Study on process optimization and antibacterial activity of Litsea cubeba essential oil
-
摘要:
目的 优化山苍子精油提取工艺,探究精油抑菌活性,为山苍子精油的加工及应用提供参考数据。 方法 通过响应面法优化山苍子精油提取过程中NaCl体积分数、液料比、蒸馏时间的工艺条件。采用生长速率法探究山苍子精油对瓜果腐霉菌的抑制作用,通过测定精油对菌丝干重、丙二醛含量、还原糖含量、过氧化氢酶、过氧化物酶和超氧化物歧化酶等保护酶活性的影响,探讨了其抑制植物病原真菌的生理生化作用。 结果 确定了最佳工艺条件:NaCl体积分数为2.39%,液料比[V(mL)∶m(g)]为4.8∶1,蒸馏时间4.94 h。在该条件下,精油得率可达4.43%。山苍子精油对瓜果腐霉具有较好抑制效果,EC50值为224.4 μg· mL−1。瓜果腐霉菌经山苍子精油处理后,菌丝干重减少,细胞膜通透性增加,菌体内还原糖含量减少,保护酶含量增多。 结论 经响应面优化后的工艺稳定可行,与其他的各类提取方法相比成本低消耗低与得率高。山苍子精油可以通过抑制菌丝生长、破坏细胞膜结构以及降低菌丝体保护酶活性等发挥抑菌活性。 Abstract:Objective This study aimed to optimize the extraction process of Litsea cubeba essential oil and investigate its antibacterial activity and mechanism of action against plant pathogenic fungi. Methods Response surface methodology was employed to optimize the extraction conditions of Litsea cubeba essential oil, including NaCl volume fraction, liquid-solid ratio, and distillation time. The inhibitory effect of Litsea cubeba essential oil on Pythium aphanidermatum was evaluated by the growth rate method, while its physiological and biochemical effects were assessed by measuring fungal mycelium dry weight, MDA content, reducing sugar content, and protective enzyme activities such as catalase, peroxidase, and superoxide dismutase. Results The optimal extraction conditions for Litsea cubeba essential oil were determined as NaCl volume fraction of 2.39%, liquid-solid ratio of 4.8:1 (mL·g−1), and distillation time of 4.94 hours, resulting in an extraction yield of 4.43%. Litsea cubeba essential oil exhibited a potent inhibitory effect on Pythium aphanidermatum, with an EC50 value of 224.4 μg·mL−1. Treatment with Litsea cubeba essential oil reduced fungal mycelium dry weight, increased cell membrane permeability, decreased reducing sugar content in the fungal body, and increased protective enzyme activities. Conclusion The optimized extraction process was stable, feasible, and cost-effective compared to other methods. Litsea cubeba essential oil exerted antibacterial activity by inhibiting mycelial growth, disrupting cell membrane structure, and decreasing protective enzyme activities in the mycelia. -
Key words:
- Litsea cubeba /
- Antibacterial activity /
- EC50 /
- physiology and biochemistry /
- Pythium aphanidermatum /
- Response surface
-
图 5 山苍子精油对瓜果腐酶生理生化各项数值影响
图A~F分别表示山苍子精油对瓜果腐酶的MDA(A)、还原糖(B)、CAT(C)、POD(D)、SOD(E)、相对电导率(F)的影响,LC为处理组,CK为空白对照组。不同小写字母表示同一时间不同处理之间差异显著(P<0.05)。
Figure 5. Effects of litsea cubeba essential oil on the physiological and biochemical values of Pythium aphanidermatum
The letters a-f in the figure indicate the effects of litsea cubeba essential oil on MDA(A), reducing Glucose(B) , CAT(V), POD(D), SOD (E)and relative electrical conductivity(F)of melon and fruit rot enzymes, respectively,"LC" is the treatment group and "CK" is the blank control group.Different lowercase letters indicate significant differences between different treatments at the same time point (P<0.05).
