Chemical Composition and Antioxidant Activity in Stems and Leaves of Paeonia Intersubgeneric Hybrids
-
摘要:
目的 探究芍药属亚属间杂种(伊藤杂种)的茎叶药用价值。 方法 利用高效液相色谱-二极管阵列检测(HPLC-DAD)与高效液相色谱-四级杆-飞行时间串联质谱技术(HPLC-Q-TOF-MS)对16个伊藤杂种茎、叶的次生代谢物进行定性、定量分析,并对其总酚含量和体外抗氧化活性进行测定。 结果 在16个伊藤杂种茎叶中共检测到19种次生代谢物,分别属于单萜苷类(5种)、黄酮类(6种)、单宁类(4种)、酚类(4种)。16个伊藤杂种茎叶中的代谢物成分基本相同;除酚类外,叶中其他3类代谢物和总代谢物含量均显著高于茎。16个伊藤杂种叶的抗氧化能力均显著高于茎;5个品种叶中的芍药苷含量高于药典规定的最低标准(18 mg·g−1)。聚类分析结果显示,16个品种被聚为3类,其中第3类群包含2个品种,特点为叶中除单萜苷类含量中等外,各项指标均最高。 结论 伊藤杂种的茎叶具有潜在的药用价值,筛选出2个具有药用植物潜力的伊藤杂种Unique和Lollipop。 Abstract:Objective Pharmaceutical property of the stems and leaves of Paeonia intersubgeneric hybrids (PIHs) was evaluated. Method Secondary metabolites in 16 PIHs were extracted from the stems and leaves and analyzed by the high-performance liquid chromatography with a diode array detector (HPLC-DAD) and the high-performance liquid chromatography quadrupole time-of-fight mass spectrometry (HPLC-Q-TOF-MS). Total phenolic content and in vitro antioxidant activity of the extract were measured. Results (1) Nineteen metabolites were identified from the extracts that included 5 monoterpene glycosides, 6 flavonoids, 4 tannins, and 4 phenols. (2) The compositions of all tested hybrids were essentially identical. (3) Except for phenols, the content of individual group or total amount of compounds in the 3 groups were significantly higher in the leaves than in the stems. (4) The in vitro antioxidant activity was tested significantly greater in the leaves than in the stems as well. (5) The contents of paeoniflorin in the leaves of 5 varieties were above the minimum 18 mg·g−1 as stipulated by the pharmacopoeia. (6) A cluster analysis grouped the 16 cultivars into 3 categories with one that contained two varieties, which scored the highest on all indicators except being moderate on monoterpene glycosides. Conclusion The stems and leaves of “Unique” and “Lollipop” in the 16 tested PIHs appeared to have pharmaceutical values. -
Key words:
- Paeonia /
- intersubgeneric hybrids /
- functional ingredient /
- antioxidant activity /
- paeoniflorin
-
图 1 代表性伊藤杂种茎叶成分HPLC图谱 (254 nm)
1:去苯甲酰芍药苷;2:没食子酰己糖;3:没食子酸;4:氧化芍药苷;5:没食子酸甲酯;6:二没食子酸;7:木犀草素二己糖苷;8:芍药苷;9:四没食子酰己糖;10:槲皮素;11:木犀草素己糖苷;12:1,2,3,4,6-五没食子酰葡萄糖;13:没食子酸二甲酯;14:没食子酰芍药苷;15:芹菜素二己糖苷;16:芹菜素己糖苷;17:六没食子酰己糖;18:木犀草素己糖醛酸苷;19:苯甲酰氧化芍药苷。(A) 伊藤杂种 Garden Treasure 的茎 (B) 伊藤杂种Garden Treasure 的叶。
Figure 1. HPLC 254 nm chromatograms of typical compounds in stems
1: Debenzoyl-paeonifforin; 2: Galloyl-hexose; 3: Gallic acid; 4: Oxypaeonifforin; 5: Methyl gallate; 6: Digallic acid; 7: Luteolin-dihexoside; 8: Paeonifforin; 9: Tetra-galloyl-hexose; 10: Quercetin; 11: Luteolin-hexoside; 12: Penta-galloyl-glucose; 13: Methyl digallate; 14: Galloyl-paeonifforin; 15: Apigenin-dihexoside; 16: Apigenin-hexoside; 17: Hexa-galloyl-hexose; 18: Luteolin-hexuronide; 19: Benzoyl-oxypaeonifforin. (A) and leaves (B) of PIH “Garden Treasure”.
