• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

老枞根际放线菌鉴定及其对可可毛色二孢抑制效果研究

陈小尘 徐金荣 高培妍 罗正朵 郑智胜 吴宝川 周艳 黄兆斌 陈洪彬 张秋芳

陈小尘,徐金荣,高培妍,等. 老枞根际放线菌鉴定及其对可可毛色二孢抑制效果研究 [J]. 福建农业学报,2023,38(9):1103−1111 doi: 10.19303/j.issn.1008-0384.2023.09.012
引用本文: 陈小尘,徐金荣,高培妍,等. 老枞根际放线菌鉴定及其对可可毛色二孢抑制效果研究 [J]. 福建农业学报,2023,38(9):1103−1111 doi: 10.19303/j.issn.1008-0384.2023.09.012
CHEN X C, XU J R, GAO P Y, et al. Identification and Inhibitory Effect on Lasiodiplodia theobromae of Actinomycetes in Camellia sinensis Rhizosphere Soil [J]. Fujian Journal of Agricultural Sciences,2023,38(9):1103−1111 doi: 10.19303/j.issn.1008-0384.2023.09.012
Citation: CHEN X C, XU J R, GAO P Y, et al. Identification and Inhibitory Effect on Lasiodiplodia theobromae of Actinomycetes in Camellia sinensis Rhizosphere Soil [J]. Fujian Journal of Agricultural Sciences,2023,38(9):1103−1111 doi: 10.19303/j.issn.1008-0384.2023.09.012

老枞根际放线菌鉴定及其对可可毛色二孢抑制效果研究

doi: 10.19303/j.issn.1008-0384.2023.09.012
基金项目: 福建省科技计划引导性项目(2020N0032)
详细信息
    作者简介:

    陈小尘(1997 —),男,硕士研究生,主要从事放线菌抗菌活性物质提取研究,E-mail:872771920@qq.com

    通讯作者:

    张秋芳(1973 —),女,博士,教授,主要从事环境微生物生态、生物资源利用和生态修复研究,E-mail: qfzhang@163.com

  • 中图分类号: TS201.3

Identification and Inhibitory Effect on Lasiodiplodia theobromae of Actinomycetes in Camellia sinensis Rhizosphere Soil

  • 摘要:   目的  从老枞根际土壤分离可培养放线菌,获取潜在新物种,并筛选可可毛色二孢菌拮抗菌株。  方法  采用土壤稀释涂布法和三区划线法进行分离和纯化,获得放线菌菌株;通过比对16S rRNA基因序列和构建系统发育树,对菌株进行初步分类和鉴定;采用平板对峙法进行抑菌活性筛选。  结果  (1)共获得81株不同放线菌菌株,分别隶属于链霉菌Streptomyces(54.32%)、节杆菌Arthrobacter(27.16%)、微杆菌Microbacterium(11.11%)、北里孢菌Kitasatospor(4.94%)和短小杆菌Curtobacterium(2.47%)5个属;(2)与已知模式菌株相比,相似度小于98.65%的潜在新种共有20 株;(3)经可可毛色二孢平板对峙试验筛选后,获得7株高抑菌活性链霉菌,其中链霉菌ON316885的抑菌率最高,达到63.92%。  结论  武夷山老枞根际土壤中蕴含着丰富的放线菌资源,具有深度挖掘研究的价值, 其中一些链霉菌具有较高的生防应用价值。
  • 图  1  武夷山老枞茶园根际土壤采样点分布

    Figure  1.  Sites for sampling actinomycetes in old tea plant rhizosphere soils at plantations in Wuyishan

    图  2  放线菌物种组成

    A. 放线菌属水平物种组成;B. 链霉菌组成;C. 节杆菌组成。

    Figure  2.  Actinomycetes taxa

    A: Genera of Actinomycetes; B: species of Streptomyces; C: species of Arthrobacter.

    图  3  老枞根际土壤中可培养放线菌系统发育进化树

    粗体表示与模式菌株相似度小于98.65%。

    Figure  3.  Phylogenetic tree of culturable actinomycetes in old tea plant rhizosphere soil

    Bold font indicates less than 98.65% similarity with reference strain.

    图  4  强拮抗活性菌株对可可毛色二孢生长的抑制效果

    A. 平板正面;B. 平板背面。

    Figure  4.  Inhibitory effects of highly active actinomycetes against L. theobromae

    A: Front of petri dish; B: back of petri dish.

