Immune Response and Antioxidant Activities of Bacteria-stimulated Prx4 in Procambarus clarkii
-
摘要:
目的 克隆克氏原螯虾(Procambarus clarkii)过氧化物还原酶4基因(Pc-prx4),分析Pc-prx4基因的正常组织表达以及细菌刺激后的相对表达情况,分析其抗氧化功能,为Pc-prx4在病原刺激后的先天免疫机制以及抗氧化功能研究提供参考依据。 方法 以Pc-prx4为目的基因,通过相关网站和软件(Expasy、Translate tool、SMART、Expasy ProtParam tool、BLASTx、MEGA-X)进行生物信息学分析。通过qRT-PCR检测Pc-prx4在正常组织中的表达量以及金黄色葡萄球菌(Staphylococcus aureus)、鲶爱德华氏菌(Edwardsiella ictaluri)刺激下的表达量;通过构建表达菌株、诱导纯化rPc-PRX4蛋白,对重组蛋白进行抗氧化功能研究。 结果 Pc-prx4开放阅读框744 bp,编码247个氨基酸,含有烷基氢过氧化物还原酶(AhpC)结构域、巯基特异性抗氧化结构域和1-Cys prx过氧铁氧酶的C末端结构域;Pc-PRX4蛋白分子式为 C1249H1934N330O357S10,分子量为27.61 kDa,理论等电点(pI)为5.88,N端存在信号肽区域,C端存在1-Cys过氧化物还原蛋白结构域。Pc-prx4基因在各组织中均有所表达,其中血淋巴的表达量最高;在金黄色葡萄球菌和鲶爱德华氏菌刺激下,Pc-prx4基因在血细胞、肝胰腺、鳃、肠组织中表达均呈现整体升高的趋势。在保护质粒DNA抗氧化缺刻试验中,rPc-PRX4表现出抗氧化性,并随着重组蛋白浓度的升高,抗氧化效果越明显。 结论 Pc-prx4基因属于1-Cys prx,在血细胞中高表达,参与调节金黄色葡萄球菌、鲶爱德华氏菌刺激下的机体免疫应答过程,rPc-PRX4蛋白还具有与浓度大小相关的抗氧化功能,该基因参与免疫过程的调节和保护机体进行抗氧化的功能。 -
关键词:
- 克氏原螯虾 /
- 过氧化物还原酶4 /
- 金黄色葡萄球菌;鲶爱德华氏菌 /
- 表达模式 /
- 抗氧化
Abstract:Objective Immune response of peroxiredoxin 4 gene of Procambarus clarki (Pc-prx4) after being stimulated by bacterial infection was studied. Methods Pc-prx4 were cloned before and after an artificial inoculation of Staphylococcus aureus or Edwardsiella ictaluri on the crayfish. Bioinformatic analysis was conducted with the aid of relevant online websites and software including Expasy, translate tool, SMART, Expasy ProtParam tool, BLASTx, and MEGA-X. Expressions of Pc-prx4 from the tissues of normal and pathogenically inoculated crayfish were detected by qRT-PCR. Antioxidant function of the constructed recombinant protein was determined. Results Pc-prx4 had an open reading frame of 744 bp encoding 247 amino acids with an alkyl hydroperoxide reductase (AhpC) structural domain, a sulfhydryl-specific antioxidant structural domain, and a C-terminal structural domain of 1-Cys prx peroxisome iron oxidase. The predicted protein molecular formula was C1249H1934N330O357S10 with a molecular weight of 27.61 kDa and a pI of 5.88. Its signal peptide region was located at the N-terminal end, and the 1-Cys peroxiredoxin domain at the C-terminal end. The gene expressed in all sampled tissues—most highly in the hemolymph and high in the hemocytes, hepatopancreas, gills, and intestines of the crayfish inoculated by S. aureus or E. catarrhalis. In the plasmid DNA protection assay, rPc-PRX4 displayed varying degrees of antioxidant activity, especially in high concentrations. Conclusion A kind of 1-Cys prx, Pc-prx4 was highly expressed in the hemolymph of P. clarkii stimulated by S. aureus or E. catarrhalis. The protein exhibited a concentration-dependent activity associated with the antioxidant homeostasis of the crayfish. -
图 2 Pc-prx4序列功能结构域分析
红色区域为信号肽区域,Pfam Redoxin为氧化还原蛋白结构域,Pfam AhpC-TSA为烷基过氧化氢还原酶结构域,Pfam 1-cys Prx-C为1-Cys过氧化物还原蛋白的C端结构域。
Figure 2. Functional domains and physicochemical properties of Pc-prx4
Red: signal peptide region; Pfam Redoxin: REDOX protein domain; Pfam AhpC-TSA: alkyl peroxide reductase domain; and Pfam 1-cys Prx-C: C-terminal domain of 1-Cys peroxidase reductase.
