Agronomic Inheritance of Distant Hybrids of Non-heading and Leafy Chinese Cabbages
-
摘要:
目的 远缘杂交是提高不结球白菜产量、品质、抗逆性和实现种质创新的重要手段之一,南方夏季高温影响不结球白菜周年生产和市场供应,远缘杂交可以丰富不结球白菜的品种供应,拓宽其遗传背景。 方法 以3个不结球白菜亲本和3个苗用大白菜亲本分别进行远缘杂交,测定亲本和F1代的农艺性状,进行遗传倾向和相关性分析。 结果 在远缘杂交中单株重的遗传力最高,对后代的遗传效果最稳定;叶色值的变异系数最高,人工选择潜力最大;株高、株幅、叶长、叶柄长、叶柄宽、单株重的超中优势和超亲优势较高,在后代中具有杂种优势。 结论 筛选出D2和Q2的亲本组合可以用来选育农艺性状突出的不结球白菜品种,D3和Q3的亲本组合可以用来选育丰产的不结球白菜品种。 Abstract:Objective Distant hybridization between non-heading and leafy Chinese cabbages was applied to breed improved yield, quality, and resistance to high temperature variety. Method Three F1 hybrids were bred by the distant crossing method between 3 non-heading Chinese cabbage cultivars and 3 leafy Chinese cabbage varieties. Genetic inheritability on the agronomic characteristics of the hybrids were analyzed. Result Plant weight was shown to be the most stable agronomic property passed on in the hybridization. Whereas the easily distinguishable color of the leaves had the highest coefficient of variation among all indicators was the choice for hybrid screening. Significant heterosis of the hybrids over their parents or the average results was found on the height, width, and weight of a plant, the lengths of leaf and petiole, and the width of petiole. Conclusion The distant hybridization between D2 and Q2 bred non-heading Chinese cabbages with desirable agronomic characteristics, and that between D3 and Q3 rendered high yield varieties. -
表 1 亲本和F1代农艺性状比较
Table 1. Agronomic characteristics of parents and F1 hybrids
指标
Indicator株高
Plant height/cm株幅
Plant spread/cm叶色值
Leaf color index叶宽
Leaf width/cm叶长
Leaf length/cm叶柄长
Petiole length/cm叶柄宽
Petiole width/cm单株重
Weight per plant/gD1 20.56±1.46 e 33.76±3.98 b 12.14±1.22 c 15.56±1.62 d 24.56±1.42 e 5.00±1.10 d 2.74±0.34 bc 107.04±2.14 e Q1 15.32±1.09 f 25.38±1.36 c 3.41±0.65 d 17.92±0.67 bcd 9.68±1.85 f 5.82±0.36 cd 2.14±0.17 d 63.56±0.94 g D2 27.00±1.51 d 34.24±3.46 b 23.44±2.23 b 17.28±0.94 bcd 27.52±2.33 d 5.32±0.60 d 2.86±0.40bc 192.96±4.23 c Q2 14.84±0.78 f 24.84±2.43 c 5.43±0.36 d 18.78±1.69 abc 8.98±1.05 f 4.54±0.29 d 1.46±0.30e 23.94±1.30 h D3 41.52±1.55 a 40.88±4.43 a 42.25±4.76 a 17.06±0.90 bcd 33.84±0.93 c 12.00±1.07 a 2.38±0.33
cd126.34±2.20 d Q3 17.10±1.61 f 26.64±2.44 c 13.96±3.24 c 20.56±1.67 a 11.44±0.82 f 6.14±0.42 cd 2.12±0.15 d 68.36±1.30 f QD-1 25.96±1.18 d 40.18±3.09 a 6.08±0.86 d 16.12±1.30 cd 28.62±3.28 d 7.28±0.68 c 2.76±0.37 bc 194.72±2.51 c QD-2 29.60±2.41 c 40.36±0.70 a 4.84±0.59 d 19.32±1.27 ab 37.24±1.71 b 8.74±0.29 b 3.06±0.17 ab 226.64±1.69 a QD-3 37.78±1.97 b 40.06±3.95 a 5.74±0.64 d 17.94±2.00 bcd 42.42±3.11 a 11.28±2.36 a 3.36±0.43 a 206.10±1.83 b 最大值