表 1 16个伊藤杂种品种名录
Table 1. Sixteen PIHs
编号 Code 品种名 Cultivar 编号 No. 品种名 Cultivar P1 Scarlet Heaven P9 First Arrival P2 Sonoma Sun P10 Callie's Memory P3 Visions of Sugar Plums P11 Lollipop P4 Lemon Dream P12 Bartzella P5 Yankee Doudle Dandy P13 Prairie Charm P6 Hillary P14 Border Charm P7 Kopper Kettle P15 Garden Treasure P8 Unique P16 Oriental Gold 表 2 HPLC梯度洗脱条件
Table 2. HPLC gradient program
时间
Time/min流动相A
Eluent A/%流动相B
Eluent B/%流速
Flow rate/(mL·min−1)0 5 95 0.6 4 5 95 0.6 12 14 86 0.6 35 14 86 0.6 46 26 74 0.6 60 26 74 0.6 85 40 60 0.6 86 95 5 0.6 96 95 5 0.6 97 5 95 0.6 110 5 95 0.6 表 3 伊藤杂种茎叶成分标准品的线性响应
Table 3. Linear relationship between composition and standards of compounds in stems and leaves of PIHs
成分
Compound回归方程
Regression equation拟合度
Regression (R2)芍药苷 Paeoniflorin y = 3988892.99x−209564.63 0.9993 氧化芍药苷 Oxypaeoniflorin y = 61595437.91x−763226.02 0.9993 没食子酰芍药苷 Galloyl-paeoniflorin y = 17881895.64x−169740.93 0.9994 苯甲酰氧化芍药苷 Benzoyl-oxypaeoniflorin y = 43785733.20x−594224.40 0.9997 槲皮素 Quercetin y = 105165792.29x−1704829.32 0.9999 没食子酸 Gallic acid y = 71520130.70x−1356976.83 0.9995 没食子酸甲酯 Methyl gallate y = 50561017.43x + 287227.39 0.9998 1,2,3,4,6-五没食子酰葡萄糖 1,2,3,4,6-Penta-O-galloyl-β-D-glucose y = 22509909.82x−838629.67 0.9992 表 4 伊藤杂种茎叶总酚与抗氧化活性标准品的线性响应
Table 4. Linear relationship between in vitro antioxidant activity of standard and total phenolic in stems and leaves of PIHs
指标
Index回归方程
Regression equation拟合度
Regression (R2)总酚
Total phenolic contenty = 2.0065x−0.0046 0.9991 DPPH自由基清除能力
DPPH assayy = 6.5516x + 0.0497 0.9948 ABTS自由基清除能力
FRAP assayy = 2.5199x + 0.0137 0.9969 FRAP铁离子还原能力
ABTS assayy = 4.4112x + 0.2067 0.9983 表 5 伊藤杂种茎叶次生代谢物鉴定
Table 5. Secondary metabolites identified in extracts of stems and leaves of PIHs
编号
No.成分
Compound分子式
Molecular
Formula保留
时间
TR/
min紫外
吸收峰
UV λmax/
nm观测精确
分子量
Observed exact
mass/Da理论精确
分子量
Theoretically
exact mass/Da分子量准
确度
Mass accuracy其他离子碎片
Other fragmentions of
[M−H]−
at low energy/(m/z)1 去苯甲酰芍药苷
Debenzoyl paeonifforinC16H23O10 7.682 237.9 375.1293 375.1297 −1.0663 165 2 没食子酰己糖
Galloyl-hexoseC13H15O10 8.548 278.1 331.0680 331.0665 4.5308 169 3 没食子酸
Gallic acidC7H6O5 11.909 271.0 169.0159 169.0143 9.4667 125 4 氧化芍药苷
OxypaeonifforinC23H27O12 20.973 257.3 495.1501 495.1493 1.6157 137 5 没食子酸甲酯
Methyl gallateC8H8O5 22.297 271.5 183.0314 183.0299 8.1954 124 6 二没食子酸
Digallic acidC14H10O9 22.552 257.3 321.0263 321.0244 5.9186 169, 125 7 木犀草素二己糖苷
Luteolin dihexosideC27H30O16 26.168 230.1 609.1455 609.1456 −0.1642 446, 285 8 芍药苷
PaeonifforinC23H28O11 30.394 238.3 479.1548 479.1614 −13.7741 165, 121 9 四没食子酰己糖
