• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于转录组测序的金钱蒲类黄酮生物合成基因的表达分析

陈钰 马良 饶雪娥 何舒澜

陈钰,马良,饶雪娥,等. 基于转录组测序的金钱蒲类黄酮生物合成基因的表达分析 [J]. 福建农业学报,2023,38(8):924−931 doi: 10.19303/j.issn.1008-0384.2023.08.006
引用本文: 陈钰,马良,饶雪娥,等. 基于转录组测序的金钱蒲类黄酮生物合成基因的表达分析 [J]. 福建农业学报,2023,38(8):924−931 doi: 10.19303/j.issn.1008-0384.2023.08.006
CHEN Y, MA L, RAO X E, et al. Expressions of Flavonoid Biosynthesis Genes in Acorus gramineus Determined by Transcriptome Sequencing [J]. Fujian Journal of Agricultural Sciences,2023,38(8):924−931 doi: 10.19303/j.issn.1008-0384.2023.08.006
Citation: CHEN Y, MA L, RAO X E, et al. Expressions of Flavonoid Biosynthesis Genes in Acorus gramineus Determined by Transcriptome Sequencing [J]. Fujian Journal of Agricultural Sciences,2023,38(8):924−931 doi: 10.19303/j.issn.1008-0384.2023.08.006

基于转录组测序的金钱蒲类黄酮生物合成基因的表达分析

doi: 10.19303/j.issn.1008-0384.2023.08.006
基金项目: 福建省教育厅中青年教师教育科研项目(JAT191292);福建省科技特派员专项(2022年)
详细信息
    作者简介:

    陈钰(1987 —),女,博士,讲师,主要从事中药鉴定学和中药药理学研究,E-mail:181967453@qq.com

  • 中图分类号: S682

Expressions of Flavonoid Biosynthesis Genes in Acorus gramineus Determined by Transcriptome Sequencing

  • 摘要:   目的  高通量测序获取金钱蒲(Acorus gramineus)7个不同组织转录组信息,为不同组织中类黄酮化学成分合成差异提供分子信息,进而在分子水平上研究金钱蒲不同组织内类黄酮化学成分合成差异。  方法  利用高通量测序技术平台完成金钱蒲7个不同部位的转录组测序,对unigenes进行功能注释,借助注释结果挖掘类黄酮生物合成通路,筛选通路中的差异表达基因(Differentially expressed genes,DEGs)并进行表达量分析。  结果  共获得高质量数据39.91~42.97 M,总碱基量为5.98~6.45 Gb,Q30碱基百分比大于94.05%,GC含量为47.81%~50.32%。18616条unigenes在GO数据库中获得62 506个注释,根据功能划分为细胞组分、分子功能及生物过程三大类,分别对应 6、14、21个亚类,大量基因分布在细胞解剖实体、连接、催化活性和细胞过程等亚类中。10124条unigenes 富集在 KEGG 数据库的5大类19个亚类中,从其中筛选出4条类黄酮生物合成途径,14个关键酶,63个差异表达酶基因。这些基因在金钱蒲7个组织中具有表达差异性,表明这些结构基因在类黄酮生物合成过程中于不同部位发挥作用。  结论  研究结果丰富了金钱蒲的遗传信息,也为进一步解析金钱蒲类黄酮生物合成基因功能提供参考依据。
  • 图  1  金钱蒲7个不同组织

    A:叶;B:花;C:花序;D:果序;E:果实;F:根;G茎。

    Figure  1.  Seven sampled organs of A. gramineus

    A: leaves; B: flower; C: inflorescence; D: infructescence; E: fruit; F: root; G: stem.

    图  2  金钱蒲转录组unigenes的GO功能分类

    Figure  2.  GO function classification on unigenes of A. gramineus transcriptomes

    图  3  金钱蒲转录组基因的KEGG代谢通路分类

    Figure  3.  KEGG metabolic pathways of unigenes of A. gramineus transcriptomes

    图  4  金钱蒲类黄酮生物合成差异表达基因热图

    A:苯丙素合成中的差异表达基因;B:类黄酮化合物生物合成中的差异表达基因;C:异黄酮代谢通路中的差异表达基因 ;D:黄酮和黄酮醇生物合成中的差异表达基因。 I:花序;II:花 ;III:叶 ;IV:茎;V:根;VI:果序;VII:果。高表达水平为红色,低表达水平为蓝色。

    Figure  4.  Heat map of DEGs in flavonoid biosynthesis of A. gramineus

    A: DEGs in phenylpropanoid synthesis; B: DEGs in flavonoid synthesis; C: DEGs in isoflavone metabolic pathway;D: DEGs in biosynthesis of flavonoids and flavonols. I: inflorescence; II: flowers; III: leaves; IV: stems; V: roots; VI: infructescence; VII: fruits. High levels shown in red, and low in blue.