Max43.80 45.30 45.30 22.60 44.70 12.60 3.90 229.10 最小值
Min15.10 21.20 2.33 13.30 7.60 4.10 1.10 62.30 F1 31.11 40.20 5.55 17.79 36.09 9.10 3.06 209.15 标准差
Standard deviation9.27 7.11 12.23 1.96 11.95 2.77 0.62 70.02 变异系数
Coefficient of variation/%29.81 17.68 220.20 11.01 33.10 30.49 20.20 33.48 遗传力
Heritability/%136.92 129.86 33.11 99.63 186.66 140.65 134.01 215.55 同列数据后不同小写字母表示各材料差异显著(P<0.05)。下同。
Values marked with different lowercase letters in the column are significant difference materials (P<0.05). The same below.表 2 F1代性状的杂种优势
Table 2. Heterosis of F1 hybrids
品种 Variety QD-1 QD-2 QD-3 株高 Plant height/cm H1 35.33 30.56 19.34 H2 44.70 41.49 28.90 株幅 Plant spread/cm H1 28.29 27.67 13.91 H2 35.88 36.63 18.66 叶色值 Leaf color index H1 −12.72 −37.88 −49.37 H2 −21.82 −66.47 −79.56 叶宽 Leaf width/cm H1 −3.35 6.00 −3.85 H2 −3.70 7.15 −4.63 叶长 Leaf length/cm H1 43.56 63.72 56.68 H2 67.17 104.05 87.37 叶柄长 Petiole length/cm H1 29.22 64.58 16.25 H2 34.57 77.28 24.37 叶柄宽 Petiole width/cm H1 10.32 27.27 38.28 H2 13.11 41.67 49.33 单株重 Weight per plant/g H1 98.93 59.75 84.04 H2 128.28 108.98 111.71 H1:超亲优势(%);H2:超中优势(%)。
H1 refers to over high parent heterosis, H2 refers to over the mean of parent heterosis.表 3 亲本和F1代光合特性比较
Table 3. Photosynthetic properties of parents and F1 hybrids
指标
Indicator蒸腾速率
Transpiration
rate/
(mmol·m−2·s−1)净光合速率
Net photosyntheti
rate/
(µmol·m−2·s−1)胞间CO2浓度
Intercellular CO2
concentration/
(µmol·mol−1)气孔导度
Stomatal
conductance/
(mmol·m−2·s−1)实际光化学电子效率
The actual
photochemical
efficiency最大光化学效率
Maximum
photochemical
efficiencyD1 3.824±2.98 abc 4.668±4.88 ab 342.114±19.25 a 0.118±0.11 ab 0.108±0.06 ab 0.610±0.24 a Q1 0.476±0.05 c 2.068±1.03 b 299.204±21.26 bc 0.034±0.02 b 0.038±0.01 b 0.630±0.21 a D2 4.062±0.82 ab 8.056±2.75 a 301.484±29.17 bc 0.146±0.04 ab 0.134±0.06 a 0.620±0.22 a Q2 2.590±0.59 bc 8.640±1.83 a 291.510±14.65 c 0.142±0.04 ab 0.118±0.04 a 0.616±0.03 a D3 0.928±0.12 bc 1.872±0.89 b 337.138±12.41 ab 0.048±0.03 b 0.034±0.03 b 0.458±0.11 a Q3 1.748±0.09 bc 5.970±0.75 ab 287.852±20.37 c 0.094±0.02 ab 0.082±0.02 ab 0.620±0.01 a QD-1 6.124±4.14 a 8.036±5.05 a 307.156±19.45 abc 0.206±0.17 a 0.114±0.05 a 0.742±0.23 a QD-2 2.444±0.67 bc 8.554±1.92 a 300.330±12.42 bc 0.138±0.07 ab 0.120±0.03 a 0.676±0.18 a QD-3 1.020±0.18 bc 1.138±0.63 b 332.106±32.50 ab 0.026±0.01 b 0.034±0.03 b 0.482±0.01 a 表 4 亲本和F1代指标之间的相关性
Table 4. Correlation among indicators of parents and F1 hybrids
相关性
Correlation株高
