32844−32855. doi: 10.1007/s11356-021-13113-3 [41] 苗淑杰, 周连仁, 乔云发, 等. 长期施肥对黑土有机碳矿化和团聚体碳分布的影响 [J]. 土壤学报, 2009, 46(6):1068−1075. doi: 10.3321/j.issn:0564-3929.2009.06.014MIAO S J, ZHOU L R, QIAO Y F, et al. Organic carbon mineralization and carbon contribution in aggregates as affected by long-term fertilization [J]. Acta Pedologica Sinica, 2009, 46(6): 1068−1075.(in Chinese) doi: 10.3321/j.issn:0564-3929.2009.06.014 [42] WRIGHT R B, LOCKABY B G, WALBRIDGE M R. Phosphorus availability in an artificially flooded southeastern floodplain forest soil [J]. Soil Science Society of America Journal, 2001, 65(4): 1293−1302. doi: 10.2136/sssaj2001.6541293x