表 1 响应面设计方案与结果
Table 1. The program and experimental results of response surface methodology
编号
Serial numberA NaCl体积分数
A NaCl volume fraction/ %B蒸馏时间
B Distillation time/hC液料比
C liquid-material ratio /[ V (mL)∶ m (g)]精油得率
Yield of Litsea cubeba essential oil/%1 3.00 4.00 4.00 4.37 2 4.00 5.00 4.00 4.23 3 3.00 3.00 3.00 4.06 4 4.00 4.00 3.00 4.05 5 3.00 4.00 4.00 4.38 6 3.00 4.00 4.00 4.37 7 2.00 4.00 5.00 4.48 8 3.00 5.00 5.00 4.43 9 4.00 3.00 4.00 4.25 10 4.00 4.00 5.00 4.44 11 3.00 5.00 3.00 4.04 12 2.00 5.00 4.00 4.24 13 3.00 3.00 5.00 4.46 14 2.00 4.00 3.00 4.07 15 3.00 4.00 4.00 4.41 16 2.00 3.00 4.00 4.29 17 3.00 4.00 4.00 4.41 表 2 回归方程方差分析表
Table 2. Variance analysis of mathematical regression model
方差来源
Soruce of variation平方和
Sum of squares自由度
df均方
Mean squareF值
F valueP值
P value显著性
Significance模型 Model 0.38 9 0.043 170.18 <0.01 ** A 1.51×10−3 1 1.51×10−3 6.03 4.37×10−2 * B 0.32 1 0.32 12.60.45 <0.01 ** C 1.80×10−3 1 1.80×10−3 7.18 3.16×10−2 * AB 1.00×10−2 1 1.00×10−2 0.40 5.48×10−1 AC 2.25×10−4 1 2.25×10−4 0.90 3.75×10−1 BC 2.50×10−5 1 2.50×10−5 0.10 7.61×10−1 A2 1.60×10−2 1 1.60×10−2 63.52 <0.01 ** B2 1.90×10−2 1 1.90×10−2 74.27 <0.01 ** C2 2.30×10−2 1 2.30×10−2 91.96 <0.01 ** 残差 Residual 1.76×10−3 7 2.51×10−4 失拟 Lack of fit 7.50×10−5 3 2.50×10−5 0.060 9.79×10−1 纯误差 Pure error 1.68×10−3 4 4.20×10−4 总计 Aggregate 0.39 16 *:差异显著(P<0.05);**:差异极显著(P<0.01)。
* indicates significance difference(P<0.05); ** indicates extremely significance difference(P <0.01).表 3 山苍子精油对病原菌的抑制率测定
Table 3. Determination of inhibition rate of Litsea cubeba essential oil against pathogenic bacteria
供试病原菌
Pathogenic bacteria for test抑菌率
Bacteriostasis rate/%瓜果腐霉菌 Pythium aphanidermatum 86.31±0.25 a 苹果黑腐皮壳病菌 Valsa mali Miyabe et Yamada 82.52±0.12 a 番茄灰霉病菌 Botrytis cinerea 81.60±0.48 a 禾谷镰刀病菌 Fusarium graminearum 77.09±0.63 b 燕麦镰孢菌 FusaHum graminearum Sehw 74.66±0.72 b 西瓜尖孢镰孢菌 Fusarium oxysporumf 57.96±0.61 c 不同小写字母表示差异显著(P<0.05)。
Data with different lowercase letters indicate significant differences (P<0.05).表 4 山苍子精油与阳性对照对瓜果腐霉菌的毒力测定
Table 4. Determination of the virulence of Litsea cubeba essential oil against Pythium aphanidermatum
样品
Sample毒力曲线
Virulence
curve相关系数
Correlation
coefficient
(R2)EC50 /
(μg·mL−1)山苍子精油
Litsea cubeba
essential oily=1.896x+0.345 0.989 224.4 70%甲基硫菌灵
WP(对照)
Thiophanate-
Methyl (control)y=0.428x−1.141 0.946 466.9 -