    表  1  转录组过滤数据统计和参考基因组比对结果

    Table  1.   Statistically filtered transcriptome data vs. reference genomes

    样品名称
    Sample name
    Clean reads 数量
    Number of clean reads/M
    高质量总碱基量
    Total clean bases/Gb
    Q30碱基百分比
    Clean reads Q30/%
    GC含量
    GC content%
    比对上参考基因组的
    Clean reads 比例
    Total mapping/%
    比对上参考基因组
    唯一位置的
    Clean reads 比例
    Uniquely mapping/%
    花序 Inflorescence 42.74 6.41 93.68 49.55 86.50 50.81
    花 Flower 42.76 6.41 93.56 50.32 86.26 49.96
    叶 Leaf 42.69 6.40 94.05 49.67 82.74 47.88
    茎 Stem 42.77 6.41 93.87 50.07 85.80 51.13
    根 Root 42.97 6.45 93.55 47.81 87.49 50.39
    果序 Infructescence 42.86 6.43 93.99 48.73 77.57 43.82
    果 Fruit 39.91 5.98 93.31 50.30 83.38 46.93
    下载: 导出CSV

    表  2  金钱蒲转录组类黄酮生物合成途径中的酶基因

    Table  2.   Genes of enzymes inA. gramineus transcriptomes involved flavonoid synthesis pathways

    代谢通路
    Metabolic pathway
    ko编号
    Ko ID

    Enzyme
    缩写
    Abbreviation
    差异基因数量
    Number of DEGs
    苯丙素合成
    Phenylpropanoid biosynthesis
    ko00940 苯丙氨酸解氨酶
    Phenylalanine ammonia-lyase
    PAL 6
    咖啡酰辅酶A-O-甲基转移酶
    Trans-cinnamate 4-monooxygenase
    CCOMT 4
    4-香豆酸-CoA 连接酶
    4-coumarate--CoA ligase
    4CL 4
    类黄酮化合物的生物合成
    Flavonoid biosynthesis
    ko00941 查尔酮异构酶
    chalcone isomerase
    CHI 11
    查尔酮合成酶
    Chalcone synthase
    CHS 5
    柚皮素3-双加氧酶
    Naringenin 3-dioxygenase
    F3H 4
    二氢黄酮醇4-还原酶
    Dihydroflavonol 4-reductase
    DFR 1
    花青素合成酶
    Anthocyanidin synthase
    ANS 2
    异黄酮代谢通路
    Isoflavone metabolic pathway
    ko00943 2-羟基异黄酮脱水酶
    2-hydroxyisoflavanone dehydratase
    HIDH 6
    4’-甲氧基异黄酮2’-羟化酶
    4'-methoxyisoflavone 2'-hydroxylase
    CYP81E 5
    异黄酮7-O-葡萄糖苷-6’’-O-丙二酰基转移酶
    isoflavone 7-O-glucoside-6’-O-malonyltransferase
    IF7MAT 5
    黄酮和黄酮醇的生物合成
    Flavone and flavonol biosynthesis
    ko00944 黄酮醇3-O-葡萄糖基转移酶
    Flavonol 3-O-glucosyltransferase
    F3G 1
    黄酮醇-3-O-葡萄糖苷L-鼠李糖基转移酶
    Flavonol-3-O-glucoside L-rhamnosyltransferase
    F3GL 2
    类黄酮3’-单加氧酶
    Flavonoid 3'-monooxygenase
    CYP75B1 6
    下载: 导出CSV
  • [1] 中国科学院中国植物志编辑委员会. 中国植物志-第五十七卷, 第三分册[M]. 北京: 科学出版社, 1991: 8.
    [2] HUANG Y Z, HUA H X, LI S G, et al. Contact and fumigant toxicities of calamusenone isolated from Acorus gramineus rhizome against adults of Sitophilus zeamais and Rhizopertha Dominica [J]. Insect Science, 2011, 18(2): 181−188. doi: 10.1111/j.1744-7917.2010.01358.x
    [3] 张可凡, 李勇学, 陈瑶, 等. 金钱蒲组织培养再生体系建立的研究 [J]. 种子, 2020, 39(8):86−90,93.

