Rheological Properties of Water Extract and Crude Polysaccharide Solution of Auricularia auricula and Beverage Development
-
摘要:
目的 研究黑木耳水提物(Auricularia auricula water extract, AWE)和黑木耳粗多糖(Auricularia auricula crude polysaccharide, ACP)溶液的流变特性,优化饮料配方,为黑木耳饮料的开发提供科技支撑。 方法 观察不同质量浓度和均质压力下AWE和ACP溶液的流变特性;采用单因素和正交试验优化黑木耳饮料配方。 结果 0.3%~1.5%的AWE与ACP溶液都具有明显的剪切稀化特征,表现为假塑性流体,且为非牛顿流体;随着AWE与ACP质量浓度的降低,其流动行为指数增加,稠度系数降低(P < 0.05),0.3%~ 0.6%AWE溶液和0.3%ACP溶液呈现稳定的流体特性。4~12 MPa均质处理显著提高0.6%AWE和ACP溶液的流动行为指数,同时降低稠度系数,均呈现稳定的流体特性;相同均质压力下0.6%AWE比ACP溶液的黏度更低、流动性更佳。8 MPa均质压力处理的0.6% AWE溶液的平均粒径(6.51 ± 0.02 )μm和稳定系数(0.926 ± 0.024)达到平衡。单因素和正交试验优化黑木耳饮料配方为:AWE 0.6%、冰糖6%以及柠檬酸0.1%;饮料呈浅褐色,具黑木耳特有风味,口感细腻丝滑。 结论 0.3%~1.5%AWE和ACP溶液均为假塑性流体,且为非牛顿流体;4~12 MPa均质提高了0.6%的AWE和ACP溶液流动性,8MPa均质处理0.6%AWE溶液体系的稳定性最佳,从而确定黑木耳饮料加工以0.6%AWE为生产原料,采用8 MPa作为均质压力。黑木耳饮料最佳配方为:AWE 0.6%、冰糖6%以及柠檬酸0.1%。 Abstract:Objective To provide technological support for the development of A. auricula beverage, the rheological properties of the solution of the Auricularia auricula water extract (AWE) and A . auricula crude polysaccharide (ACP) were investigated, and the beverage formula was optimized. Method In this study, the effects of different mass concentrations and homogeneous pressure treatments on the rheological properties of AWE and ACP were studied. The formula of A. auricula beverage was optimized through single-factor and orthogonal experiments. Result Both 0.3%~1.5% AWE and ACP solution exhibited significant shear thinning characteristics, also demonstrated a pseudo-plastic fluid and non-Newtonian fluid. The result showed as the mass concentration of AWE and ACP solutions decreased, their flow behavior index increased, and their consistency coefficient decreased (P<0.05). The 0.3%~0.6% AWE and 0.3% ACP solutions exhibited stable fluid characteristics. After homogenization at 4~12 MPa, it was found that the flow behavior index of 0.6% AWE solution and 0.6% ACP solution was improved and their consistency coefficient was reduced significantly with stable fluid characteristics. The result of average particle size (6.51 ± 0.02 μm) and stability coefficient (0.926 ± 0.024) of 0.6% AWE solution treated with 8 MPa homogeneous pressures achieved equilibrium. The A. auricula beverage formula optimized by single-factor and orthogonal experiments was 0.6% AWE, 6% rock sugar, and 0.1% citric acid. That production had a light brown color, a unique flavor of A. auricula and a delicate and silky taste. Conclusion 0.3% ~1.5% AWE and ACP solution was both pseudo-plastic fluid and non-Newtonian fluid. 4 ~12 MPa high-pressure homogenization treatment on the 0.6% AWE and ACP solution exhibited fluid characteristics. The stability of the 0.6% AWE solution system was optimal when homogenized at 8 MPa, Thus 0.6% AWE solution was selected as the raw material and 8 MPa was selected as homogeneous pressure for beverage processing. The optimal formula for A. auricula beverage comprised 0.6% AWE, 6% rock sugar, and 0.1% citric acid. -
Key words:
- Auricularia auricula /
- crude polysaccharide /
- water extract /
- rheological characteristics /
- beverage
-
图 4 不同质量浓度AWE和ACP溶液在角频率下储存模量、损耗模量和损耗角正切的变化
A~C:0.6%的AWE溶液的储存模量、损耗模量和损耗角正切;D~F:0.6%ACP溶液的储存模量、损耗模量和损耗角正切。
Figure 4. Changes of storage modulus, loss modulus and loss tangent of AWE and ACP solution with different mass concentration
A~C: Storage modulus, loss modulus and loss tangent of 0.6% AWE solution. D~F: Storage modulus, loss modulus and loss tangent of 0.6% ACP solution.
