Microbial Community in Fermented Forage Affected by Ingredients Used
-
摘要:
目的 液体发酵饲料有益于动物肠道健康,具有良好的应用前景。分析不同底物对液体发酵豆粕的理化特性和细菌群落的影响,为发酵饲料的开发利用提供参考。 方法 采用正交试验分析红糖、鱼粉和豆粕及其组合,对液体发酵饲料品质的影响;采用16S rDNA测序,分析不同底物对细菌群落结构的影响。 结果 液体发酵饲料外观与原料浓度相关,即原料浓度越大,发酵饲料颜色越深。添加豆粕和鱼粉提高了发酵液体中的有机质和氮含量。PCA分析显示发酵前后样本中具有完全不同的细菌群落结构。经发酵,液体饲料中的细菌种类和数量都有所增加。发酵初期,变形菌门细菌占主导,其中的优势属为黄单胞菌(Xanthomonas);发酵结束后,厚壁菌门占主导,其中乳杆菌(Lactobacillus)和魏斯氏菌(Weissella)等乳酸菌是优势属。发酵底物是影响液体发酵饲料质量的重要因素,红糖与假单胞菌属(Pseudomonas)、黄单胞菌属(Xanthomonas)、魏斯氏菌属(Weissella)、片球菌属(Pediococcus)和乳杆菌(Lactobacillales)含量呈正相关。鱼粉与乳杆菌属含量呈负相关,与嗜冷杆菌属(Psychrobacter)、魏斯氏菌属和假单胞菌属呈正相关。豆粕含量与醋酸杆菌属(Acetobacter)、乳杆菌属、嗜冷杆菌属、魏斯氏菌属和片球菌属(Pediococcus)呈正相关。 结论 添加较高水平的红糖和豆粕、低水平的鱼粉能够提高液体发酵饲料中乳杆菌和魏斯氏菌等益生菌的丰度。 Abstract:Objective Effects of major ingredients used in formulating fermented livestock forage on probiotics in animals fed with it were analyzed. Method Brown sugar, fish meal, soybean meal, and their combinations were used to formulate liquid culture media in an orthogonal experiment. Structure and diversity of the microbial community in the fermentation broths were determined using the high throughput 16S rDNA sequencing technique. Result The fermentation broth became darker as the concentration increased. The addition of soybean or fish meal raised the contents of organic matters and nitrogen, and the fermentation significantly altered the microbial community with a much-enriched diversity and abundance of the broth. At the beginning of the fermentation, Proteobacteria was the predominant phylum with Xanthomonas being the outstanding genus. In the end, Firmicutes with genera Lactobacillus and Weissella became dominant. The microbial community was significantly affected by the ingredients included in the fermentation medium. For instance, brown sugar enhanced the proliferation of Pseudomonas,Xanthomonas, Weissella, Pediococcus, and Lactobacillales, fish meal facilitated that of Psychrobacter, Weissella, and Pseudomonas but inhibited Lactobacillales, while soybean meal promoted the growth of Acetobacter, Lactobacillales, Psychrobacter, Weissella, and Pediococcus. Conclusion It appeared that a culture medium high on brown sugar and soybean meal but low on fish meal could significantly enhance the abundance of Lactobacillus and Weissella in the fermentation broth to be use as a forage for feeding the livestock. -
表 1 红糖、鱼粉和豆粕添加量的正交设计
Table 1. Orthogonal experiment on forage formulation with brown sugar, fish meal, and soybean meal
因素
Elements红糖
Brown sugar/%鱼粉
Fish meal/%豆粕
Soybean meal/%质量分数
Mass fraction/%处理1 a a a
Treatment 11 2 2 5 处理2 a b b
Treatment21 4 4 9 处理3 a c c
Treatment 31 16 8 25 处理4 b a b
Treatment 42 2 4 8 处理5 b b c
Treatment 52 4 8 14 处理6 b c a
Treatment 62 16 2 20 处理7 c a b
Treatment 74 2 4 10 处理8 c b a
Treatment 84 4 2 10 处理9 c c c
