Improved Identification of Leaf Diseases and Pest Infestations on Rice by Means of Coordinate Attention Mechanism-based Residual Network
-
摘要:
目的 针对在自然条件下水稻叶片病虫害的识别效率不高、准确率较低的问题,探索基于ResNet深度学习网络的水稻叶片病虫害识别模型(ResNet50-CA)。 方法 在ResNet-50的残差卷积模块下引入坐标注意力机制(CA),采用 LeakyReLU 激活函数替代 ReLU 激活函数,使用3个3×3的卷积核替换ResNet-50模型首层卷积层中的7×7卷积核。 结果 在使用传统卷积神经网络进行水稻叶片病虫害研究发现,ResNet-50能够较好地平衡识别准确率和模型复杂度之间的关系,因此选择在ResNet-50网络模型的基础上加以改进。使用改进后的网络通过微调参数进行水稻叶片病虫害对比性能试验,研究发现在批量样本数为16和学习率为0.0001时,ResNet50-CA获得最高的识别准确率(99.21%),优于传统的深度学习算法。 结论 改进后的网络能够提取出水稻病虫害更加细微的特征信息,从而取得更高的识别准确率,为水稻叶片病虫害识别提供新思路和方法。 Abstract:Objective A new deep learning network was designed to improve the often-inaccurate identification of diseases and pest infestations on rice. Method The coordinate attention mechanism (CA) was introduced under the residual convolution block of RestNet-50 using the LeakyRelu activation function to replace the Relu activation function as well as the three 3×3 convolution kernels to replace the original 7×7 convolution kernel under the first convolution layer. Result The newly designed ResNet-50-CA effectively balanced the detection accuracy and model simplicity the original method lacked. The improved model was further fine-tuned with experiments to achieve a much-improved detection accuracy of 99.21% in identifying the diseases and infestations on a batch of 16 specimens with a learning rate of 0.0001. Conclusion The superior deep learning algorithm of the current ResNet50-CA system extracted more detailed and accurate information on the diseases and infestations than did the previous model. It could be applied for field and/or clinic diagnosis on rice plants. -
表 1 水稻叶片病虫害的数据集
Table 1. Collected data on leaf diseases and pest infestations on rice plants
病虫害种类
The type of leaf
pests and diseases初始数据集
Initial dataset数据增强后的数据集
The dataset
after expansion白叶枯病
Bacterial leaf smut200 1279 褐斑病
Brown spot200 1279 叶黑穗病
Leaf Smut200 1279 纹枯病
Stiae blight93 1279 干尖线虫病
Dry tip worm disease76 1279 细菌性条斑病
Bacterial leaf streak114 1279 赤枯病
Red blight80 1279 稻瘟病
Leaf blast123 1279 表 2 ResNet50-CA模型的水稻叶片病虫害数据集测试指标
Table 2. ResNet50-CA indicators on leaf diseases and pest infestations of rice
病害
Diseases精确率
Accuracy/%召回率
Recall/%特异度
Specificity/%F1/% 白叶枯病 Bacterial leaf smut 100.0 100.0 100.0 100.0 褐斑病 Brown spot 99.6 100.0 99.9 99.8 叶黑穗病 Leaf smut 99.6 99.6 99.9 99.6 纹枯病 Stiae blight 100.0 97.1 100.0 98.5 干尖线虫病
Dry tip worm disease96.8 100.0 99.5 98.4 细菌性条斑病
Bacterial leaf streak99.6 99.6 99.9 99.6 赤枯病 Red blight 99.6 98.7 99.9 99.2 稻瘟病 Leaf blast 98.7 98.7 99.8 98.7 表 3 不同神经网络的试验结果
Table 3. Experimental results of convolutional neural networks
模型名称
Model name硬件性能
FLOPs/GMac参数
Parameters/M准确率
Accuracy/%VGG13 11.27 65.00 96.82 VGG16 15.44 70.40 97.69 MobileNet 0.32 2.23 91.26 ResNet34 3.68 21.29 95.43 ResNet50 4.12 23.52 96.44 ResNet101 7.85 42.52 96.47 ResNet50-CA 4.99 25.51 99.21 表 4 不同数据集的对比结果
Table 4. Experimental results on plant datasets
模型名称
Model name种类
Species病虫害名称
Name of diseases精确率
Precision/%召回率
Recall/%特异度
Specificity/%F1/% 准确率
Accuracy/%ResNet50 苹果 Apple 黑腐病 Black rot 100.0 99.5 100.0 99.7 99.78 健康 Healthy 99.7 99.7 99.8 99.7 赤锈病 Red rust 100.0 100.0 100.0 100.0 赤霉病 Scab 99.5 100.0 99.9 99.7 葡萄 Grape 黑麻疹病 Black measles 100.0 98.9 100.0 99.5 99.67 黑腐病 Black rot 99.2 100.0 99.7 99.6 叶枯病 Leaf blight 100.0 100.0 100.0 100.0 健康 Healthy 99.5 100.0 99.9 99.7 玉米 Corn 普通锈病 Common rust 99.6 100.0 99.8 99.8 98.6 叶枯病 Leaf blight 99.0 95.5 99.7 97.2 健康 Healthy 99.6 100.0 99.8 99.8 叶斑病 Leaf spot 96.1 98.5 98.8 97.3 ResNet50-CA 苹果 Apple 黑腐病 Black rot 100.0 99.5 100.0 99.7 99.8 健康 Healthy 99.7 100.0 99.8 99.8 赤锈病 Red rust 100.0 100.0 100.0 100.0 赤霉病 Scab 100.0 100.0 100.0 100.0 葡萄 Grape 黑麻疹病 Black measles 99.6 100.0 99.8 99.8 99.8 黑腐病 Black rot 100.0 99.6 100.0 99.8 叶枯病 Leaf blight 100.0 100.0 100.0 100.0 健康 Healthy 100.0 100.0 100.0 100.0 玉米 Corn 普通锈病 Common rust 100.0 100.0 100.0 100.0 99.0 叶枯病 Leaf blight 99.5 97.0 99.9 98.2 健康 Healthy 100.0 99.6 100.0 99.8 叶斑病 Leaf spot 99.6 99.5 99.0 98.0 -