Tetra-galloyl-hexoseC34H28O22 45.240 277.4 787.1006 787.1008 −0.2541 617, 169 10 槲皮素
QuercetinC15H10O7 49.745 253.2, 366.8 301.0006 301.0019 −4.3189 145 11 木犀草素己糖苷
Luteolin-hexosideC21H20O11 50.203 253.7 447.0934 447.0957 −5.1443 285 12 1,2,3,4,6-五没食子酰葡萄糖
Penta-galloyl-glucoseC41H32O26 50.408 278.6 939.1198 939.1126 7.6668 769, 617 13 没食子酸二甲酯
Methyl digallateC15H12O9 51.833 272.7 335.0423 335.0409 4.1786 183, 124 14 没食子酰芍药苷
Galloyl-paeonifforinC30H32O15 52.800 272.7 631.1658 631.1663 −0.7922 313, 169 15 芹菜素二己糖苷
Apigenin-dihexosideC27H30O14 53.004 267.9 577.1552 577.1598 −7.9701 269 16 芹菜素己糖苷
Apigenin-hexosideC21H20O10 54.226 267.9 431.1020 431.1015 1.1598 269 17 六没食子酰己糖
Hexa-galloyl-hexoseC48H36O30 54.841 278.1 1091.1247 1091.1245 0.1833 939, 769 18 木犀草素己糖醛酸苷
Luteolin-hexuronideC21H18O12 55.448 277.4 461.1125 461.1116 1.9518 285 19 苯甲酰氧化芍药苷
Benzoyl-oxypaeonifforinC30H32O13 57.342 276.3 599.1111 599.1106 0.8346 447, 313 表 6 16个伊藤杂种茎叶抗氧化活性
Table 6. Antioxidant activities of stems and leaves of 16 PIHs
编号
CodeDPPH自由基清除能力
DPPH assay/(mg·g−1)ABTS自由基清除能力
ABTS assay/(mg·g−1)FRAP铁离子还原能力
FRAP assay/(mg·g−1)茎
Stem叶
Leaf茎
Stem叶
Leaf茎
Stem叶
LeafP1 9.63±0.08 ab 38.11±0.28 a 30.13±2.01 b 61.19±6.39 bc 4.90±0.10 ab 16.80±0.32 cdefgh P2 9.60±0.05 ab 38.37±0.29 a 19.00±3.12 e 81.30±0.35 a 4.53±0.05 b 16.76±0.40 defgh P3 9.62±0.08 ab 37.37±1.17 a 18.72±2.78 e 50.27±4.43 de 4.70±0.09 ab 16.89±0.40 bcdefg P4 9.64±0.04 ab 38.22±0.12 a 18.57±2.06 e 46.85±4.52 ef 4.69±0.21 ab 17.22±0.20 abcd P5 9.63±0.07 ab 38.30±0.17 a 26.51±1.54 bc 57.04±3.89 bcd 4.78±0.09 ab 17.39±0.10 abc P6 9.63±0.03 ab 38.18±0.16 a 18.00±2.61 e 54.41±2.25 cd 4.56±0.17 b 17.18±0.10 abcde P7 9.63±0.05 ab 38.25±0.15 a 45.84±0.66 a 62.20±8.59 b 5.07±0.08 a 17.50±0.30 ab P8 9.60±0.03 ab 38.34±0.11 a 17.49±2.57 e 55.44±3.26 bcd 4.59±0.13 ab 16.98±0.58 abcdef P9 9.57±0.07 ab 34.44±0.51 c 6.23±0.81 g 31.35±4.00 i 4.43±0.08 b 15.94±0.28 i P10 9.49±0.25 b 37.81±0.36 a 10.12±2.64 f 42.71±2.16 fg 4.73±0.06 ab 16.56±0.11 efgh P11 9.60±0.04 ab 38.36±0.12 a 17.08±2.56 e 83.59±3.64 a 4.72±0.03 ab 17.57±0.30 a P12 9.59±0.03 ab 35.82±0.60 b 18.24±1.03 e 32.92±3.63 hi 4.59±0.04 ab 16.28±0.42 ghi P13 9.61±0.05 ab 37.15±0.97 a 18.05±0.99 e 30.30±4.31 i 4.85±0.11 ab 16.37±0.39 fghi P14 9.63±0.06 ab 37.19±0.80 a 19.99±3.11 de 38.73±1.93 gh 4.69±0.02 ab 16.25±0.09 hi P15 9.66±0.03 a 38.24±0.16 a 23.36±0.78 cd 60.93±2.09 bc 4.72±0.04 ab 17.39±0.33 abc P16 9.62±0.03 ab 35.53±1.45 b 16.88±3.58 e 31.58±1.91 i 4.72±0.89 ab 15.86±0.47 i 范围 Range 9.49~9.66 34.44~38.37 6.23~45.84 30.30-83.59 4.43~5.07 15.86~17.57 平均值 Average 9.61±0.08 37.48±1.28 20.26±8.77 51.30±16.58 4.71±0.25 16.81±0.61 同列数据无字母或含相同字母者表示差异不显著(P>0.05),字母完全不同者表示差异显著(P <0.05)。