    ZHANG K F, LI Y X, CHEN Y, et al. Studies on establishment of tissue culture regeneration system of Acorus gramineus [J]. Seed, 2020, 39(8): 86−90,93.(in Chinese)
    [4] RAI R, GUPTA A, SIDDIQUI I R, et al. Xanthone glycoside from rhizome of Acorus calamus[J]. Indian Journal of Chemistry, 1999, 38B∶1143-1144.
    [5] 陶宏, 朱恩圆, 王峥涛. 石菖蒲的化学成分 [J]. 中国天然药物, 2006, 4(2):159−160.

    TAO H, ZHU E Y, WANG Z T. Chemical study on the rhizome of Acorus tatarinowii [J]. Chinese Journal of Natural Medicines, 2006, 4(2): 159−160.(in Chinese)
    [6] 陈峰. 菖蒲属植物的化学成分及药理作用 [J]. 世界科学技术(中医药现代化), 2011, 13(6):1013−1017.

    CHEN F. Chemical compositions and pharmacological action of Acorus [J]. World Science and Technology (Modernization of Traditional Chinese Medicine and Materia Medica), 2011, 13(6): 1013−1017.(in Chinese)
    [7] 乔小燕, 马春雷, 陈亮. 植物类黄酮生物合成途径及重要基因的调控 [J]. 天然产物研究与开发, 2009, 21(2):354−360,207.

    QIAO X Y, MA C L, CHEN L. Plant flavonoid biosynthesis pathway and regulation of its important genes [J]. Natural Product Research and Development, 2009, 21(2): 354−360,207.(in Chinese)
    [8] 谭政委, 鲁丹丹, 李磊, 等. 红花类黄酮3-O-糖基转移酶基因CtUF3GT的克隆及功能鉴定 [J]. 药学学报, 2022, 57(8):2543−2551.

    TAN Z W, LU D D, LI L, et al. Identification and characterization of flavonoid 3-O-glycosyltransferase gene CtUF3GT from safflower(Carthamus tinctorius L. ) [J]. Acta Pharmaceutica Sinica, 2022, 57(8): 2543−2551.(in Chinese)
    [9] 孙诗瑶, 王晓丽, 曹子林, 等. 千针万线草根转录组测序及黄酮类化合物合成相关基因挖掘 [J]. 福建农业学报, 2022, 37(8):1008−1015.

    SUN S Y, WANG X L, CAO Z L, et al. Transcriptome sequencing and identification of genes associated with flavonoid biosynthesis in Stellaria yunnanensis roots [J]. Fujian Journal of Agricultural Sciences, 2022, 37(8): 1008−1015.(in Chinese)
    [10] 叶碧欢, 杨阳, 朱杰丽, 等. 基于比较转录组学的多花黄精黄酮类化合物合成基因表达分析 [J]. 食品与生物技术学报, 2022, 41(4):84−92.

    YE B H, YANG Y, ZHU J L, et al. Analysis of genes expression involved in flavonoids biosynthesis in Polygonatum cyrtonema based on comparative transcriptome [J]. Journal of Food Science and Biotechnology, 2022, 41(4): 84−92.(in Chinese)
    [11] 肖恺灵, 张媛媛, 齐致源, 等. 藜蒿总黄酮提取工艺优化及其抗氧化活性研究 [J]. 湖南饲料, 2022(3):32−38.

    XIAO K L, ZHANG Y Y, QI Z Y, et al. Optimization of extraction process of total flavonoids from Artemisia selengensis and its antioxidant activity [J]. Hunan Feed, 2022(3): 32−38.(in Chinese)
    [12] 李长缨, 李东方. 水菖蒲根茎挥发油提取及含量测定 [J]. 现代医药卫生, 2013, 29(6):842,844.

    LI C Y, LI D F. Extraction of volatile oil in rhizome of Acorus calamus L. and its content determination [J]. Journal of Modern Medicine & Health, 2013, 29(6): 842,844.(in Chinese)
    [13] 李娟, 刘清茹, 肖兰, 等. 湖南产石菖蒲和水菖蒲挥发油成分分析和抑菌活性检测 [J]. 中成药, 2015, 37(12):2778−2782.

    LI J, LIU Q R, XIAO L, et al. Composition analysis and antibacterial activity detection of volatile oil from Acorus gramineus and Acorus calamus produced in Hunan Province [J]. Chinese Traditional Patent Medicine, 2015, 37(12): 2778−2782.(in Chinese)
    [14] KIM C S, WINN M D, SACHDEVA V, et al. K-mer clustering algorithm using a MapReduce framework: Application to the parallelization of the Inchworm module of Trinity [J]. BMC Bioinformatics, 2017, 18(1): 467. doi: 10.1186/s12859-017-1881-8
    [15] 赵莹, 杨欣宇, 赵晓丹, 等. 植物类黄酮化合物生物合成调控研究进展 [J]. 食品工业科技, 2021, 42(21):454−463.