图 3 Pc-Prx4的cDNA序列及对应氨基酸残基
黄色背景区域为信号肽区域,紫色字体为功能结构区域,绿色背景为起始密码子atg和终止密码子tag,红色背景区域为半胱氨酸(Cys),右侧数字分别对应核苷酸与氨基酸数目。
Figure 3. cDNA sequences and corresponding amino acid residues of Pc-Prx4
Yellow background: signal peptide region; purple text: functional structure region; green background: start codon atg and tag stop codon; red background: cysteine (Cys); and numbers: counts of nucleotides and amino acids, respectively.
图 7 Pc-prx4金黄色葡萄球菌刺激下组织的相对表达量
A为血细胞,B为肝胰腺,C为鳃组织,D为肠组织。不同字母表示不同时间点间差异显著(P<0.05)。图8同。
Figure 7. Relative expressions of Pc-prx4 in tissues of crayfish stimulated by S. aureus
A: hemocytes;B: hepatopancreas;C: gills;D: intestines. Data with different letters indicate significant differences among different treatment time at P<0.05. Same for Table 8.
-
[1] 佘磊. 小龙虾的生物学特性及其主要养殖模式 [J]. 湖北农业科学, 2018, 57(17):75−78. doi: 10.14088/j.cnki.issn0439-8114.2018.17.019SHE L. The biological characteristics of red swamp crayfish and its main breeding mode [J]. Hubei Agricultural Sciences, 2018, 57(17): 75−78.(in Chinese) doi: 10.14088/j.cnki.issn0439-8114.2018.17.019 [2] 全国水产技术推广总站, 中国水产学会, 中国水产流通与加工协会. 中国小龙虾产业发展报告(2023)[N]. 中国渔业报, 2023-06-19(3). [3] WOOD Z A, SCHRÖDER E, ROBIN HARRIS J, et al. Structure, mechanism and regulation of peroxiredoxins [J]. Trends in Biochemical Sciences, 2003, 28(1): 32−40. doi: 10.1016/S0968-0004(02)00003-8 [4] 李辉. 中华绒螯蟹EsPrx和EsPrx4基因的克隆与表达特征分析及内参基因的筛选[D]. 上海: 上海海洋大学, 2021LI H. Cloneing and expression of EsPrx and EsPrx4 genes and selection of reference genes in Eriocheir sinensis[D]. Shanghai: Shanghai Ocean University, 2021. (in Chinese) [5] 章波, 向渝梅, 白云. 抗氧化蛋白Peroxiredoxin家族研究进展 [J]. 生理科学进展, 2004, 35(4):352−355. doi: 10.3321/j.issn:0559-7765.2004.04.016ZHANG B, XIANG Y M, BAI Y. Research progress of Peroxiredoxin family, an antioxidant protein [J]. Progress in Physiological Sciences, 2004, 35(4): 352−355.(in Chinese) doi: 10.3321/j.issn:0559-7765.2004.04.016 [6] YAMADA S, GUO X. Peroxiredoxin 4 (PRDX4): Its critical in vivo roles in animal models of metabolic syndrome ranging from atherosclerosis to nonalcoholic fatty liver disease [J]. Pathology International, 2018, 68(2): 91−101. doi: 10.1111/pin.12634 [7] JIA W Q, CHEN P X, CHENG Y F. PRDX4 and its roles in various cancers[J]. Technology in Cancer Research & Treatment, 2019, 18: 1533033819864313. [8] TU D D, ZHOU Y L, GU W B, et al. Identification and characterization of six peroxiredoxin transcripts from mud crab Scylla paramamosain: The first evidence of peroxiredoxin gene family in crustacean and their expression profiles under biotic and abiotic stresses [J]. Molecular Immunology, 2018, 93: 223−235. doi: 10.1016/j.molimm.2017.11.029 [9] DAI L S, YU X M, ABBAS M N, et al. Essential role of the peroxiredoxin 4 in Procambarus clarkii antioxidant defense and immune responses [J]. Fish & Shellfish Immunology, 2018, 75: 216−222. [10] 梁猛, 王美垚, 李建林, 等. 中华绒螯蟹EsPrx4基因的克隆及抗菌功能分析 [J]. 农业生物技术学报, 2023, 31(4):824−832. doi: 10.3969/j.issn.1674-7968.2023.04.015LIANG M, WANG M Y, LI J L, et al. Cloning and anti-bacterial functional analysis of EsPrx4 in Eriocheir sinensis [J]. Journal of Agricultural Biotechnology, 2023, 31(4): 824−832.(in Chinese) doi: 10.3969/j.issn.1674-7968.2023.04.015 [11] 田志强, 查萌, 祝琳, 等. 