Data with no or same letter indicate no significant difference at P>0.05; those with different letters indicate significant difference at P<0.05.表 7 16个伊藤杂种茎的APC指数
Table 7. APC indices of stems of 16 PIHs
编号
CodeAPC综合指数
APC index/%排名
Rank编号
CodeAPC综合指数
APC index/%排名
RankingP1 87.35 2 P9 66.75 16 P2 76.72 9 P10 71.19 15 P3 77.77 7 P11 76.60 10 P4 77.62 8 P12 76.59 11 P5 84.01 3 P13 78.25 6 P6 76.36 13 P14 78.64 5 P7 99.91 1 P15 81.38 4 P8 76.06 14 P16 76.54 12 表 8 16个伊藤杂种叶的APC指数
Table 8. APC indices of leaves of 16 PIHs
编号
CodeAPC综合指数
APC index/%排名
Rank编号
CodeAPC综合指数
APC index/%排名
RankingP1 89.39 5 P9 72.66 16 P2 97.55 2 P10 81.31 11 P3 84.56 9 P11 99.99 1 P4 84.55 10 P12 75.12 14 P5 89.00 6 P13 75.41 13 P6 87.46 8 P14 78.58 12 P7 91.22 3 P15 90.51 4 P8 87.64 7 P16 73.56 15 -
[1] HONG D Y. Peonies of the world: Taxonomy and phytogeography [M]. United Kingdom: Royal Botanic Gardens, Kew, United Kingdom, 2010. [2] HONG D Y. Peonies of the world: Polymorphism and diversity [M]. United Kingdom: Royal Botanic Gardens, Kew, 2011. [3] YANG Y, SUN M, LI S S, et al. Germplasm resources and genetic breeding of Paeonia: A systematic review [J]. Horticulture Research, 2020, 7: 107. doi: 10.1038/s41438-020-0332-2 [4] 康晓飞, 郭先锋, 许世磊, 等. 三个观赏芍药品种芍药苷含量的动态变化研究 [J]. 北方园艺, 2011(5):85−87.KANG X F, GUO X F, XU S L, et al. Study on the dynamic change of paeoniflorin content from three herbaceous peony cultivars [J]. Northern Horticulture, 2011(5): 85−87.(in Chinese) [5] Stern F C. Genus Paeonia [J]. Research Horticulture Society., 1943, 68: 124−131. [6] JI L J, TEIXEIRA DA SILVA J A, ZHANG J J, et al. Development and application of 15 novel polymorphic microsatellite markers for sect. Paeonia (Paeonia L. ) [J]. Biochemical Systematics and Ecology, 2014, 54: 257−266. doi: 10.1016/j.bse.2014.02.009 [7] 秦魁杰. 芍药[M]. 北京: 中国林业出版社, 2004: 43-44. [8] The Gardener's Peony: Herbaceous and Tree Peonies[M]. Portland: Timber Press, 2005 [9] ZHOU S L, XU C, LIU J, et al. Out of the Pan-Himalaya: Evolutionary history of the Paeoniaceae revealed by phylogenomics [J]. Journal of Systematics and Evolution, 2021, 59(6): 1170−1182. doi: 10.1111/jse.12688 [10] 郝青, 刘政安, 舒庆艳, 等. 中国首例芍药牡丹远缘杂交种的发现及鉴定 [J]. 园艺学报, 2008, 35(6):853−858.HAO Q, LIU Z A SHU Q Y, et al. Identification of intersectional hybrid between section moutan and section Paeonia found in China for the first time [J]. Acta Horticulturae Sinica, 2008, 35(6): 853−858.