[1] ZHOU Q A, ZHENG D F, ZHAO Y, et al. Active constituents of Litsea cubeba[J]. Thermal Science, 2020, 24(3 Part A): 1745-1752. [2] 谢练武, 郭亚平, 周春山, 等. 压榨法与蒸馏法提取柑橘香精油的比较研究 [J]. 化学与生物工程, 2005, 22(5):15−17.XIE L W, GUO Y P, ZHOU C S, et al. Comparison of compression and distillation processes for essential oils extraction from Citrus [J]. Chemistry & Bioengineering, 2005, 22(5): 15−17.(in Chinese) [3] 顾仁勇, 刘莹莹. 山苍子精油抑菌及抗氧化作用的研究 [J]. 食品科学, 2006, 27(11):86−89.GU R Y, LIU Y Y. Study on the anti-oxidation and bacteriostasis of Litsea cubeba extraction oil [J]. Food Science, 2006, 27(11): 86−89.(in Chinese) [4] 杨钦滟. 山鸡椒油的抑菌作用及应用研究[D]. 重庆: 西南大学, 2010YANG Q Y. Studies on the bactericidal action and application of Litsea cubeba[D]. Chongqing: Southwest University, 2010. (in Chinese) [5] 潘镇泽, 傅佳蕊, 郑威, 等. 红豆树异黄酮类成分抑制番茄灰霉病菌的活性研究 [J]. 福建农业学报, 2022, 37(6):794−801.PAN Z Z, FU J R, ZHENG W, et al. Inhibitory activity of isoflavones from Ormosia hosiei seeds against Botrytis cinerea [J]. Fujian Journal of Agricultural Sciences, 2022, 37(6): 794−801.(in Chinese) [6] 陈啸, 陈源桉, 傅钰萍, 等. β-香树脂醇对水稻纹枯病菌的抑菌作用 [J]. 亚热带农业研究, 2022, 18(3):192−197.CHEN X, CHEN Y Y, FU Y P, et al. Antifungal effects of β-amyrin against rice sheath blight, Rhizoctonia solani [J]. Subtropical Agriculture Research, 2022, 18(3): 192−197.(in Chinese) [7] 张耀, 林智熠, 周文娟, 等. 圆齿野鸦椿枝条抗辣椒疫霉病菌活性成分 [J]. 福建农林大学学报(自然科学版), 2021, 50(4):472−479.ZHANG Y, LIN Z Y, ZHOU W J, et al. Chemical constituents against Phytophthora capsici from twigs of Euscaphis konishii Hayata [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2021, 50(4): 472−479.(in Chinese) [8] RATNAWATI D, LUSIANA, MARTONO A, et al. Study on the potency of methanol extracts from Xanthosoma nigrum stellfeld As natural anti oxidant by thiobarbituric acid method [J]. Aceh International Journal of Science and Technology, 2014, 2(3): 82−87. [9] MENG F G, SHI H Z, WANG J, et al. Correlation analysis between nutritive components of Whitmania pigra and Bellamya purificata [J]. China journal of Chinese materia medica, 2013, 38(12): 1915−1918. [10] 王江宏, 刘艳, 桑敏, 等. 硒对紫球藻抗氧化酶活性及丙二醛含量的影响 [J]. 热带海洋学报, 2011, 30(3):94−98.WANG J H, LIU Y, SANG M, et al. Effect of selenium on antioxidant enzyme activity and malondialdehyde content of Porphyridium sp [J]. Journal of Tropical Oceanography, 2011, 30(3): 94−98.(in Chinese) [11] 沈文飚, 徐朗莱, 叶茂炳, 等. 氮蓝四唑光化还原法测定超氧化物歧化酶活性的适宜条件 [J]. 南京农业大学学报, 1996, 19(2):101−102.SHEN W B, XU L L, YE M B, et al. The suitable conditions for determining sod activity by nitro blue tetrazolium(nbt) photoreduction method [J]. Journal of Nanjing Agricultural University, 1996, 19(2): 101−102.(in Chinese) [12] LI W, FU J R, ZHENG L J, et al. Two new bibenzyls from Pleione grandiflora (Rolfe) Rolfe and their antioxidant activity [J]. Natural Product Research, 2023, 37(15): 2486−2492. doi: 10.1080/14786419.2022.2050909 [13] WU M T, WU X Q, ZHENG L J, et al. Discovery of glucosyloxybenzyl 2-hydroxy-2-isobutylsuccinates with anti-inflammatory activities from Pleione grandiflora [J]. Fitoterapia, 2021, 155: 105062. doi: 10.1016/j.fitote.2021.105062 [14] YOU C J, WANG J M, TIAN C M. Changes in bioelectrical indexes of Cotinus coggygria var. cinerea inoculated with different fungus strains [J]. Forest Research, 2010, 23(4): 581−585. [15] 全颖萱, 黄冰冰, 贝佳炎, 等. 