Plant height株幅
Plant spread叶色值
Leaf color index叶宽
Leaf width叶长
Leaf length叶柄长
Petiole length叶柄宽
Petiole width单株重
Weight per plant蒸腾速率
Transpiration rate−0.067 −0.115 0.269 −0.138 −0.105 −0.314* −0.055 −0.080 净光合速率
Net photosynthetic rate−0.019 −0.165 0.451** 0.186 −0.188 −0.111 −0.297* −0.243 胞间CO2浓度
Intercellular CO2 concentration−0.020 0.185 −0.206 −0.355* 0.178 −0.145 0.270 0.153 气孔导度
Stomatal conductance−0.023 −0.105 0.357* −0.026 −0.120 −0.203 −0.117 −0.115 实际光化学电子效率
The actual photochemical efficiency−0.100 −0.201 0.367* 0.127 −0.228 −0.204 −0.286 −0.315* 最大光化学效率
Maximum photochemical efficiency−0.172 −0.162 0.168 0.207 −0.186 −0.180 −0.273 −0.154 株高
Plant height1 株幅
Plant spread0.801** 1 叶色值
Leaf color index0.530** 0.302* 1 叶宽
Leaf width−0.170 −0.211 −0.125 1 叶长
Leaf length0.874** 0.878** 0.227 −0.212 1 叶柄长
Petiole length0.846** 0.640** 0.377* −0.059 0.703** 1 叶柄宽
Petiole width0.563** 0.675** −0.027 −0.223 0.755** 0.429** 1 单株重
Weight per plant0.671** 0.794** 0.022 −0.176 0.873** 0.475** 0.814** 1 **和 *分别表示各项指标之间相关性达极显著( P<0.01)和显著( P<0.05)水平。
Note: ** and * mean extremely significant at P<0.01, and significant at P<0.05, respectively. -
[1] 王跃华. 配方施肥对白菜产量及品质的影响[D]. 杨凌: 西北农林科技大学, 2019WANG Y H. Effect of formula fertilization on yield and quality of Chinese cabbage[D]. Yangling: Northwest A & F University, 2019. [2] 侯喜林, 李英, 黄菲艺. 不结球白菜(Brassica campestris ssp. chinensis)主要性状及育种技术的分子生物学研究新进展 [J]. 园艺学报, 2020, 47(9):1663−1677.HOU X L, LI Y, HUANG F Y. New advances in molecular biology of main characters and breeding technology in non heading Chinese cabbage (Brassica campestris ssp. chinensis) [J]. Acta Horticulturae Sinica, 2020, 47(9): 1663−1677.(in Chinese) [3] 刘照坤, 杨雪梅, 韩建军, 等. 夏季耐热小白菜品种比较研究 [J]. 长江蔬菜, 2019(4):51−53.LIU Z K, YANG X M, HAN J J, et al. Comparative study on different heat-tolerance Chinese cabbage cultivars in summer [J]. Journal of Changjiang Vegetables, 2019(4): 51−53.(in Chinese) [4] 刘忠松, 官春云, 李木旬, 等. 甘蓝型油菜与芥菜型油菜种间杂交研究 [J]. 中国油料作物学报, 2001, 23(2):82−86.LIU Z S, GUAN C Y, LI M X, et al. Study on interspecific hybridization between Brassica napus and Brassica juncea [J]. Chinese Journal of Oil Crop Sciences, 2001, 23(2): 82−86.(in Chinese) [5] 陈光辉, 官春云. 甘蓝型油菜与芥菜型油菜种间杂交研究(摘要) [J]. 作物研究, 1995, 9(S1):80.CHEN G H, GUAN C Y. Study on interspecific hybridization between Brassica napus and Brassica juncea (abstract) [J]. Crop Research, 1995, 9(S1): 80.