    表  1  老枞根际土壤可培养放线菌代表菌株与最相似模式菌株比较

    Table  1.   Comparison between actinomycetes isolated from old tea plant rhizosphere and that closest to reference strain

    菌株登录号
    Accession No. of strain
    最相似菌株及登录号
    The closest type strain and its accession
    中文名称
    Chinese name
    相似度
    Similarity/%
    ON165519Microbacterium proteolyticum (KM359785)蛋白水解微杆菌 98.08
    ON165520Microbacterium testaceum (BJML01000022)种皮微杆菌98.53
    ON165521Streptomyces acidiscabies (D63865)酸性疮链霉菌97.91
    ON165522Streptomyces pseudovenezuelae (KQ948163)金霉素链霉菌97.56
    ON165523Streptomyces acidiscabies (D63865)酸性疮链霉菌97.94
    ON165524Arthrobacter livingstonensis (GQ406811)利文斯顿岛节杆菌97.97
    ON165525Arthrobacter bambusae (KF150696)竹节杆菌98.63
    ON165526Arthrobacter bambusae (KF150696)竹节杆菌98.42
    ON165527Streptomyces xiamenensis (EF012099)厦门链霉菌97.55
    ON165528Streptomyces alanosinicus (AB184442)阿拉诺链霉菌97.43
    ON165529Streptomyces graminifolii (HQ267984)禾叶链霉菌98.58
    ON165530Streptomyces acidiscabies (D63865)酸性疮链霉菌97.96
    ON165531Arthrobacter livingstonensis (GQ406811)利文斯顿岛节杆菌97.46
    ON165532Streptomyces acidiscabies (D63865)酸性疮链霉菌98.56
    ON165533Streptomyces philanthi (DQ375802)嗜酸链霉菌96.73
    ON165534Kitasatospora psammotica (MT760550)98.54
    ON165535Streptomyces intermedius (AB184277)中间型链霉菌98.61
    ON165536Microbacterium proteolyticum (KM359785)蛋白水解微杆菌98.22
    ON165537Streptomyces griseocarneus (MT760576)灰色链霉菌97.80
    ON165538Streptomyces aquilus (MH718844)棕色链霉菌97.78
    ON316876Streptomyces ardesiacus (DQ026631)桔橙链霉菌99.16
    ON316877Streptomyces pratensis (JQ806215)草地链霉菌99.56
    ON316878Streptomyces mexicanus (AF441168)墨西哥链霉菌98.92
    ON316879Streptomyces halstedii (AB184142)郝氏链霉菌99.86
    ON316880Streptomyces microflavus (AB184284)细黄链霉菌99.36
    ON316881Streptomyces badius (AY999783)栗褐链霉菌99.03
    ON316882Streptomyces zaomyceticus (AB184346)沙阿霉素链霉菌98.95
    ON316883Streptomyces niveus (DQ442532)雪百链霉菌100.00
    ON316884Streptomyces xylanilyticus (LC128341)99.92
    ON316885Streptomyces rochei (MUMD01000370)罗氏链霉菌98.88
    ON316886Streptomyces coelicoflavus (AB184650)天蓝黄链霉菌98.95
    ON316887Kitasatospora xanthocidica (AB184427)99.50
    ON316888Arthrobacter bambusae (KF150696)竹节杆菌99.50
    ON316889Arthrobacter gyeryongensis (JX141781)绞股蓝节杆菌99.06
    ON316890Microbacterium proteolyticum (KM359785)99.02
    ON316891Microbacterium azadirachtae (JYIT01000023)99.29
    ON316892Microbacterium paraoxydans (BCRH01000180)99.22
    ON316893Curtobacterium citreum (X77436)柠檬色短小杆菌99.36
    ON316894Curtobacterium albidum (AM042692)98.79
    粗体表示与模式菌株的相似度小于98.65%。
    Bold font indicates a less than 98.65% similarity with reference strain.
    下载: 导出CSV

    表  2  强拮抗活性菌株对可可毛色二孢的抑制作用

    Table  2.   Inhibitory effects of highly active actinomycetes against L. theobromae

    菌株登记号
    Accessions of strain
    病原菌直径
    Diameter of pathogen/mm
    抑制率
    Inhibition rate/%
    CK90.000
    ON31688459.725±0.11133.64±0.37
    ON16552154.923±0.08638.97±0.25
    ON16552352.211±0.09541.99±0.25
    ON16553234.106±0.10862.10±0.19
    ON31688532.476±0.10663.92±0.18
    ON16552235.657±0.09760.38±0.18
    ON16553739.736±0.06255.85±0.12
    下载: 导出CSV
  • [1] 王飞权. 不同树龄武夷岩茶品质差异形成的机理[D]. 杨凌: 西北农林科技大学, 2020.