红豆树叶总黄酮提取工艺优化及抗氧化性研究 [J]. 中国野生植物资源, 2021(8):20−26.QUAN Y X, HUANG B B, BEI J Y, et al. Optimization of extraction process and antioxidant activity of total flavonoids from leaves of red bean [J]. Chinese Wild Plant Resources, 2021(8): 20−26.(in Chinese) [16] 韩艳利. 山苍子精油的提取、精制及物理改性研究[D]. 长沙: 中南林业科技大学, 2013.HAN Y L. Study on extraction, refining and physical modification of Litsea cubeba essential oil[D]. Changsha: Central South University of Forestry & Technology, 2013. (in Chinese) [17] 王梦茵, 王浩楠, 王文荣, 等. 山苍子精油的提取及缓释凝胶制备 [J]. 广州化学, 2021, 46(6):56−62,68.WANG M Y, WANG H N, WANG W R, et al. Extraction of essential oil from Litsea cubeba and preparation of sustained-release gel [J]. Guangzhou Chemistry, 2021, 46(6): 56−62,68.(in Chinese) [18] 赵春丽, 彭玉琳, 周永强, 等. 山鸡椒果实挥发油成分的提取、分析及抑菌活性研究 [J]. 化学工程师, 2020, 34(9):76−80.ZHAO C L, PENG Y L, ZHOU Y Q, et al. Study on the extraction, analysis and antibacterial activity of the essential oil from the fruit of Listeacubeba(Lout. ) pers [J]. Chemical Engineer, 2020, 34(9): 76−80.(in Chinese) [19] 王小丽, 钟有添, 黄真. 赣南产山苍子油成分分析与抗菌活性研究 [J]. 赣南医学院学报, 2017, 37(6):848−850,855.WANG X L, ZHONG Y T, HUANG Z. Antibacterial activity research and composition analysis on Litsea cubeba oil produced in south of Jiangxi Province [J]. Journal of Gannan Medical University, 2017, 37(6): 848−850,855.(in Chinese) [20] WU F, YANG D C, ZHANG L P, et al. Diversity estimation and antimicrobial activity of culturable endophytic fungi from Litsea cubeba (Lour. ) Pers. in China [J]. Forests, 2019, 10(1): 33. doi: 10.3390/f10010033 [21] 王轶楠. 山苍子精油对辣椒疫霉抑菌作用研究[D]. 郑州: 河南农业大学, 2019.WANG Y N. Study on the antifungal activity of Litsea cubeba essential oils against Phytophthora capsici[D]. Zhengzhou: Henan Agricultural University, 2019. (in Chinese) [22] 孙畅, 李湘, 王银红, 等. 山苍子精油对柑橘意大利青霉的抑菌活性及作用机制 [J]. 食品科学, 2023, 44(11):17−25. doi: 10.7506/spkx1002-6630-20220722-253SUN C, LI X, WANG Y H, et al. Antibacterial activity and mechanism of Litsea cubeba essential oil against Penicillium italicum in Citrus fruits [J]. Food Science, 2023, 44(11): 17−25.(in Chinese) doi: 10.7506/spkx1002-6630-20220722-253 [23] 郝凯源. 山苍子精油对耐药鲍曼不动杆菌的体内外抗菌活性研究[D]. 南宁: 广西大学, 2022.HAO K Y. Antibacterial efficacy of Litsea cubeba L. essential oil against Acinetobacter baumannii in vitro and vivo[D]. Nanning: Guangxi University, 2022. (in Chinese)