Growth and Saline-tolerance of Quinoa Seeds and Seedlings under Salt Stress
-
摘要:
目的 探究盐胁迫对藜麦生长发育及生理特性的影响,并研究3种抗逆基因在藜麦中的响应模式。 方法 以藜麦品种Temuco为材料,用不同浓度NaCl溶液(0、200、 450 mmol·L−1)处理藜麦种子和盆栽幼苗,通过测定种子萌发和幼苗生理指标、成熟植株农艺性状、种子营养成分含量,以及SOD、 POD、BADH基因的时空表达,明确不同浓度NaCl胁迫对藜麦种子萌发、幼苗生长和种子品质的影响,以及3种抗逆基因对不同盐胁迫的响应。 结果 (1)在高浓度NaCl(450 mmol·L−1)胁迫下藜麦种子发芽和植株生长均受到明显抑制,影响种子N元素的吸收,Na+/K+比率显著上升,超氧化物歧化酶(SOD)和过氧化物酶(POD)的酶活性显著下降,而丙二醛(MDA)含量明显高于对照。低浓度NaCl(200 mmol·L−1)胁迫有助于藜麦生长发育,除发芽指数下降外,种子活力指数和鲜重显著增加,各营养元素含量不受影响且略有上升,诱导SOD和POD酶活性显著增加,MDA含量与对照相比无明显差别。(2)可溶性糖和脯氨酸含量在200 mmol·L−1和450 mmol·L−1两个盐浓度下,与对照相比较均有显著增加,可溶性糖的增幅分别为68.06%和41.67%,脯氨酸含量的增幅分别为237.38%和189.97%。两者均随着盐浓度的增加呈现先上升后下降的趋势。(3)SOD、POD和BADH三个抗逆基因在高浓度盐胁迫下表达量响应模式存在组织特异性和耐盐敏感性差异。BADH和SOD基因在根部组织中的表达量高于茎部和叶片,而POD基因则在叶片组织中的表达量最高,根部最低。 结论 高盐胁迫会影响藜麦Temuco种子的营养成分,使其萌发和生长受到抑制;基因的时间动态表达水平表明,在200 mmol·L−1和450 mmol·L−1两个盐浓度下,BADH均较POD和SOD对盐胁迫的响应更为迅速和敏感,因此BADH基因的表达量水平和响应速度可作为藜麦耐盐种质筛选的标记之一。本研究对藜麦的耐盐机制的深入和耐盐种质的选育提供了理论依据。 Abstract:Objective Germination, growth, and physiology of quinoa seeds and seedlings under salt stress were analyzed. Method Temuco Quinoa seeds and potted seedlings were treated with NaCl solutions of different concentrations (i.e., 0, 200, and 450 mmol·L−1). Physiological indexes on seed germination and seedling growth, agronomic traits of mature plants, contents of nutrients in the seeds or seedlings, and spatial-temporal expression of SOD, POD, and BADH in the seedlings, were monitored to determine the effects of the imposed salt stress. Result (1) Quinoa seed germination and seedling growth were significantly inhibited by the high NaCl concentration at 450 mmol·L−1. The N-uptake was ill-affected, the Na+/K+ ratio significantly increased, the activities of superoxide dismutase (SOD) and peroxidase (POD) significantly decreased, while malondialdehyde (MDA) content significantly higher than that of control. However, under 200 mmol NaCl·L−1, the quinoa plants grew and developed well. Aside from a declined germination index, the seed vigor index and fresh seedling weight were significantly increased, the content of all nutrients slightly raised, and the SOD and POD activities significantly elevated without a significant difference in MDA over control. (2) Under the salt stress of 200 mmol·L−1 and 450 mmol·L−1, the soluble sugar content increased by 68.06% and 41.67%, and the proline by 237.38% and 189.97%, respectively. As the salt concentration increased, they share a similar trend of firstly increasing then a decline. (3) In response to salt stress, BADH and SOD were more highly expressed in the root tissues than in the stems and leaves, while POD was highest in the leaves and lowest in the roots. Conclusion High salt concentration at 450 mmol·L−1 ill-affected the nutrient content in Temuco quinoa seeds, inhibited the germination, and hindered the seedling development. The temporal expression of BADH was more rapid and sensitive to salt stress than those of POD and SOD at either 200 mmol·L−1 or 450 mmol·L−1. Consequently, it could be served as an indicator in screening salt-tolerant quinoa germplasms. -
Key words:
- Quinoa /
- physiology /
- resilience genes /
- salt tolerance mechanism
-
表 1 藜麦3种基因扩增引物
Table 1. Amplification primers of 3 quinoa genes
引物名称
Name正向引物
Forward primer反向引物
Reverse primer用途