    WANG F Q. The formation mechanism of the quality difference of Wuyi rock tea made from different tree ages[D]. Yangling: Northwest A & F University, 2020. (in Chinese)
    [2] 徐邢燕. 基于代谢组学的武夷肉桂茶不同烘焙程度、等级及地域品质差异研究[D]. 福州: 福建农林大学, 2020

    XU X Y. Metabolome analysis reveals quality differences of baking degrees, grades and areas in Wuyi Rougui tea[D]. Fuzhou: Fujian Agriculture and Forestry University, 2020. (in Chinese)
    [3] 商虎, 朱陈松, 叶婷婷, 等. 老枞水仙品质特征分析 [J]. 中国农学通报, 2022, 38(10):141−148.

    SHANG H, ZHU C S, YE T T, et al. The quality characteristics of Camellia sinensis’Fujian Shuixian’ [J]. Chinese Agricultural Science Bulletin, 2022, 38(10): 141−148.(in Chinese)
    [4] KIM E S. Recent advances of actinomycetes [J]. Biomolecules, 2021, 11(2): 134. doi: 10.3390/biom11020134
    [5] MAST Y, STEGMANN E. Actinomycetes: The antibiotics producers [J]. Antibiotics, 2019, 8(3): 105. doi: 10.3390/antibiotics8030105
    [6] JAGANNATHAN S V, MANEMANN E M, ROWE S E, et al. Marine actinomycetes, new sources of biotechnological products [J]. Marine Drugs, 2021, 19(7): 365. doi: 10.3390/md19070365
    [7] DUTTA J, THAKUR D. Diversity of culturable bacteria endowed with antifungal metabolites biosynthetic characteristics associated with tea rhizosphere soil of Assam, India [J]. BMC Microbiology, 2021, 21(1): 216. doi: 10.1186/s12866-021-02278-z
    [8] DHAR PURKAYASTHA G, MANGAR P, SAHA A, et al. Evaluation of the biocontrol efficacy of a Serratia marcescens strain indigenous to tea rhizosphere for the management of root rot disease in tea [J]. PLoS One, 2018, 13(2): e0191761. doi: 10.1371/journal.pone.0191761
    [9] WANG Q M, YANG R J, PENG W S, et al. Tea plants with gray blight have altered root exudates that recruit a beneficial rhizosphere microbiome to prime immunity against aboveground pathogen infection [J]. Frontiers in Microbiology, 2021, 12: 774438. doi: 10.3389/fmicb.2021.774438
    [10] WASCHULIN V, BORSETTO C, JAMES R, et al. Biosynthetic potential of uncultured Antarctic soil bacteria revealed through long-read metagenomic sequencing [J]. The ISME Journal, 2022, 16(1): 101−111. doi: 10.1038/s41396-021-01052-3
    [11] 任亚峰, 包兴涛, 李冬雪, 等. 茶树叶斑病病原菌可可毛色二孢菌的鉴定 [J]. 植物病理学报, 2019, 49(6):857−861.

    REN Y F, BAO X T, LI D X, et al. Identification of the pathogen Lasiodiplodia theobromae causing tea leaf spot [J]. Acta Phytopathologica Sinica, 2019, 49(6): 857−861.(in Chinese)
    [12] 戴利铭, 刘一贤, 施玉萍, 等. 橡胶树可可毛色二孢叶斑病菌生物学特性及药剂筛选试验 [J]. 广东农业科学, 2018, 45(7):87−93.

    DAI L M, LIU Y X, SHI Y P, et al. The biological characteristics of Lasiodiplodia theobromae causing leaf spot on rubber tree and the selection of fungicides in laboratory [J]. Guangdong Agricultural Sciences, 2018, 45(7): 87−93.(in Chinese)
    [13] 黄艳花, 宁平, 黄远光, 等. 百香果茎基腐病病原菌鉴定及其生物学特性 [J]. 西南农业学报, 2022, 35(1):105−112.