Treatment 94 16 8 28 表 2 液体发酵饲料 Aplha 多样性统计
Table 2. α-diversity of microbial community in fermentation broth
样本
SampelsChao指数
Chao
indexSobs指数
Sobs
index香农指数
Shannon
index辛普森指数
Simpson
index覆盖率
Coverage/%S1 83.1 60 1.318 0.330 99.93 S1_7 96.2 69 2.049 0.295 99.96 S2 98.0 52 0.969 0.520 99.94 S2_7 123.8 118 2.522 0.152 99.97 S3 109.0 63 1.082 0.398 99.95 S3_7 141.9 105 2.457 0.128 99.90 S4 85.9 74 0.650 0.653 99.96 S4_7 163.9 127 2.447 0.182 99.92 S5 100.2 75 0.786 0.619 99.94 S5_7 113.0 78 1.872 0.268 99.95 S6 83.0 48 0.895 0.502 99.96 S6_7 89.4 80 1.791 0.347 99.98 S7 97.5 60 0.782 0.505 99.96 S7_7 84.1 78 1.169 0.519 99.97 S8 63.0 44 0.368 0.852 99.96 S8_7 69.2 62 1.411 0.441 99.98 S9 68.0 51 1.156 0.397 99.97 S09_7 107.0 77 2.023 0.231 99.97 -
[1] XIN H L, WANG M Y, XIA Z, et al. Fermented diet liquid feeding improves growth performance and intestinal function of pigs [J]. Animals, 2021, 11(5): 1452. doi: 10.3390/ani11051452 [2] MISSOTTEN J A M, MICHIELS J, OVYN A, et al. Fermented liquid feed for pigs [J]. Archives of Animal Nutrition, 2010, 64(6): 437−466. doi: 10.1080/1745039X.2010.512725 [3] CULLEN J T, LAWLOR P G, CORMICAN P, et al. Microbial quality of liquid feed for pigs and its impact on the porcine gut microbiome [J]. Animals, 2021, 11(10): 2983. doi: 10.3390/ani11102983 [4] O'MEARA F M, GARDINER G E, CLARKE D, et al. Microbiological assessment of liquid feed for finisher pigs on commercial pig units [J]. Journal of Applied Microbiology, 2021, 130(2): 356−369. doi: 10.1111/jam.14785 [5] O' MEARA F M, GARDINER G E, O' DOHERTY J V, et al. Effect of wet/dry, fresh liquid, fermented whole diet liquid, and fermented cereal liquid feeding on feed microbial quality and growth in grow-finisher pigs [J]. Journal of Animal Science, 2020, 98(6): skaa166. doi: 10.1093/jas/skaa166 [6] LAU N, HUMMEL J, KRAMER E, et al. Fermentation of liquid feed with lactic acid bacteria reduces dry matter losses, lysine breakdown, formation of biogenic amines, and phytate-phosphorus [J]. Translational Animal Science, 2022, 6(1): txac007. doi: 10.1093/tas/txac007 [7] 李汶涛, 刘阳, 王力, 等. 液体发酵饲料及其在生猪生产中的应用研究进展 [J]. 中国畜牧杂志, 2021, 57(S1):15−20.LI W T, LIU Y, WANG L, et al. Research progress of liquid fermented feed and its application in pig production [J]. Chinese Journal of Animal Science, 2021, 57(S1): 15−20.(in Chinese) [8] 许镨文, 李元晓, 庞有志. 液体发酵饲料对断奶仔猪肠道健康的影响 [J]. 动物营养学报, 2011, 23(12):2105−2108.XU P W, LI Y X, PANG Y Z. Fermented liquid feed: Effects on weaner piglet intestinal health [J]. Chinese Journal of Animal Nutrition, 2011, 23(12): 2105−2108.