棉铃虫过氧化物还原酶基因Prx4的鉴定及功能分析 [J]. 植物保护学报, 2021, 48(5):1008−1015. doi: 10.13802/j.cnki.zwbhxb.2021.2021852TIAN Z Q, ZHA M, ZHU L, et al. Identification and functional analysis of Prx4 gene in cotton bollworm Helicoverpa armigera [J]. Journal of Plant Protection, 2021, 48(5): 1008−1015.(in Chinese) doi: 10.13802/j.cnki.zwbhxb.2021.2021852 [12] 孙晶, 熊爽, 赵健, 等. 刺参中过氧化物还原酶peroxiredoxin4的抗氧化活性分析 [J]. 食品安全质量检测学报, 2020, 11(21):7816−7820. doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.21.028SUN J, XIONG S, ZHAO J, et al. Analysis on antioxidative activity of peroxiredoxin4 of Apostichopus japonicus [J]. Journal of Food Safety & Quality, 2020, 11(21): 7816−7820.(in Chinese) doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.21.028 [13] 杨兵兵. 过氧化物还原酶参与调控小龙虾先天免疫的分子机制研究[D]. 包头: 内蒙古科技大学, 2022.YANG B B. The molecular mechanism research of peroxiredoxin involved in regulating the innate immune of Procambarus clarkii[D]. Baotou: Inner Mongolia University of Science & Technology, 2022. (in Chinese) [14] 杨兵兵, 魏哲, 蔺思函, 等. 克氏原螯虾受鲶爱德华氏菌刺激后Pc-crustin 6基因的表达分析 [J]. 福建农业学报, 2021, 36(9):1048−1053. doi: 10.3969/j.issn.1008-0384.2021.9.fjnyxb202109008YANG B B, WEI Z, LIN S H, et al. Gene cloning and expression of crustin 6 in Procambarus clarkii [J]. Fujian Journal of Agricultural Sciences, 2021, 36(9): 1048−1053.(in Chinese) doi: 10.3969/j.issn.1008-0384.2021.9.fjnyxb202109008 [15] SUN J, LIU X, LI Q W. Molecular cloning, expression and antioxidant activity of a peroxiredoxin 2 homologue from Lampetra japonica [J]. Fish & Shellfish Immunology, 2010, 28(5/6): 795−801. [16] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method [J]. Methods, 2001, 25(4): 402−408. doi: 10.1006/meth.2001.1262 [17] 郭宁宁. 过氧化物还原酶(Peroxiredoxin)4在日本囊对虾抗WSSV病毒感染中的功能与机制研究[D]. 济南: 山东大学, 2019.GUO N N. The mechanism study on the anti-virus function of Peroxiredoxin4(Prx4)in kuruma shrimp marsupenaeus japonicus[D]. Jinan: Shandong University, 2019. (in Chinese) [18] QIU L H, MA Z J, JIANG S G, et al. Molecular cloning and mRNA expression of peroxiredoxin gene in black tiger shrimp (Penaeus monodon) [J]. Molecular Biology Reports, 2010, 37(6): 2821−2827. doi: 10.1007/s11033-009-9832-8 [19] SÖDERHÄLL I. Crustacean hematopoiesis [J]. Developmental and Comparative Immunology, 2016, 58: 129−141. doi: 10.1016/j.dci.2015.12.009 [20] 徐洁, 韦秀梅, 王卫军, 等. 短蛸(Octopus ocellatus)过氧化物还原酶(OoPrx-4)基因的克隆及其对鳗弧菌胁迫的转录调控分析 [J]. 海洋与湖沼, 2013, 44(2):342−347. doi: 10.11693/hyhz201302012012XU J, WEI X M, WANG W J, et al. Cloning of a peroxiredoxin (ooprx-4) gene from octopus ocellatus and analysis of its transcriptional regulation against listonella anguillarum [J]. Oceanologia et Limnologia Sinica, 2013, 44(2): 342−347.(in Chinese) doi: 10.11693/hyhz201302012012 [21] RUAN Z L, LIU G Y, WANG B L, et al. First report of a peroxiredoxin homologue in jellyfish: Molecular cloning, expression and functional characterization of CcPrx4 from Cyanea capillata [J]. Marine Drugs, 2014, 12(1): 214−231. doi: 10.3390/md12010214 [22] SHI G Q, YU Q Y, SHI L, et al. Molecular cloning and characterization of peroxiredoxin 4 involved in protection against oxidative stress in the silkworm Bombyx mori [J]. Insect Molecular Biology, 2012, 21(6): 581−592. doi: 10.1111/j.1365-2583.2012.01161.x