Isolation and Enzymatic Activity of Cellulose-degrading Bacteria
-
摘要:
目的 为获得秸秆降解的应用型菌株,自制秸秆腐熟菌剂。 方法 从林下土壤和堆肥样品中,采用羧甲基纤维素钠和刚果红培养基进行分离筛选,并对菌株纤维素酶活性、滤纸酶活性和木聚糖酶活性进行测定。 结果 获得1株羧甲基纤维素酶活力最高的菌株,经形态学和分子生物学鉴定为地衣芽孢杆菌(Bacillus licheniformis)。该菌株对滤纸有崩解效果,滤纸酶活性14.21 U·mL−1,木聚糖酶活性24.03 U·mL−1,玉米秸秆降解率为21.2%。 结论 菌株TB1滤纸崩解试验效果较好,纤维素酶活性、滤纸酶活性和木聚糖酶活性均较高,具有秸秆降解开发应用价值。 Abstract:Objective Bacteria capable of effectively degrading spent straws were isolated, and conditions for the enzymatic reaction analyzed. Method On a medium containing sodium carboxymethyl cellulose and Congo red, potential strains capable of decomposing fibrous material were isolated from sampled forest soil and compost. Enzymatic activities of the isolates were examined, and conditions determined. Result Bacillus licheniformis was identified as the strain with the greatest carboxymethyl cellulase activity. It demonstrated a filter paper degrading activity of 14.21 U·mL−1, a xylanase activity of 24.03 U·mL−1, and an ability to decompose 21.2% of corn straws. On corn straws, the selected isolate was observed to show the maximum digestion with an overall activity up to 48.63 U·mL−1 by using KNO3 for nitrogen source at pH 7 and 30 ℃. Conclusion B. licheniformis was a cellulose-degrading bacterium that could be used to decompose spent corn straws for waste disposal. -
Key words:
- Cellulose-degrading bacteria /
- corn straw /
- enzymatic properties
-
表 1 各菌株降解纤维素能力评价
Table 1. Cellulose degradation activities of isolated strains
菌株编号
Strain No.水解圈直径
Hydrolysis spot
diameter/mm滤纸酶活
Filter paper enzyme activity/
(U·mL−1)木聚糖酶活
Xylanase activity/
(U·mL−1)CMC最高酶活
Highest CMCase/
(U·mL−1)最高酶活出现时间
Time of the highest
CMCase/dTB1 15.40±0.80 14.21±0.24 24.03±0.12 38.69±0.54 3 TB2 8.51±0.91 5.34±0.07 10.07±0.06 16.03±0.11 4 TB3 3.44±0.83 9.46±0.64 12.10±0.15 9.46±0.64 3 TB4 9.52±0.64 4.32±0.05 8.35±0.41 17.10±0.35 5 TB5 10.10±0.44 5.32±0.16 10.94±0.33 14.17±0.22 5 TB6 6.54±0.11 3.32±0.11 4.86±0.16 8.32±0.05 7 -
[1] KUMAR R, SINGH S, SINGH O V. Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives[J]. Journal of Industrial Microbiology & Biotechnology, 2008, 35(5): 377−391. [2] 段杰. 东北地区秸秆纤维素降解菌的筛选及高效降解菌系的构建[D]. 长春: 吉林农业大学, 2015.DUAN J. The screening of degradation bacteria and building of highly efficient degradation bacteria for the straw cellulose in the northeast[D]. Changchun: Jilin Agricultural University, 2015. (in Chinese) [3] GROßKOPF T, SOYER O S. Synthetic microbial communities [J]. Current Opinion in Microbiology, 2014, 18: 72−77. doi: 10.1016/j.mib.2014.02.002 [4] VAN DIJK E L, AUGER H, JASZCZYSZYN Y, et al. Ten years of next-generation sequencing technology [J]. Trends in Genetics, 2014, 30(9): 418−426. doi: 10.1016/j.tig.2014.07.001 [5] CALLAHAN B J, MCMURDIE P J, HOLMES S P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis[J]. The ISME Journal, 2017, 11(12): 2639−2643. [6] 李林超, 张超, 董庆, 等. 堆肥过程中纤维素降解菌的分离与鉴定 [J]. 生物技术通报, 2019, 35(9):165−171.LI L C, ZHANG C, DONG Q, et al. Isolation and identification of cellulose degrading microorganisms in composting process [J]. Biotechnology Bulletin, 2019, 35(9): 165−171.