图 7 不同均质压力下AWE和ACP储存模量、损耗模量和损耗角正切的变化
A~C:0.6%的AWE溶液的储存模量、损耗模量和损耗角正切;D~F:0.6%的ACP溶液的储存模量、损耗模量和损耗角正切。
Figure 7. Changes of storage modulus, loss modulus and loss tangent of A. auricula solution under different homogeneous pressures
A~C: Storage modulus, loss modulus and loss tangent of 0.6% AWE solution. D~F: Storage modulus, loss modulus and loss tangent of 0.6% ACP solution.
表 1 正交试验因素和水平
Table 1. Factors and levels of orthogonal tests
水平
LevelsA黑木耳水提物
AWE/%B柠檬酸
Citric acid/%C冰糖
Rock sugar/%1 0.3 0.05 5 2 0.6 0.10 6 3 0.9 0.15 7 表 2 黑木耳饮料感官质量评分标准
Table 2. Sensory quality scoring criteria for wood ear beverage
评分指标
Scoring indicators评分标准
Scoring criteria评分
Score/分色泽(3分)
Color (3 points)均匀一致的淡褐色 2~3 淡褐色或深褐色,颜色较深或较浅,不够均匀 1~2 颜色过深或过浅且不均匀 0~1 黏稠度(3分)
Viscosity (3 points)粘稠适中 2~3 过于黏稠 0~2 无黏稠感 0~2 风味(4分)
Flavor (4 points)有淡淡黑木耳风味,香气和谐,酸甜适中,味清口爽 3~4 黑木耳风味稍显不足,偏甜、偏酸或
偏淡2~3 香气和滋味不协调,太甜、太酸或
太淡0~1 表 3 不同质量浓度AWE和ACP溶液的Power Law方程拟合参数
Table 3. Parameters for fitting the Power Law equation for different concentration of AWE and ACP solution
溶液
Solution质量浓度
Concent/%稠度系数k
Consistency
coefficient k/
(Pa·sn)流动行为指数n
Flow behavior
index n相关系数R2
Correlation
coefficient R2黑木耳水提物
AWE0.3 67.70±1.34 e 0.69±0.01 a 0.983 0.6 242.83±3.58 d 0.57±0.01 b 0.9959 0.9 602.40±7.98 c 0.48±0.01 c 0.9981 1.2 1084.93±11.82 b 0.41±0.01 d 0.9991 1.5 1614.24±22.36 a 0.38±0.01 d 0.9987 黑木耳粗多糖
ACP0.3 231.91±4.14 e 0.62±0.01 a 0.9916 0.6 980.69±11.85 d 0.49±0.01 b 0.9983 0.9 2531.91±24.42 c 0.41±0.01 c 0.9993 1.2 4692.93±38.90 b 0.39±0.00 c 0.9995 1.5 7138.29±28.68 a 0.35±0.00 d 0.9999 同列数据后不同小写字母表示不同处理间差异显著(P < 0.05),下同。
Different lowercase letters superscribing the same indicator in the same column indicate significant differences (P < 0.05), the same below.表 4 不同均质压力下0.6%AWE和ACP溶液的 Power Law方程拟合参数
Table 4. Parameters for fitting the Power Law equation of 0.6% AWE and ACP solution under different homogenization pressures
溶液
Solution均质压力
Homogeneous
pressure/MPa稠度系数k
Consistency
coefficient k/
(Pa·sn)流动行为指数n
Flow behavior
index n相关系数 R2
Correlation
coefficient
R2黑木耳水提物
AWE0 242.83 ± 3.58 a 0.57 ± 0.01 c 0.9959 4 93.89 ± 2.12 b 0.76 ± 0.01 b 0.9639 8 51.99 ± 2.61 c 0.85 ± 0.02 a 0.7339 12 43.40 ± 0.69 d 0.81 ± 0.01 a 0.9725 黑木耳粗多糖
ACP0 980.69 ± 11.85 a 0.50 ± 0.01 d 0.9983 4 462.41 ± 11.83 b 0.63 ± 0.01 c 0.9824 8 179.54 ± 4.79 c 0.75 ± 0.01 b 0.9545 12 85.60 ± 3.37 d 0.83 ± 0.02 a 0.8461 表 5 L9(33)正交试验结果
Table 5. L9 (33) Orthogonal design scheme and results
试验号
Test numberA黑木耳水提物
AWEB冰糖
Rock
sugarC柠檬酸
Citric
acid感官评分
Sensory score1 1 1 1 6.7±0.2 2 1 2 2 7.3±0.3 3 1 3 3 7.1±0.1 4 2 2 3 8.0±0.5 5 2 3 1 7.9±0.3 6 2 1 2 8.2±0.4 7 3 3 2 7.4±0.1 8 3 1 3 6.9±0.2 9 3 2 1 7.2±0.4 K1 21.10 21.80 21.80 K2 24.10 22.50 22.90 K3 21.50 22.40 22.00 k1 7.03 7.27 7.27 k2 8.03 7.50 7.63 k3 7.17 7.47 7.33 极小值
Minimum value7.03 7.27 7.27 极大值
Maximum value8.03 7.50 7.63 极差R
Range R1.00 0.23 0.37 主次因素
Primary and
secondary factorsA > C > B 最优组合