    HUANG Y H, NING P, HUANG Y G, et al. Identification and biological characterization of stem rot pathogens from passion fruit [J]. Southwest China Journal of Agricultural Sciences, 2022, 35(1): 105−112.(in Chinese)
    [14] 唐中发, 秦春秀, 缪卫国, 等. 海南菠萝一种叶斑病病原菌的分离与鉴定及多基因序列分析 [J]. 基因组学与应用生物学, 2021, 40(3):1219−1226.

    TANG Z F, QIN C X, MIAO W G, et al. Isolation, identification and analysis of multiple gene sequences of a pathogen of leaf spot disease on pineapple in Hainan [J]. Genomics and Applied Biology, 2021, 40(3): 1219−1226.(in Chinese)
    [15] 卜旭莹, 任敏, 万传星, 等. 帕米尔高原可培养需氧冷适应细菌及古菌多样性 [J]. 微生物学报, 2022, 62(7):2568−2581.

    BU X Y, REN M, WAN C X, et al. Diversity of aerobic cold-adapted bacteria and Archaea isolated from the Pamir Plateau [J]. Acta Microbiologica Sinica, 2022, 62(7): 2568−2581.(in Chinese)
    [16] CHEN J W, CHEN J, WANG S Q, et al. Amycolachromones A-F, isolated from a streptomycin-resistant strain of the deep-sea marine actinomycete Amycolatopsis sp. WP1 [J]. Marine Drugs, 2022, 20(3): 162. doi: 10.3390/md20030162
    [17] 马瑞, 张发, 王传琪, 等. 云南荷花温泉放线菌物种多样性及其生物活性 [J]. 大理大学学报, 2019, 4(12):69−74.

    MA R, ZHANG F, WANG C Q, et al. Species diversity and biological activity of Actinobacteria in Hehua hot spring of Yunnan Province [J]. Journal of Dali University, 2019, 4(12): 69−74.(in Chinese)
    [18] 关统伟, 向慧平, 冯栩, 等. 硝尔库勒湖可培养放线菌多样性及其功能酶和抗细菌活性 [J]. 微生物学报, 2018, 58(10):1864−1874.

    GUAN T W, XIANG H P, FENG X, et al. Diversity and antibacterial activity of culturable Actinobacteria from xiaoerkule lake [J]. Acta Microbiologica Sinica, 2018, 58(10): 1864−1874.(in Chinese)
    [19] 王梦雨, 黄美娟, 李茜, 等. 云南金铁锁根可培养放线菌多样性及其抗菌活性研究 [J]. 微生物学报, 2022, 62(5):1905−1918.

    WANG M Y, HUANG M J, LI Q, et al. Diversity and antimicrobial activities of culturable endophytic actinomyces in the roots of Psammosilene tunicoides in Yunnan Province [J]. Acta Microbiologica Sinica, 2022, 62(5): 1905−1918.(in Chinese)
    [20] 吴佳, 李晓霞, 舒伟学, 等. 缬草内生菌和根际放线菌的分离及安莎类抗生素的筛选 [J]. 西北农林科技大学学报(自然科学版), 2019, 47(6):107−114.

    WU J, LI X X, SHU W X, et al. Isolation of endophytic and rhizospheric actinomycetes of Valerian and screening of ansamycins antibiotics [J]. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(6): 107−114.(in Chinese)
    [21] 杜用玺. 丹参根际放线菌的防病促生功能研究[D]. 广州: 广东药科大学, 2021.

    DU Y X. Study on the function of disease prevention and growth-promotion of rhizosphere actinomycetes from Salvia miltiorrhiza bge. [D]. Guangzhou: Guangdong Pharmaceutical University, 2021. (in Chinese)
    [22] 査艳景, 姜国银, 张炳炎, 等. 枸骨根际放线菌ZY-2的分离鉴定及其抑菌活性检测研究 [J]. 昆明学院学报, 2022, 44(3):105−110.