(in Chinese) [7] 孟建宇, 冀锦华, 郭慧琴, 等. 常温纤维素降解细菌的筛选及其复合系的构建 [J]. 生物学杂志, 2020, 37(3):86−90. doi: 10.3969/j.issn.2095-1736.2020.03.086MENG J Y, JI J H, GUO H Q, et al. Isolation of room temperature cellulose-degrading bacteria and construction of degrading consortia [J]. Journal of Biology, 2020, 37(3): 86−90.(in Chinese) doi: 10.3969/j.issn.2095-1736.2020.03.086 [8] 刘心吾, 张威, 马玲玲, 等. 耐高温木质纤维素降解菌株的分离筛选、鉴定及降解工艺的研究 [J]. 中国农学通报, 2020, 36(21):118−125.LIU X W, ZHANG W, MA L L, et al. Lignocellulose degradation strains with high-temperature resistance: Isolation, screening, identification and degradation process [J]. Chinese Agricultural Science Bulletin, 2020, 36(21): 118−125.(in Chinese) [9] 张冬雪, 文亚雄, 罗志威, 等. 纤维素降解菌的分离筛选及其对水稻秸秆的降解效果分析 [J]. 江西农业学报, 2020, 32(1):72−76.ZHANG D X, WEN Y X, LUO Z W, et al. Isolation and screening of cellulose-degrading microbes and their degradation effects on paddy straw [J]. Acta Agriculturae Jiangxi, 2020, 32(1): 72−76.(in Chinese) [10] 张世敏, 汪伦记, 贾新成, 等. 秸秆降解菌制剂的研究初报 [J]. 河南农业大学学报, 2001, 35(3):259−261.ZHANG S M, WANG L J, JIA X C, et al. Preliminary study on the microbiological agent of straw degradation [J]. Journal of Henan Agricultural University, 2001, 35(3): 259−261.(in Chinese) [11] 苏建平, 丁峰, 邹忠, 等. 秸秆速腐剂应用技术研究 [J]. 上海农业科技, 2004(4):100−101. doi: 10.3969/j.issn.1001-0106.2004.04.090SU J P, DING F, ZOU Z, et al. Study on application technology of straw fast decay agent [J]. Shanghai Agricultural Science and Technology, 2004(4): 100−101.(in Chinese) doi: 10.3969/j.issn.1001-0106.2004.04.090 [12] 殷中伟. 秸秆纤维素高效降解菌株的筛选及对秸秆降解效果初步研究[D]. 北京: 中国农业科学院, 2010.YIN Z W. Screening of straw cellulose degradation strain and preliminary study on straw degradation effect[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. (in Chinese) [13] 沈大春. 秸秆堆肥降解菌株分离及降解稻秆效果研究[D]. 南京: 南京农业大学, 2016.SHEN D C. Isolation of straw composting degrading strain and its degradation effect on rice straw [D]. Nanjing: Nanjing Agricultural University, 2016. (in Chinese) [14] LIAO H P, XU C M, TAN S Y, et al. Production and characterization of acidophilic xylanolytic enzymes from Penicillium oxalicum GZ-2 [J]. Bioresource Technology, 2012, 123: 117−124. doi: 10.1016/j.biortech.2012.07.051 [15] 孟建宇, 丁雪敏. 低温嗜碱性纤维素降解细菌的分离与鉴定 [J]. 中国饲料, 2020(11):31−33. doi: 10.15906/j.cnki.cn11-2975/s.20201107MENG J Y, DING X M. Isolation and identification of cold-adapted basophilia cellulose-degrading bacteria [J]. China Feed, 2020(11): 31−33.(in Chinese) doi: 10.15906/j.cnki.cn11-2975/s.20201107 [16] 陈珊, 华梅, 刘迪, 等. 产纤维素酶芽孢杆菌DS1309的分离鉴定及产酶条件研究 [J]. 大庆师范学院学报, 2014, 34(6):66−69.CHEN S, HUA M, LIU D, et al. Isolation and identification of Cellulase-producing Bacillus DS1309 and study on its enzyme producing conditions [J]. Journal of Daqing Normal University, 2014, 34(6): 66−69.(in Chinese) [17] 王贤丰, 单洪伟, 张家松, 等. 从海水环境分离筛选甘蔗渣纤维素降解菌 [J]. 微生物学通报, 2015, 42(6):981−989.WANG X F, SHAN H W, ZHANG J S, et al. Isolation and screening of bagasse-cellulose degrading-bacteria from seawater environment [J]. Microbiology China, 2015, 42(6): 981−989.(in Chinese) [18] 郭大城, 席宇, 朱大恒. 