(in Chinese) [9] MISSOTTEN J A, MICHIELS J, DEGROOTE J, et al. Fermented liquid feed for pigs: An ancient technique for the future [J]. Journal of Animal Science and Biotechnology, 2015, 6(1): 4. doi: 10.1186/2049-1891-6-4 [10] KAEWTAPEE C, BURBACH K, TOMFORDE G, et al. Effect of Bacillus subtilis and Bacillus licheniformis supplementation in diets with low- and high-protein content on ileal crude protein and amino acid digestibility and intestinal microbiota composition of growing pigs [J]. Journal of Animal Science and Biotechnology, 2017, 8: 37. doi: 10.1186/s40104-017-0168-2 [11] HE Y J, KIM K, KOVANDA L, et al. Bacillus subtilis: A potential growth promoter in weaned pigs in comparison to carbadox [J]. Journal of Animal Science, 2020, 98(9): skaa290. doi: 10.1093/jas/skaa290 [12] BLAVI L, JØRGENSEN J N, STEIN H H. Effects of Bacillus amyloliquefaciens and Bacillus subtilis on ileal digestibility of AA and total tract digestibility of CP and gross energy in diets fed to growing pigs [J]. Journal of Animal Science, 2019, 97(2): 727−734. doi: 10.1093/jas/sky432 [13] 陈倩倩, 刘波, 王阶平, 等. 添加芽孢杆菌对豆粕固体发酵的影响 [J]. 中国粮油学报, 2020, 35(12):101−107. doi: 10.3969/j.issn.1003-0174.2020.12.017CHEN Q Q, LIU B, WANG J P, et al. Effects of Bacillus on solid state fermentation of soybean meal [J]. Journal of the Chinese Cereals and Oils Association, 2020, 35(12): 101−107.(in Chinese) doi: 10.3969/j.issn.1003-0174.2020.12.017 [14] HU Q, GUO X, LIANG Y L, et al. Comparative metagenomics reveals microbial community differentiation in a biological heap leaching system [J]. Research in Microbiology, 2015, 166(6): 525−534. doi: 10.1016/j.resmic.2015.06.005 [15] MA J X, WANG Z W, LI H, et al. Metagenomes reveal microbial structures, functional potentials, and biofouling-related genes in a membrane bioreactor [J]. Applied Microbiology and Biotechnology, 2016, 100(11): 5109−5121. doi: 10.1007/s00253-016-7312-3 [16] PARKS D H, BEIKO R G. Identifying biologically relevant differences between metagenomic communities [J]. Bioinformatics, 2010, 26(6): 715−721. doi: 10.1093/bioinformatics/btq041 [17] JAMI E, ISRAEL A, KOTSER A, et al. Exploring the bovine rumen bacterial community from birth to adulthood [J]. The ISME Journal, 2013, 7(6): 1069−1079. doi: 10.1038/ismej.2013.2 [18] LANGILLE M G I, ZANEVELD J, CAPORASO J G, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences [J]. Nature Biotechnology, 2013, 31(9): 814−821. doi: 10.1038/nbt.2676 [19] SLATTERY C, COTTER P D, O'TOOLE P W. Analysis of health benefits conferred by Lactobacillus species from kefir [J]. Nutrients, 2019, 11(6): 1252. doi: 10.3390/nu11061252 [20] NAZAR M, WANG S R, ZHAO J, et al. The feasibility and effects of exogenous epiphytic microbiota on the fermentation quality and microbial community dynamics of whole crop corn [J]. Bioresource Technology, 2020, 306: 123106. doi: 10.1016/j.biortech.2020.123106 [21] 李巧玉, 陈坚, 曾伟主, 等. 酱醪中魏斯氏菌的分离及特性分析 [J]. 微生物学通报, 2018, 45(11):2449−2462.LI Q Y, CHEN J, ZENG W Z, et al. Isolation and characterization of Weissella strains from soy sauce moromi mash [J]. Microbiology China, 2018, 45(11): 2449−2462.