    ZHA Y J, JIANG G Y, ZHANG B Y, et al. Isolation, identification and bacteriostatic activity of actinomycete ZY-2 from the rhizosphere soil of Ilex cornuta L [J]. Journal of Kunming University, 2022, 44(3): 105−110.(in Chinese)
    [23] WANG Z R, ZHONG T, CHEN K W, et al. Antifungal activity of volatile organic compounds produced by Pseudomonas fluorescens ZX and potential biocontrol of blue mold decay on postharvest citrus [J]. Food Control, 2021, 120: 107499. doi: 10.1016/j.foodcont.2020.107499
    [24] ZHOU D B, JING T, CHEN Y F, et al. Biocontrol potential of a newly isolated Streptomyces sp. HSL-9B from mangrove forest on postharvest anthracnose of mango fruit caused by Colletotrichum gloeosporioides [J]. Food Control, 2022, 135: 108836. doi: 10.1016/j.foodcont.2022.108836
    [25] 刘双龙, 杨德洁, 牛晓庆, 等. 可可毛色二孢拮抗菌的鉴定及发酵条件优化 [J]. 南方农业学报, 2022, 53(8):2186−2195.

    LIU S L, YANG D J, NIU X Q, et al. Identification and fermentation condition optimization of antagonistic bacteria against Lasiodiplodia theobromae [J]. Journal of Southern Agriculture, 2022, 53(8): 2186−2195.(in Chinese)
    [26] LI M Y, WANG J L, YAO T, et al. Bacterial diversity and community structure in the rhizosphere of four halophytes [J]. Current Microbiology, 2021, 78(7): 2720−2732. doi: 10.1007/s00284-021-02536-3
    [27] 范中菡. 四川阿坝红花绿绒蒿内生及根际放线菌多样性[D]. 雅安: 四川农业大学, 2016

    FAN Z H. Diversity of endophytic Actinobacteria and rhizosphere soil Actinobacteria from Meconopsis punicea sampled in Aba, Sichuan[D]. Yaan: Sichuan Agricultural University, 2016. (in Chinese)
    [28] BERHONGARAY G, JANSSENS I A, KING J S, et al. Fine root biomass and turnover of two fast-growing poplar genotypes in a short-rotation coppice culture [J]. Plant and Soil, 2013, 373(1): 269−283.
    [29] EDWARDS J, JOHNSON C, SANTOS-MEDELLÍN C, et al. Structure, variation, and assembly of the root-associated microbiomes of rice [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(8): E911−E920.
    [30] BECKERS B, OP DE BEECK M, WEYENS N, et al. Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees [J]. Microbiome, 2017, 5(1): 25. doi: 10.1186/s40168-017-0241-2
    [31] SAMMUT D, ELLIOT C A, KIELY D G, et al. Central venous catheter-related blood stream infections in patients receiving intravenous iloprost for pulmonary hypertension [J]. European Journal of Clinical Microbiology & Infectious Diseases, 2013, 32(7): 883−889.
    [32] KIM M, OH H S, PARK S C, et al. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt 2): 346-351.
    [33] XIE C L, NIU S W, ZHOU T T, et al. Chemical constituents and chemotaxonomic study on the marine actinomycete Williamsia sp. MCCC 1A11233 [J]. Biochemical Systematics and Ecology, 2016, 67: 129−133. doi: 10.1016/j.bse.2016.06.004
    [34] 刘一贤, 施玉萍, 戴利铭, 等. 橡胶褐根病拮抗放线菌17-7的筛选、鉴定及发酵条件优化 [J]. 微生物学通报, 2020, 47(1):118−129. doi: 10.13344/j.microbiol.china.190160

    LIU Y X, SHI Y P, DAI L M, et al. Screening, identification and fermentation optimization of an antimicrobial actinomycete strain 17-7 to Phellinus noxius [J]. Microbiology China, 2020, 47(1): 118−129.(in Chinese) doi: 10.13344/j.microbiol.china.190160
    [35] 高雪, 辜运富, 尼玛扎西, 等. 西藏青稞根际土壤可培养放线菌的遗传多样性及其促生功能分析[J]. 四川农业大学学报, 2019, 37(6): 777-784.

    GAO X, GU Y F, NYIMA T S, et al. Analysis of the genetic diversity and promoting functions of the culturable actinomycetes in the rhizosphere of highland barley in Tibet[J]. Journal of Sichuan Agricultural University,
    [36] 郑洁, 庹利, 李伟, 等. 山西太子滩温泉土壤放线菌多样性及功能基因筛选的研究 [J]. 中国酿造, 2019, 38(9):49−53.