(in Chinese) [6] HAGIMORI M, NAGAOKA M, KATO N, et al. Production and characterization of somatic hybrids between the Japanese radish and cauliflower [J]. Theoretical and Applied Genetics, 1992, 84(7): 819−824. [7] ZHANG B, LU C M, KAKIHARA F, et al. Effect of genome composition and cytoplasm on petal colour in resynthesized amphidiploids and sesquidiploids derived from crosses between Brassica rapa and Brassica oleracea [J]. Plant Breeding, 2002, 121(4): 297−300. doi: 10.1046/j.1439-0523.2002.722295.x [8] 徐明远, 何鹏, 赖伟, 等. 植物叶色变异分子机制研究进展 [J]. 分子植物育种, 2021, 19(10):3448−3455.XU M Y, HE P, LAI W, et al. Advances in molecular mechanism of plant leaf color variation [J]. Molecular Plant Breeding, 2021, 19(10): 3448−3455.(in Chinese) [9] 戴林建, 李栒, 官春云, 等. 甘蓝型油菜与芸芥属间杂种F1的获得及鉴定 [J]. 中国油料作物学报, 2005, 27(4):7−12.DAI L J, LI X, GUAN C Y, et al. Regeneration and identification of intergeneric hybrid between Brassica napus and Eruca sativa [J]. Chinese Journal of Oil Crop Scieves, 2005, 27(4): 7−12.(in Chinese) [10] 王羲玥, 任艳芳, 王伟, 等. 快菜不同生长期对镉毒害的敏感性差异 [J]. 北方园艺, 2019(24):14−20.WANG X Y, REN Y F, WANG W, et al. Sensitivity of Brassica chinensis L. at different growth stages to cadmium toxicity [J]. Northern Horticulture, 2019(24): 14−20.(in Chinese) [11] 杨学乐, 陶芬芳, 彭烨, 等. 芸薹属作物远缘杂种优势研究 [J]. 作物研究, 2016, 30(5):520−523.YANG X L, TAO F F, PENG Y, et al. Studies on the heterosis of distant hybridization of Brassica crops [J]. Crop Research, 2016, 30(5): 520−523.(in Chinese) [12] 宋晓燕. 苦瓜杂种优势及数量性状研究[D]. 合肥: 安徽农业大学, 2010SONG X Y. Study on heterosis and quantitative characters of bitter melon[D]. Hefei: Anhui Agricultural University, 2010. (in Chinese) [13] 沈升法, 吴列洪, 李兵. 基于图像RGB特征值的甘薯色素与肉色关系初步探讨 [J]. 植物遗传资源学报, 2015, 16(4):888−894.SHEN S F, WU L H, LI B. Preliminary study on relationship of pigments with flesh color of sweetpotato based on RGB characteristic values of images [J]. Journal of Plant Genetic Resources, 2015, 16(4): 888−894.(in Chinese) [14] 骆巧娟, 马文静, 宿梅飞, 等. 不同樱桃番茄果实营养特性比较及遗传倾向研究 [J]. 西北农业学报, 2019, 28(8):1282−1293.LUO Q J, MA W J, SU M F, et al. Comparison of nutritional characteristics and genetic tendency of different cherry tomato fruits [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(8): 1282−1293.(in Chinese) [15] 张绍丽. 甘蓝与芸薹种间杂交抗根肿病材料的创制与鉴定[D]. 重庆: 西南大学, 2018.ZHANG S L. Creation and identification of anti-clubroot materials for interspecific hybridization between cabbage and Brassica napus[D]. Chongqing: Southwest University, 2018. (in Chinese) [16] 翟书慧. 甘蓝型油菜×芝麻菜杂种后代获得及鉴定[D]. 武汉: 湖北大学, 2018ZHAI S H. Acquisition and identification of hybrid progeny of Brassica napus × arugula[D]. Wuhan: Hubei University, 2018. (in Chinese) [17] 沈舒. 通过远缘杂交实现白菜根肿病抗性向甘蓝的转移[D]. 