UseBADH-1 CTGAAGAAATCATCGGTGATATTC TCAAGGAGACTTGTACCATC BADH cDNA片段扩增 BADH-2 GCATTTGAAGAAAGGGTA CACTACGCTTGACTCCTCCC BADH基因定量PCR POD-1 GGATGTGATGCATCAGTACTAGTAG GACAACAGCATCTCTAGCAGC POD cDNA片段扩增 POD-2 GATTCAACTCCAGGAAACACA CAGCATCTCTAGCAGCATAGG POD基因定量PCR SOD-1 AACCACTCAATTTTCTGGAAGA AGTATGCATGCTCCCAAACATC SOD cDNA片段扩增 SOD-2 TGATTTGGAGTGGTTTCAAC CAATTAGTCAAGGAGGTGGT SOD基因定量PCR 表 2 不同NaCl浓度对藜麦种子Temuco萌发的影响
Table 2. Quinoa seed germination affected by NaCl stress
NaCl浓度
NaCl concentration/( mmol·L−1)发芽率
Germination rate/%发芽势
Germination potential/%发芽指数
Germination index活力指数
Vitality Index株高
Plant height/cm鲜重
Fresh weight/g0 85.40 a 78.72 a 16.53 a 3.28 b 3.87 a 0.22 b 200 80.34 a 72.52 a 11.93 b 4.85 a 4.21 a 0.42 a 450 42.27 b 20.58 b 3.82 c 0.65 c 2.31 b 0.19 b 同列数据后不同小写字母表示同一指标在不同浓度下差异显著(P<0.05),下同。
Data with different lowercase letters on same column indicate significant differences on same indicator at different concentrations (P<0.05). Same for below.表 3 Temuco成熟期不同浓度盐胁迫下农艺性状
Table 3. Agronomic characteristics of Temuco quinoa under salt stress at mature stage
NaCl浓度
NaCl concentration/(mmol·L−1)株高
Plant height/cm叶面积
leaf area/cm2叶片相对含水量
Relative water content of leaves/%千粒重
thousand kernel weight/g0 157.2 a 952.3 a 91.5 a 4.11 a 200 155.6 a 947.8 a 87.7 a 4.02 a 450 131.9 b 801.1 b 80.2 b 4.08 a 表 4 Temuco种子各元素成分含量
Table 4. Contents of elements in Temuco seeds
NaCl浓度
NaCl concentration/(mmol·L−1)N/% C/% S/% Fe/(mg·g−1) Cu/(mg·g−1) Ca/(mg·g−1) Mg/(mg·g−1) 0 3.27 a 44.82 a 0.20 a 0.058 a 0.005 a 8.592 a 1.784 a 200 3.41 a 45.03 a 0.23 a 0.060 a 0.006 a 8.439 a 1.692 a 450 2.74 b 44.91 a 0.21 a 0.057 a 0.006 a 8.682 a 1.729 a 表 5 不同NaCl浓度处理后幼苗叶片生理生化指标
Table 5. Physiochemical indexes of seedling leaves treated with NaCl solutions of varied concentrations
NaCl浓度
NaCl concentration/
( mmol·L−1)SOD活性
SOD Activity/
(U·g−1·min−1)POD活性
POD Activity/
(U·g−1·min−1)可溶性糖含量
Soluble suger content/
(mg·g−1)脯氨酸含量
Proline content/
(μg·g−1)MDA含量
MDA content/
(μmol·g−1)0 115.16 b 75.32 b 7.20 c 25.12 b 3.42 b 200 138.75 a 96.37 a 12.10 a 84.75 a 3.54 b 450 92.08 c 53.28 c 10.20 b 72.84 a 5.57 a -
[1] VAN ZELM E, ZHANG Y X, TESTERINK C. Salt tolerance mechanisms of plants [J]. Annual Review of Plant Biology, 2020, 71: 403−433. doi: 10.1146/annurev-arplant-050718-100005 [2] WAQAS M, CHEN Y N, IQBAL H, et al. Synergistic consequences of salinity and potassium deficiency in quinoa: Linking with stomatal patterning, ionic relations and oxidative metabolism [J]. Plant Physiology and Biochemistry, 2021, 159: 17−27. doi: 10.1016/j.plaphy.2020.11.043 [3] 徐成龙, 董奕岑, 卢家磊, 等. 我国滨海盐碱地土壤改良及资源化利用研究进展 [J]. 世界林业研究, 2020, 33(6):68−73.XU C L, DONG Y C, LU J L, et al. Research progress of soil improvement and soil resources utilization of coastal saline-alkaline land in China [J]. World Forestry Research, 2020, 33(6): 68−73.(in Chinese) [4] LIN M Y, HAN P P, LI Y Y, et al. Quinoa secondary metabolites and their biological activities or functions [J]. Molecules, 2019, 24(13): 2512. doi: 10.3390/molecules24132512 [5] HUSSAIN M I, FAROOQ M, SYED Q A, et al. Botany, nutritional value, phytochemical composition and biological activities of quinoa [J]. Plants, 2021, 10(11): 2258. doi: 10.3390/plants10112258 [6] 任贵兴, 杨修仕, 么杨. 中国藜麦产业现状 [J]. 作物杂志, 2015(5):1−5.REN G X, YANG X S, YAO Y. Current situation of quinoa industry in China [J]. Crops, 2015(5): 1−5.