    ZHENG J, TUO L, LI W, et al. Diversity and screening of functional gene of actinomycetes isolated from soil in hot spring of Shanxi Prince Beach [J]. China Brewing, 2019, 38(9): 49−53.(in Chinese)
    [37] PARK Y, KOOK M, NGO H T T, et al. Arthrobacter bambusae sp. nov., isolated from soil of a bamboo grove [J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt_9): 3069−3074. doi: 10.1099/ijs.0.064550-0
    [38] PARIHAR K, GEHLOT P, MATHUR M, et al. Species composition and diversity dynamics of actinomycetes in arid and semi-arid salt basins of Rajasthan [J]. Current Microbiology, 2022, 79(6): 168. doi: 10.1007/s00284-022-02851-3
    [39] MA A A, ZHANG X F, JIANG K, et al. Phylogenetic and physiological diversity of cultivable actinomycetes isolated from alpine habitats on the qinghai-tibetan plateau [J]. Frontiers in Microbiology, 2020, 11: 555351. doi: 10.3389/fmicb.2020.555351
    [40] GOSWAMI G, DEKA P, DAS P, et al. Diversity and functional properties of acid-tolerant bacteria isolated from tea plantation soil of Assam [J]. 3 Biotech, 2017, 7(3): 229. doi: 10.1007/s13205-017-0864-9
    [41] 漆思思. 产抗菌物质海洋放线菌的筛选及其次级代谢产物和活性的研究[D]. 南昌: 南昌大学, 2020

    QI S S. Screening of marine actinomycetes producing antimicrobial substances and study on their secondary metabolites and activities[D]. Nanchang: Nanchang University, 2020. (in Chinese)
    [42] 吴巧灵, 孙长利, 周镇槟, 等. 石磺来源海洋链霉菌Streptomyces ardesiacus scsio LO23中germicidin类化合物的分离鉴定及其生物合成分析 [J]. 微生物学报, 2022, 62(7):2594−2609.

    WU Q L, SUN C L, ZHOU Z B, et al. Isolation of germicidins and analysis of their biosynthetic pathways in Streptomyces ardesiacus SCSIO LO23, a marine-derived actinomycete from Onchidium sp. [J]. Acta Microbiologica Sinica, 2022, 62(7): 2594−2609.(in Chinese)
    [43] 朱展鹏. 马铃薯疮痂病病原菌多样性分析及抗病种质筛选[D]. 武汉: 华中农业大学, 2020

    ZHU Z P. Diversity analysis of potato common scab pathogens and disease-resistant germplasm screening[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese)
    [44] TOMIHAMA T, NISHI Y, SAKAI M S, et al. Draft genome sequences of Streptomyces scabiei S58, Streptomyces turgidiscabies T45, and Streptomyces acidiscabies a10, the pathogens of potato common scab, isolated in Japan [J]. Genome Announcements, 2016, 4(2): e00062−e00016.
    [45] TAO X Y, ZHAO M, ZHANG Y, et al. Comparison of the expression of phospholipase D from Streptomyces halstedii in different hosts and its over-expression in Streptomyces lividans [J]. FEMS Microbiology Letters, 2019, 366(5): fnz051.
    [46] LIU Y H, HUANG L, FU Y, et al. A novel process for phosphatidylserine production using a Pichia pastoris whole-cell biocatalyst with overexpression of phospholipase D from Streptomyces halstedii in a purely aqueous system [J]. Food Chemistry, 2019, 274: 535−542. doi: 10.1016/j.foodchem.2018.08.105
    [47] CHO E, KWON O S, CHUNG B, et al. Antibacterial activity of chromomycins from a marine-derived Streptomyces microflavus [J]. Marine Drugs, 2020, 18(10): 522. doi: 10.3390/md18100522
    [48] 李堆淑, 冀玉良. 细黄链霉菌与氮磷钾肥配施对桔梗幼苗的影响 [J]. 广西林业科学, 2018, 47(2):155−158.

    LI D S, JI Y L. Effect of the Streptomyces microflavus and NPK fertilizer on Platycodon grandiflorus seedlings [J]. Guangxi Forestry Science, 2018, 47(2): 155−158.(in Chinese)
    [49] SUDHA A, DURGADEVI D, ARCHANA S, et al. Unraveling the tripartite interaction of volatile compounds of Streptomyces rochei with grain mold pathogens infecting sorghum [J]. Frontiers in Microbiology, 2022, 13: 923360. doi: 10.3389/fmicb.2022.923360
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  462
  • HTML全文浏览量:  172
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-17
  • 修回日期:  2023-06-13
  • 网络出版日期:  2023-10-13
  • 刊出日期:  2023-09-28

目录

    /

    返回文章
    返回