重庆: 西南大学, 2019.SHEN S. Transfer of cabbage clubroot resistance to cabbage by distant hybridization[D]. Chongqing: Southwest University, 2019. (in Chinese) [18] 殷婷, 虎满林, 余青兰, 等. 甘蓝型油菜和白菜型油菜种间杂交后代的遗传分析 [J]. 分子植物育种, 2019, 17(24):8201−8207.YIN T, HU M L, YU Q L, et al. Genetic analysis on interspecific hybrid progenies between Brassica napus and Brassica rapa [J]. Molecular Plant Breeding, 2019, 17(24): 8201−8207.(in Chinese) [19] 赵彩霞. 白菜型油菜与甘蓝型油菜远缘杂交生理生化特性分析 [J]. 西藏农业科技, 2017, 39(3):9−14. doi: 10.3969/j.issn.1005-2925.2017.03.003ZHAO C X. The analysis of physiological and biochemical characteristics of Brassica campestris and Brassica napus distant hybridization [J]. Tibet Journal of Agricultural Sciences, 2017, 39(3): 9−14.(in Chinese) doi: 10.3969/j.issn.1005-2925.2017.03.003 [20] 涂玉琴, 汤洁, 涂伟凤, 等. 甘蓝型油菜与蔊菜属间杂种后代的苗期耐湿性综合评价 [J]. 植物遗传资源学报, 2015, 16(4):895−902.TU Y Q, TANG J, TU W F, et al. Comprehensive evaluation of waterlogging tolerance of progenies between Brassica napus L. and Rorippa indica(L. ) hiern [J]. Journal of Plant Genetic Resources, 2015, 16(4): 895−902.(in Chinese) [21] 赖佳, 黄玲, 韦树谷, 等. 不结球白菜单株产量与主要农艺性状的灰色关联度分析 [J]. 中国农学通报, 2019, 35(32):36−41.LAI J, HUANG L, WEI S G, et al. Yield per plant and main agronomic traits of non-heading Chinese cabbage: Grey relational degree analysis [J]. Chinese Agricultural Science Bulletin, 2019, 35(32): 36−41.(in Chinese) [22] 张磊, 曹德美, 胡建军. 植物叶色形成调控机制研究进展 [J]. 植物遗传资源学报, 2021, 22(2):293−303.ZHANG L, CAO D M, HU J J. Advance of the regulation mechanism of leaf color formation in plants [J]. Journal of Plant Genetic Resources, 2021, 22(2): 293−303.(in Chinese) [23] 陈璇, 谢军. 彩叶植物叶色表达机制的研究进展 [J]. 吉林农业科技学院学报, 2021, 30(1):7−10,19.CHEN X, XIE J. Advances in research on leaf color expression mechanism of colored-leaf plants [J]. Journal of Jilin Agricultural Science and Technology University, 2021, 30(1): 7−10,19.(in Chinese) [24] 钱海胜, 陈亚华, 王桂萍, 等. 镉在不结球白菜中的积累及外源脱落酸对镉积累的影响 [J]. 南京农业大学学报, 2008, 31(4):61−65.QIAN H S, CHEN Y H, WANG G P, et al. Cadmium accumulation and effect of exogenous abscisic acid on cadmium accumulation in cadmium treated Brassica campestris ssp. chinensis L [J]. Journal of Nanjing Agricultural University, 2008, 31(4): 61−65.(in Chinese) [25] 曹寿椿. 不结球白菜主要农艺性状基因效应与杂种优势分析[C]//中国园艺学会首届青年学术讨论会论文集. 杭州, 1994: 260-263. [26] 王学芳, 张耀文, 李殿荣, 等. 不结球白菜杂种优势及相关分析 [J]. 西北植物学报, 2009, 29(10):1974−1979.WANG X F, ZHANG Y W, LI D R, et al. Analysis of heterosis and correlation in non-heading Chinese cabbage [J]. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(10): 1974−1979.(in Chinese)