(in Chinese) [7] JACOBSEN S E, MUJICA A, JENSEN C R. The resistance of quinoa (Chenopodium quinoaWilld. ) to adverse abiotic factors [J]. Food Reviews International, 2003, 19(1/2): 99−109. [8] LÓPEZ-MARQUÉS R L, NØRREVANG A F, ACHE P, et al. Prospects for the accelerated improvement of the resilient crop quinoa [J]. Journal of Experimental Botany, 2020, 71(18): 5333−5347. doi: 10.1093/jxb/eraa285 [9] MA Q, SU C X, DONG C H. Genome-wide transcriptomic and proteomic exploration of molecular regulations in quinoa responses to ethylene and salt stress [J]. Plants, 2021, 10(11): 2281. doi: 10.3390/plants10112281 [10] 王志恒, 徐中伟, 周吴艳, 等. 藜麦种子萌发阶段响应干旱和盐胁迫变化的综合评价 [J]. 中国生态农业学报(中英文), 2020, 28(7):1033−1042.WANG Z H, XU Z W, ZHOU W Y, et al. Comprehensive evaluation of quinoa seed responses to drought and salt stress during germination [J]. Chinese Journal of Eco-Agriculture, 2020, 28(7): 1033−1042.(in Chinese) [11] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. [12] 任永峰, 黄琴, 王志敏, 等. 不同化控剂对藜麦农艺性状及产量的影响 [J]. 中国农业大学学报, 2018, 23(8):8−16.REN Y F, HUANG Q, WANG Z M, et al. Effects of chemical control on agronomic traits and yield of quinoa [J]. Journal of China Agricultural University, 2018, 23(8): 8−16.(in Chinese) [13] 解卫海, 刘丹, 孙金利, 等. 脱水和高氧压过程中单叶蔓荆叶片细胞膜透性分析 [J]. 林业科学, 2015, 51(6):44−49.XIE W H, LIU D, SUN J L, et al. Permeability of cells in leaves of Vitex trifolia var. simplicifolia under stresses of dehydration and high oxygen pressure [J]. Scientia Silvae Sinicae, 2015, 51(6): 44−49.(in Chinese) [14] 杨璐, 依丽米努尔, 朱苗苗, 等. 植物叶片中硫含量测定方法研究 [J]. 应用化工, 2015, 44(3):575−579.YANG L, YILIMINUER, ZHU M M, et al. Study on the determination of sulfur content in plant leaves [J]. Applied Chemical Industry, 2015, 44(3): 575−579.(in Chinese) [15] 付尧, 孙玉军. 植物有机碳测定研究进展 [J]. 世界林业研究, 2013, 26(1):24−30.FU Y, SUN Y J. A study of the determination of organic carbon of vegetation [J]. World Forestry Research, 2013, 26(1): 24−30.(in Chinese) [16] 常硕, 张延国, 刘广洋, 等. 杜马斯燃烧定氮法和凯氏定氮法在蔬菜粗蛋白质含量检测中的比较 [J]. 中国蔬菜, 2021(6):68−73.CHANG S, ZHANG Y G, LIU G Y, et al. Comparative studies on determination of crude protein in common vegetables by Dumas combustion method and Kjeldahl method [J]. China Vegetables, 2021(6): 68−73.(in Chinese) [17] KOYRO H W, EISA S S. Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa Willd [J]. Plant and Soil, 2008, 302(1/2): 79−90. [18] 李丽丽, 姜奇彦, 牛风娟, 等. 藜麦耐盐机制研究进展 [J]. 中国农业科技导报, 2016, 18(2):31−40.LI L L, JIANG Q Y, NIU F J, et al. Research progress on salt tolerance mechanisms in quinoa [J]. Journal of Agricultural Science and Technology, 2016, 18(2): 31−40.(in Chinese) [19] 陆敏佳, 蒋玉蓉, 陆国权, 等. 利用SSR标记分析藜麦品种的遗传多样性 [J]. 核农学报, 2015, 29(2):260−269. doi: 10.11869/j.issn.100-8551.2015.02.0260LU M J, JIANG Y R, LU G Q, et al. Genetic diversity of quinoa germplasm assessed by SSR markers [J]. Journal of Nuclear Agricultural Sciences, 2015, 29(2): 260−269.(in Chinese) doi: 10.11869/j.issn.100-8551.2015.02.0260 [20] 刘文瑜, 杨发荣, 黄杰, 等. NaCl胁迫对藜麦幼苗生长和抗氧化酶活性的影响 [J]. 西北植物学报, 2017, 37(9):1797−1804. doi: 10.7606/j.issn.1000-4025.2017.09.1797LIU W Y, YANG F R, HUANG J, et al. Response of seedling growth and the activities of antioxidant enzymes of Chenopodium quinoato salt stress [J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(9): 1797−1804.(in Chinese) doi: 10.7606/j.issn.1000-4025.2017.09.1797 [21] ADOLF V I, JACOBSEN S E, SHABALA S. Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.) [J]. Environmental and Experimental Botany, 2013, 92: 43−54. doi: 10.1016/j.envexpbot.2012.07.004 [22] RUFFINO A M C, ROSA M, HILAL M, et al. The role of cotyledon metabolism in the establishment of quinoa (Chenopodium quinoa) seedlings growing under salinity [J]. Plant and Soil, 2010, 326(1/2): 213−224.