Optimal combinationA2C2B2 表 6 方差分析结果
Table 6. Results of variance analysis
方差来源
Source平方和
Sum of
squares自由度
Degree of
freedom均方
Mean
squareF值
F valueP值
P valueA 1.76889 2 0.8844 49.75 0.0197 * B 0.09556 2 0.0478 2.6875 0.2712 C 0.22889 2 0.1144 6.4375 0.1345 D空白
D Blank0.03556 2 0.0178 总和
Total0.36 “*”表示在0.05水平差异显著。
"*" indicates a significant difference at the 0.05 level. -
[1] 刘炜, 刘行, 杨晓凤, 等. 不同产地黑木耳中氨基酸含量的测定及主成分分析 [J]. 食品安全质量检测学报, 2021, 12(20):8068−8075.LIU W, LIU X, YANG X F, et al. Determination of amino acid content and principal component analysis of Auricularia auricula from different regions [J]. Journal of Food Safety & Quality, 2021, 12(20): 8068−8075.(in Chinese) [2] LIU Q, AN X, CHEN Y, et al. Effects of Auricularia auricula polysaccharides on gut microbiota and metabolic phenotype in mice [J]. Foods, 2022, 11(17): 2700. doi: 10.3390/foods11172700 [3] 张廷婷, 赵文颖, 谢倍珍, 等. 黑木耳及其多糖对高脂饮食大鼠的降血脂和肠道菌群调节作用 [J]. 中国食品学报, 2021, 21(9):89−101.ZHANG T T, ZHAO W Y, XIE B Z, et al. Effects of Auricularia auricula and its polysaccharides on hypolipidemic and regulating intestinal flora in high-fat diet rats [J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(9): 89−101.(in Chinese) [4] 郝敏, 李殿龙, 徐俊亭, 等. 黑木耳胞外多糖对小鼠肠道微生态及免疫调节的影响 [J]. 中国食品学报, 2021, 21(3):63−70.HAO M, LI D L, XU J T, et al. Effects of exopolysaccharides from Auricularia auricula-judae on the intestine microecology and immunomodulatory in mice [J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(3): 63−70.(in Chinese) [5] 罗敬文, 司风玲, 顾子玄, 等. 3种木耳多糖的抗氧化活性与抑菌能力比较分析 [J]. 食品科学, 2018, 39(19):64−69.LUO J W, SI F L, GU Z X, et al. Antioxidant and antimicrobial activities of polysaccharides from three species of Auricularia [J]. Food Science, 2018, 39(19): 64−69.(in Chinese) [6] ZHANG Y K, SHI Q W, JIANG W, et al. Comparison of the chemical composition and antioxidant stress ability of polysaccharides from Auricularia auricula under different drying methods [J]. Food & Function, 2022, 13(5): 2938−2951. [7] MIAO J N, REGENSTEIN J M, QIU J Q, et al. Isolation, structural characterization and bioactivities of polysaccharides and its derivatives from Auricularia-a review [J]. International Journal of Biological Macromolecules, 2020, 150: 102−113. doi: 10.1016/j.ijbiomac.2020.02.054 [8] BIAN C, WANG Z Y, SHI J. Extraction optimization, structural characterization, and anticoagulant activity of acidic polysaccharides from Auricularia auricula- judae [J]. Molecules, 2020, 25(3): 710. doi: 10.3390/molecules25030710 [9] 王鹏, 郭丽, 周凤超, 等. 黑木耳提取液流变学性质研究 [J]. 北方园艺, 2013(24):146−149.WANG P, GUO L, ZHOU F C, et al. Study on rheological properties of black fungus extract [J]. Northern Horticulture, 2013(24): 146−149.(in Chinese) [10] 税东宁. 复合型木耳饮料的工艺开发及产品特性研究[D]. 大连: 大连工业大学, 2021.SHUI D N. Technology development and product characteristics of compound fungus beverage [D] Dalian: Dalian University of Technology, 2021. (in Chinese) [11] 陈慧, 陈义勇. 白背毛木耳多糖的流变特性研究 [J]. 