(in Chinese) [22] STURINO J M. Literature-based safety assessment of an agriculture- and animal-associated microorganism: Weissella confusa [J]. Regulatory Toxicology and Pharmacology, 2018, 95: 142−152. doi: 10.1016/j.yrtph.2018.03.013 [23] JIANG S M, CAI L Z, LV L X, et al. Pediococcus pentosaceus, a future additive or probiotic candidate [J]. Microbial Cell Factories, 2021, 20(1): 45. doi: 10.1186/s12934-021-01537-y [24] LÜBECK M, LÜBECK P S. Application of lactic acid bacteria in green biorefineries [J]. FEMS Microbiology Letters, 2019, 366(3): fnz024. [25] 刘彬, 粟胜兰, 张雅惠, 等. 饲用凝结芽孢杆菌的菌种特性及作用机制 [J]. 饲料工业, 2022, 43(5):40−44.LIU B, SU S L, ZHANG Y H, et al. Strain property and action mechanism of Bacillus coagulans in feed [J]. Feed Industry, 2022, 43(5): 40−44.(in Chinese) [26] 聂俊辉, 王通, 曾静, 等. 抽气负压发酵法对丁酸梭菌生长及芽孢形成的影响 [J]. 中国饲料, 2022(5):23−27.NIE J H, WANG T, ZENG J, et al. The effect of suctioned negative pressure fermentation on the growth and spore formation of Clostridium butyricum [J]. China Feed, 2022(5): 23−27.(in Chinese) [27] 郭元晟, 闫素梅, 张和平, 等. 发酵乳酸杆菌对肉鸡胰腺和小肠消化酶活性及营养物质消化率的影响 [J]. 动物营养学报, 2011, 23(7):1225−1232.GUO Y S, YAN S M, ZHANG H P, et al. Effects of Lactobacillus fermentum supplementation on enzyme activities in pancreas and small intestine and nutrient digestibility in broilers [J]. Chinese Journal of Animal Nutrition, 2011, 23(7): 1225−1232.(in Chinese) [28] KAZOU M, ALEXANDRAKI V, BLOM J, et al. Comparative genomics of Lactobacillus acidipiscis ACA-DC 1533 isolated from traditional Greek kopanisti cheese against species within the Lactobacillus salivarius clade [J]. Frontiers in Microbiology, 2018, 9: 1244. doi: 10.3389/fmicb.2018.01244 [29] NASER S M, VANCANNEYT M, HOSTE B, et al. Lactobacillus cypricasei Lawson et Al. 2001 is a later heterotypic synonym of Lactobacillus acidipiscis Tanasupawat et Al. 2000[J]. International Journal of Systematic and Evolutionary Microbiology, 2006, 56(Pt 7): 1681-1683. [30] PABARI K, PITHVA S, KOTHARI C, et al. Evaluation of probiotic properties and prebiotic utilization potential of Weissella paramesenteroides isolated from fruits [J]. Probiotics and Antimicrobial Proteins, 2020, 12(3): 1126−1138. doi: 10.1007/s12602-019-09630-w [31] ZHENG Y, CHANG Y G, XIE S K, et al. Impacts of bioprocess engineering on product formation by Acetobacter pasteurianus [J]. Applied Microbiology and Biotechnology, 2018, 102(6): 2535−2541. doi: 10.1007/s00253-018-8819-6 [32] 贾瑞娟, 陈旭峰, 胡开燕, 等. 山西老陈醋优良芽孢菌与醋酸菌、乳酸菌的相互作用 [J]. 中国食品学报, 2021, 21(9):57−70.JIA R J, CHEN X F, HU K Y, et al. Interaction of excellent Bacillus, acetic acid bacteria and lactic acid bacteria isolated from cupei of Shanxi aged vinegar [J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(9): 57−70.(in Chinese)