一株碱性纤维素降解菌的分离与分子鉴定 [J]. 科技信息(学术研究), 2008(26):99−100.GUO D C, XI Y, ZHU D H. Isolation and molecular identification of an alkaline cellulose degrading strain [J]. Science and technology information:academic research, 2008(26): 99−100.(in Chinese) [19] 陈龙, 王春凤, 钱爱东. 一株鹿源纤维素降解菌Lu14的分离与鉴定 [J]. 吉林农业大学学报, 2016, 38(5):523−526,532. doi: 10.13327/j.jjlau.2016.3375CHEN L, WANG C F, QIAN A D. Isolation and identification of strain Lu14 with high cellulose-degrading activity [J]. Journal of Jilin Agricultural University, 2016, 38(5): 523−526,532.(in Chinese) doi: 10.13327/j.jjlau.2016.3375 [20] HEGAZY W K, ABDEL-SALAM M S, HUSSAIN A A, et al. Improvement of cellulose degradation by cloning of endo-β-1, 3-1, 4 glucanase (bgls) gene from Bacillus subtilis BTN7A strain [J]. Journal of Genetic Engineering and Biotechnology, 2018, 16(2): 281−285. doi: 10.1016/j.jgeb.2018.06.005 [21] 李静, 张瀚能, 赵翀, 等. 高效纤维素降解菌分离筛选、复合菌系构建及秸秆降解效果分析 [J]. 应用与环境生物学报, 2016, 22(4):689−696.LI J, ZHANG H N, ZHAO C, et al. Isolation and screening of cellulose decomposing microbe and the straw decomposing effect of complex microbial system [J]. Chinese Journal of Applied and Environmental Biology, 2016, 22(4): 689−696.(in Chinese) [22] 高双喜, 王萱, 任菁, 等. 羊源芽孢纤维素降解菌的筛选与H-7菌株鉴定 [J]. 饲料工业, 2019, 40(14):52−57. doi: 10.13302/j.cnki.fi.2019.14.008GAO S X, WANG X, REN J, et al. Screening and identification of the degradation cellulose Bacillus strain H-7 [J]. Feed Industry, 2019, 40(14): 52−57.(in Chinese) doi: 10.13302/j.cnki.fi.2019.14.008 [23] 江高飞, 暴彦灼, 杨天杰, 等. 高温秸秆降解菌的筛选及其纤维素酶活性研究 [J]. 农业环境科学学报, 2020, 39(10):2465−2472. doi: 10.11654/jaes.2020-0958JIANG G F, BAO Y Z, YANG T J, et al. Screening of thermophilic cellulolytic bacteria and investigation of cellulase thermostability [J]. Journal of Agro-Environment Science, 2020, 39(10): 2465−2472.(in Chinese) doi: 10.11654/jaes.2020-0958 [24] 张立静, 李术娜, 朱宝成. 高效纤维素降解菌短小芽孢杆菌(Bacillus pumilus)T-7的筛选、鉴定及降解能力的研究 [J]. 中国农学通报, 2011, 27(7):112−118.ZHANG L J, LI S N, ZHU B C. Screening, identification and degradation conditions of cellulose decomposing bacteria Bacillus pumilus T-7 [J]. Chinese Agricultural Science Bulletin, 2011, 27(7): 112−118.(in Chinese) [25] 万文结, 刘月, 薛芷筠, 等. 纤维素降解菌Arthrobacter oryzae HW-17的纤维素降解特性及纤维素酶学性质 [J]. 环境科学学报, 2017, 37(10):3679−3686.WAN W J, LIU Y, XUE Z J, et al. Cellulose degradation characteristics and cellulase properties of cellulose-decomposing bacterium Arthrobacter oryzae HW-17 [J]. Acta Scientiae Circumstantiae, 2017, 37(10): 3679−3686.(in Chinese) [26] 许从峰, 艾士奇, 申贵男, 等. 木质纤维素的微生物降解 [J]. 生物工程学报, 2019, 35(11):2081−2091. doi: 10.13345/j.cjb.190248XU C F, AI S Q, SHEN G N, et al. Microbial degradation of lignocellulose [J]. Chinese Journal of Biotechnology, 2019, 35(11): 2081−2091.(in Chinese) doi: 10.13345/j.cjb.190248 [27] 鲍文英, 江经纬, 周云, 等. 一株木质纤维素降解菌的筛选及其全基因组分析 [J]. 微生物学报, 2016, 56(5):765−777. doi: 10.13343/j.cnki.wsxb.20150293BAO W Y, JIANG J W, ZHOU Y, et al. Screening and genomic analysis of a lignocellulose degrading bacterium [J]. Acta Microbiologica Sinica, 2016, 56(5): 765−777.(in Chinese) doi: 10.13343/j.cnki.wsxb.20150293