(in Chinese) [11] 孙菊芳, 成仿云. 芍药与牡丹组间杂种引种栽培初报 [J]. 中国园林, 2007, 23(5):51−54. doi: 10.3969/j.issn.1000-6664.2007.05.012SUN J F, CHENG F Y. Preliminary report on the introduction of intersectional hybrids between tree and herbaceous peonies [J]. Chinese Landscape Architecture, 2007, 23(5): 51−54.(in Chinese) doi: 10.3969/j.issn.1000-6664.2007.05.012 [12] 马翔龙, 吴敬需, 刘少华. 伊藤牡丹发展现状与展望 [J]. 中国花卉园艺, 2018(16):28−31. doi: 10.3969/j.issn.1009-8496.2018.16.013MA X L, WU J X, LIU S H. Development status and prospect of Ito peony [J]. China Flowers & Horticulture, 2018(16): 28−31.(in Chinese) doi: 10.3969/j.issn.1009-8496.2018.16.013 [13] 庄倩, 朱松岩, 杜晓琪, 等. 芍药属组间杂种引进东北地区栽培试验 [J]. 东北林业大学学报, 2011, 39(4):21−23.ZHUANG Q, ZHU S Y, DU X Q, et al. Introduction of interspecific hybrids of Paeonia to northeast China [J]. Journal of Northeast Forestry University, 2011, 39(4): 21−23.(in Chinese) [14] 吴敬需, 刘少华, 隋承权. 国外引进的牡丹芍药组间杂种品种[J]. 中国花卉园艺, 2022(5): 54-60.WU J X, LIU S H, SUI C Q. Inter-group hybrid varieties of Paeonia suffruticosa introduced from abroad[J]. China Flowers & Horticulture, 2022(5): 54-60.(in Chinese) [15] HE C N, PENG Y, ZHANG Y C, et al. Phytochemical and biological studies of Paeoniaceae [J]. Chemistry & Biodiversity, 2010, 7(4): 805−838. [16] 国家药典委员会. 中华人民共和国药典-一部: 2020年版[M]. 北京: 中国医药科技出版社, 2020: 154. [17] PARKER S, MAY B, ZHANG C, et al. A pharmacological review of bioactive constituents of Paeonia lactiflora Pallas and Paeonia veitchii lynch [J]. Phytotherapy Research:PTR, 2016, 30(9): 1445−1473. doi: 10.1002/ptr.5653 [18] MANAYI A, OMIDPANAH S, BARRECA D, et al. Neuroprotective effects of paeoniflorin in neurodegenerative diseases of the central nervous system [J]. Phytochemistry Reviews, 2017, 16(6): 1173−1181. doi: 10.1007/s11101-017-9527-z [19] WANG Z Q, HE C N, PENG Y, et al. Origins, phytochemistry, pharmacology, analytical methods and safety of cortex moutan (Paeonia suffruticosa andrew): A systematic review [J]. Molecules, 2017, 22(6): 946. doi: 10.3390/molecules22060946 [20] SHAHIDI F, ZHONG Y. Measurement of antioxidant activity [J]. Journal of Functional Foods, 2015, 18: 757−781. doi: 10.1016/j.jff.2015.01.047 [21] WANG L J, SU S, WU J, et al. Variation of anthocyanins and flavonols in Vaccinium uliginosum berry in Lesser Khingan Mountains and its antioxidant activity [J]. Food Chemistry, 2014, 160: 357−364. doi: 10.1016/j.foodchem.2014.03.081 [22] WANG L J, WU J, WANG H X, et al. Composition of phenolic compounds and antioxidant activity in the leaves of blueberry cultivars [J]. Journal of Functional Foods, 2015, 16: 295−304. doi: 10.1016/j.jff.2015.04.027 [23] SEERAM N P, AVIRAM M, ZHANG Y J, et al. Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States [J]. Journal of Agricultural and Food Chemistry, 2008, 56(4): 1415−1422. doi: 10.1021/jf073035s [24] ZHANG X X, ZUO J Q, WANG Y T, et al. Paeoniflorin in Paeoniaceae: Distribution, influencing factors, and biosynthesis [J]. Frontiers in Plant Science, 2022, 13: 980854. doi: 10.3389/fpls.2022.980854 [25] SUN M, WANG Y Z, YANG Y, et al. Analysis of chemical components in the roots of eight intersubgeneric hybrids of Paeonia [J]. Chemistry & Biodiversity, 2021, 18(2): e2000848. [26] 徐佳新, 许浚, 曹勇, 等. 中药白芍现代研究进展及其质量标志物的预测分析 [J]. 中国中药杂志, 2021, 46(21):5486−5495.XU J X, XU J, CAO Y, et al. Modern research progress of traditional Chinese medicine Paeoniae Radix Alba and prediction of its Q-markers [J]. China Journal of Chinese Materia Medica, 2021, 46(21): 5486−5495.(in Chinese) [27] 张育贵, 张淑娟, 边甜甜, 等. 芍药苷药理作用研究新进展 [J]. 中草药, 2019, 50(15):3735−3740.ZHANG Y G, ZHANG S J, BIAN T T, et al. New progress in pharmacological action of paeoniflorin [J]. Chinese Traditional and Herbal Drugs, 2019, 50(15): 3735−3740.(in Chinese) [28] ZHANG L L, WEI W. Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony [J]. Pharmacology & Therapeutics, 2020, 207: 107452. [29] OH G S, PAE H O, OH H, et al. In vitro anti-proliferative effect of 1, 2, 3, 4, 6-penta-O-galloyl-beta-D-glucose on human hepatocellular carcinoma cell line, SK-HEP-1 cells [J]. Cancer Letters, 2001, 174(1): 17−24. doi: 10.1016/S0304-3835(01)00680-2 [30] HE C N, PENG B, DAN Y, et al. Chemical taxonomy of tree peony species from China based on root cortex metabolic fingerprinting [J]. Phytochemistry, 2014, 107: 69−79. doi: 10.1016/j.phytochem.2014.08.021 [31] 高玉鹏, 郭久荣, 刘斌峰. 热应激环境蛋鸡免疫力变化机理研究Ⅱ 免疫力、氧自由基代谢、耐热力间的关系 [J]. 西北农林科技大学学报(自然科学版), 2001, 29(5):33−36.GAO Y P, GUO J R, LIU B F. The study of layers on the immune feature and relation with HSST Ⅱ Relationship among immunity, oxygen radixal metabolites, HSST [J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry, 2001, 29(5): 33−36.(in Chinese) [32] LI S, LI S K, GAN R Y, et al. Antioxidant capacities and total phenolic contents of infusions from 223 medicinal plants [J]. Industrial Crops and Products, 2013, 51: 289−298. doi: 10.1016/j.indcrop.2013.09.017 [33] TONG N N, ZHOU X Y, PENG L P, et al. A comprehensive study of three species of Paeonia stem and leaf phytochemicals, and their antioxidant activities [J]. Journal of Ethnopharmacology, 2021, 273: 113985. doi: 10.1016/j.jep.2021.113985