[1] ZHOU J, LI J X, WANG C S, et al. Crop disease identification and interpretation method based on multimodal deep learning [J]. Computers and Electronics in Agriculture, 2021, 189: 106408. doi: 10.1016/j.compag.2021.106408 [2] 王超, 王春圻, 刘金明. 基于深度学习的玉米叶片病害识别方法研究 [J]. 现代农业研究, 2022, 28(6):102−106.WANG C, WANG C Q, LIU J M. Identification of maize leaf diseases based on deep learning [J]. Modern Agriculture Research, 2022, 28(6): 102−106.(in Chinese) [3] JIANG F, LU Y, CHEN Y, et al. Image recognition of four rice leaf diseases based on deep learning and support vector machine [J]. Computers and Electronics in Agriculture, 2020, 179: 105824. doi: 10.1016/j.compag.2020.105824 [4] BRAHIMI M, BOUKHALFA K, MOUSSAOUI A. Deep learning for tomato diseases: Classification and symptoms visualization [J]. Applied Artificial Intelligence, 2017, 31(4): 299−315. doi: 10.1080/08839514.2017.1315516 [5] 赵恒谦, 杨屹峰, 刘泽龙, 等. 农作物叶片病害迁移学习分步识别方法 [J]. 测绘通报, 2021(7):34−38.ZHAO H Q, YANG Y F, LIU Z L, et al. Step-by-step identification method of crop leaf diseases based on transfer learning [J]. Bulletin of Surveying and Mapping, 2021(7): 34−38.(in Chinese) [6] KAWASAKI Y, UGA H, KAGIWADA S, et al. Basic study of automated diagnosis of viral plant diseases using convolutional neural networks[M]//Advances in Visual Computing. Cham: Springer International Publishing, 2015: 638-645. [7] LU Y Z, YOUNG S. A survey of public datasets for computer vision tasks in precision agriculture [J]. Computers and Electronics in Agriculture, 2020, 178: 105760. doi: 10.1016/j.compag.2020.105760 [8] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA. IEEE, 2021: 13708-13717. [9] 王志强, 于雪莹, 杨晓婧, 等.基于WGAN和MCA-MobileNet的番茄叶片病害识别[J]. 农业机械学报, 2023, 54(5): 244-252.WANG Z Q, YU X Y, YANG X J, et al. Tomato Leaf Diseases Recognition Based on WGAN and MCA - MobileNet[J]. 2023, 54(5): 244-251. [10] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770−778. [11] XU B, WANG N Y, CHEN T Q, et al. Empirical evaluation of rectified activations in convolutional network[EB/OL]. 2015: arXiv: 1505.00853.https://arxiv.org/abs/1505.00853 [12] 李键红, 吴亚榕. 基于多任务联合稀疏表示的水稻叶片病害自动识别算法 [J]. 仲恺农业工程学院学报, 2017, 30(2):40−44. doi: 10.3969/j.issn.1674-5663.2017.02.007LI J H, WU Y R. Automatic recognition algorithm for rice leaf diseases based on multi-task joint sparse representation [J]. Journal of Zhongkai University of Agriculture and Engineering, 2017, 30(2): 40−44.(in Chinese) doi: 10.3969/j.issn.1674-5663.2017.02.007 [13] JIANG Z C, DONG Z X, JIANG W P, et al. Recognition of rice leaf diseases and wheat leaf diseases based on multi-task deep transfer learning [J]. Computers and Electronics in Agriculture, 2021, 186: 106184. doi: 10.1016/j.compag.2021.106184 [14] 刘立波, 周国民. 基于多层感知神经网络的水稻叶瘟病识别方法 [J]. 农业工程学报, 2009, 25(S2):213−217.LIU L B, ZHOU G M. Identification method of rice leaf blast using multilayer perception neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(S2): 213−217.(in Chinese) [15] MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention[C]//In Advances in neural information processing systems. 2014: 2204-2212. [16] XU K, BA J L, KIROS R, et al. Show, attend and tell: Neural image caption generation with visual attention[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37. July 6 - 11, 2015, Lille, France. New York: ACM, 2015: 2048-2057. [17] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA. IEEE, 2018: 7132-7141. [18] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]//Computer Vision – ECCV 2018. Cham: Springer International Publishing, 2018: 3-19. [19] WANG H Y, ZHU Y K, GREEN B, et al. Axial-DeepLab: Stand-alone axial-attention for panoptic segmentation[EB/OL]. 2020: arXiv: 2003.07853. https://arxiv.org/abs/2003.07853 [20] ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[J]. IEEE Computer Society, 2016: 6230-6239.