食品工业, 2016, 37(2):43−47.CHEN H, CHEN Y Y. Rheological properties of polysaccharides from Auricularia polytricha [J]. The Food Industry, 2016, 37(2): 43−47.(in Chinese) [12] 晏飞利, 刘丹, 陈艾萌, 等. 高压均质对天冬饮料稳定性的影响及其粒径表征 [J]. 现代食品, 2022, 28(11):63−66.YAN F L, LIU D, CHEN A M, et al. Effect of high pressure homogenization on stability of Asparagus beverage and its particle size characterization [J]. Modern Food, 2022, 28(11): 63−66.(in Chinese) [13] 刘孝平. 关键加工工艺对罗望子浊汁活性物质及品质的影响[D]. 雅安: 四川农业大学, 2020.LIU X P. Effects of key processing technology on active substances and quality of tamarind turbid juice[D]. Ya'an: Sichuan Agricultural University, 2020. (in Chinese) [14] 刘洁. 加工工艺对百合浊汁品质特性的影响[D]. 长沙: 湖南大学, 2020.LIU J. Effect of processing technology on quality characteristics of lily cloudy juice[D]. Changsha: Hunan University, 2020. (in Chinese) [15] 徐柔. 秋葵多糖基本结构和流变学特征及高压均质对其结构的影响[D]. 南昌: 南昌大学, 2019.XU R. Basic structural and rheological characteristics of polysaccharide from okra(Abelmoschus esculentus(L. )moench) and the effect of high pressure homogenization on its structure[D]. Nanchang: Nanchang University, 2019. (in Chinese) [16] 王德芝, 刘学彦. 灵芝功能饮料的稳定性研究 [J]. 中国食用菌, 2004, 23(4):47−48.WANG D Z, LIU X Y. Study on stability of Ganoderma lucidum functional drink [J]. Edible Fungi of China, 2004, 23(4): 47−48.(in Chinese) [17] 周香怀, 丁保淼. 脂质体对黄原胶流变特性的影响 [J]. 食品科技, 2022, 47(3):284−289.ZHOU X H, DING B M. Effect of liposomes on the rheological properties of xanthan gum [J]. Food Science and Technology, 2022, 47(3): 284−289.(in Chinese) [18] 林梦涵, 赵大鹏, 付坤铭, 等. 黑木耳红枣复合果肉饮料的工艺研究 [J]. 人参研究, 2022, 34(2):46−49.LIN M H, ZHAO D P, FU K M, et al. Study on technology of Auricularia auricula and red jujube compound pulp beverage [J]. Ginseng Research, 2022, 34(2): 46−49.(in Chinese) [19] 肖敏, 丁燕, 魏彦梅. 正交试验法优化火龙果黑木耳复合饮料配方的研究 [J]. 湖南农业科学, 2022(10):61−65.XIAO M, DING Y, WEI Y M. An optimization on the compound beverage of pitaya fruit and black fungus by orthogonal test [J]. Hunan Agricultural Sciences, 2022(10): 61−65.(in Chinese) [20] 雷琬琬, 吴秀宁, 徐芳琴, 等. 黑木耳复合饮料的制备及其抗氧化性研究 [J]. 安徽农学通报, 2023, 29(15):119−125.LEI W W, WU X N, XU F Q, et al. Study on preparation and antioxidant activity of Auricularia auricula compound beverage [J]. Anhui Agricultural Science Bulletin, 2023, 29(15): 119−125.(in Chinese) [21] 杨曦. 基于混合食品多糖体系的凝胶特性及调控机制[D]. 西安: 陕西师范大学, 2020.YANG X. Gel characteristics and regulation mechanism based on mixed food polysaccharide system[D]. Xi'an: Shaanxi Normal University, 2020. (in Chinese) [22] 李盛, 许淑琴, 张俐娜. 菌类多糖链构象及其表征方法研究进展 [J]. 高分子学报, 2010(12):1359−1375.LI S, XU S Q, ZHANG L N. Advances in conformations and characterizations of fungi polysaccharides [J]. Acta Polymerica Sinica, 2010(12): 1359−1375.(in Chinese) [23] 王银平. 玉木耳多糖的制备、结构表征及其与乳清蛋白相互作用研究[D]. 