    ZHAO Y, YANG X Y, ZHAO X D, et al. Research progress on regulation of plant flavonoids biosynthesis [J]. Science and Technology of Food Industry, 2021, 42(21): 454−463.(in Chinese)
    [16] 王圭垚. 金露梅转录组分析及黄酮类化合物合成关键基因的克隆[D]. 西宁: 青海师范大学, 2023.

    WANG G Y. Transcriptome analysis and cloning of key genes for flavonoid synthesis in Potentilla fruticosa L. [D]. Xining: Qinghai Normal University, 2023. (in Chinese)
    [17] 侯杰, 佟玲, 崔国新, 等. 植物类黄酮3’-羟化酶(F3’H)基因的研究进展 [J]. 植物生理学报, 2011, 47(7):641−647.

    HOU J, TONG L, CUI G X, et al. Research advances of plant flavonoid 3’-hydroxylase(F3’H) gene [J]. Plant Physiology Journal, 2011, 47(7): 641−647.(in Chinese)
    [18] FERRER J L, AUSTIN M B, STEWART C, et al. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids [J]. Plant Physiology and Biochemistry, 2008, 46(3): 356−370. doi: 10.1016/j.plaphy.2007.12.009
    [19] JUN S Y, SATTLER S A, CORTEZ G S, et al. Biochemical and structural analysis of substrate specificity of a phenylalanine ammonia-lyase [J]. Plant Physiology, 2018, 176(2): 1452−1468. doi: 10.1104/pp.17.01608
    [20] 吕思佳, 吴月燕, 贾永红, 等. 云锦杜鹃苯丙氨酸解氨酶基因的克隆及功能分析 [J]. 生物工程学报, 2022, 38(1):374−385.

    LÜ S J, WU Y Y, JIA Y H, et al. Cloning and functional analysis of the phenylalaninammo-nialyase gene from Rhododendron fortunei [J]. Chinese Journal of Biotechnology, 2022, 38(1): 374−385.(in Chinese)
    [21] 熊青, 宋姣敏, 崔萌, 等. 茉莉花JsPAL2基因的克隆与表达分析 [J]. 热带作物学报, 2018, 39(7):1359−1366.

    XIONG Q, SONG J M, CUI M, et al. Cloning and expression analysis of JsPAL2 gene from Jasminum sambac [J]. Chinese Journal of Tropical Crops, 2018, 39(7): 1359−1366.(in Chinese)
    [22] PUNYASIRI P A N, ABEYSINGHE I S B, KUMAR V, et al. Flavonoid biosynthesis in the tea plant Camellia sinensis: Properties of enzymes of the prominent epicatechin and catechin pathways [J]. Archives of Biochemistry and Biophysics, 2004, 431(1): 22−30. doi: 10.1016/j.abb.2004.08.003
    [23] XU B B, LI J N, ZHANG X K, et al. Cloning and molecular characterization of a functional flavonoid 3’-hydroxylase gene from Brassica napus [J]. Journal of Plant Physiology, 2007, 164(3): 350−363. doi: 10.1016/j.jplph.2006.03.001
    [24] 陈建华, 李晓曼, 杨文钰, 等. 植物甲基化类黄酮及其O-甲基转移酶研究进展 [J]. 天然产物研究与开发, 2021, 33(6):1072−1079.

    CHEN J H, LI X M, YANG W Y, et al. Research progress of plant O-methoxide flavonoids and O-methyltransferases [J]. Natural Product Research and Development, 2021, 33(6): 1072−1079.(in Chinese)
    [25] ITOH N, IWATA C, TODA H. Molecular cloning and characterization of a flavonoid-O-methyltransferase with broad substrate specificity and regioselectivity from Citrus depressa [J]. BMC Plant Biology, 2016, 16(1): 180. doi: 10.1186/s12870-016-0870-9
    [26] POLLASTRI S, TATTINI M. Flavonols: Old compounds for old roles [J]. Annals of Botany, 2011, 108(7): 1225−1233. doi: 10.1093/aob/mcr234
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  499
  • HTML全文浏览量:  234
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-06
  • 修回日期:  2023-05-15
  • 网络出版日期:  2023-09-19
  • 刊出日期:  2023-08-28

目录

    /

    返回文章
    返回