长春: 吉林大学, 2020.WANG Y P. Preparation and structural characterization of polysaccharides from Auricularia cornea Var. Li. and their interactions with whey protein[D]. Changchun: Jilin University, 2020. (in Chinese) [24] HANSOGE N K, GUPTA A, WHITE H, et al. Universal relation for effective interaction between polymer-grafted nanoparticles [J]. Macromolecules, 2021, 54(7): 3052−3064. doi: 10.1021/acs.macromol.0c02600 [25] ROGERS S A, PARK J D, LEE C W J. Instantaneous dimensionless numbers for transient nonlinear rheology [J]. Rheologica Acta, 2019, 58(8): 539−556. doi: 10.1007/s00397-019-01150-2 [26] 时静, 邓红, 俞清青. 不同因素对平菇多糖流变学特性的影响 [J]. 广东轻工职业技术学院学报, 2018, 17(2):11−14.SHI J, DENG H, YU Q Q. Effects of different factors on rheological properties of Pleurotus ostreatus polysaccharides [J]. Journal of Guangdong Industry Polytechnic, 2018, 17(2): 11−14.(in Chinese) [27] LIN L H, SHEN M Y, LIU S C, et al. An acidic heteropolysaccharide from Mesona chinensis: Rheological properties, gelling behavior and texture characteristics [J]. International Journal of Biological Macromolecules, 2018, 107: 1591−1598. doi: 10.1016/j.ijbiomac.2017.10.029 [28] ZHOU R, BAO H H, KANG Y H. Synergistic rheological behavior and morphology of yam starch and Auricularia auricula-judae polysaccharide-composite gels under processing conditions [J]. Food Science and Biotechnology, 2017, 26(4): 883−891. doi: 10.1007/s10068-017-0122-2 [29] YANG J D, LIU T T, ZHANG S S, et al. Optimization of microwave-assisted extraction and rheological and gelling properties of polysaccharide from Tremella fuciformis [J]. Food Science, 2019, 40(14): 289−295. [30] 赵秀婷, 宋志萍, 付萌, 等. 食品加工技术影响多糖构效关系和溶液行为的研究进展 [J]. 粮油食品科技, 2021, 29(3):78−86.ZHAO X T, SONG Z P, FU M, et al. Advances on the effect of processing technology on structure activity relationship and solution behavior of polysaccharides [J]. Science and Technology of Cereals, Oils and Foods, 2021, 29(3): 78−86.(in Chinese) [31] 杨春瑜, 姜启兴, 夏文水, 等. 黑木耳超微粉多糖相对分子质量分布及降血脂功能研究 [J]. 中国食品学报, 2008, 8(6):23−32.YANG C Y, JIANG Q X, XIA W S, et al. Relative molecular weight distribution and reducing blood lipid function of polysaccharides in ultra-fine grinding powder of Auricularia auricula [J]. Journal of Chinese Institute of Food Science and Technology, 2008, 8(6): 23−32.(in Chinese) [32] 龚劲松, 袁峰, 袁兵兵, 等. 高压均质法提取药用真菌多糖的研究 [J]. 生物学杂志, 2018, 35(4):29−33.GONG J S, YUAN F, YUAN B B, et al. The investigation on extraction of fungal polysaccharide via high-pressure homogenization strategy [J]. Journal of Biology, 2018, 35(4): 29−33.(in Chinese) [33] 胡俊飞. 高压均质降解黑木耳多糖硫酸酯化衍生物抗辐射作用研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.HU J F. The radioprotective effect of sulfated Auricularia auricula polysaccharide degraded by high pressure homogenization[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese) [34] 徐伟, 王贵新. 均质对毛酸浆果汁稳定性的影响及其粒径形态表征 [J]. 食品科学, 2016, 37(4):68−72.XU W, WANG G X. Effect of homogenization on the stability of Physalis pubescens L. juice and characterization of its particle size and morphology [J]. Food Science, 2016, 37(4): 68−72.(in Chinese)