• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

马蔺不同花期挥发性成分的GC-MS分析

朱莹 孙俊明 娄倩 陈红武

朱莹,孙俊明,娄倩,等. 马蔺不同花期挥发性成分的GC-MS分析 [J]. 福建农业学报,2023,38(7):792−799 doi: 10.19303/j.issn.1008-0384.2023.07.004
引用本文: 朱莹,孙俊明,娄倩,等. 马蔺不同花期挥发性成分的GC-MS分析 [J]. 福建农业学报,2023,38(7):792−799 doi: 10.19303/j.issn.1008-0384.2023.07.004
ZHU Y, SUN J M, LOU Q, et al. GC-MS Analysis on Volatiles of Iris lactea var. chinensis at Different Flowering Stages [J]. Fujian Journal of Agricultural Sciences,2023,38(7):792−799 doi: 10.19303/j.issn.1008-0384.2023.07.004
Citation: ZHU Y, SUN J M, LOU Q, et al. GC-MS Analysis on Volatiles of Iris lactea var. chinensis at Different Flowering Stages [J]. Fujian Journal of Agricultural Sciences,2023,38(7):792−799 doi: 10.19303/j.issn.1008-0384.2023.07.004

马蔺不同花期挥发性成分的GC-MS分析

doi: 10.19303/j.issn.1008-0384.2023.07.004
基金项目: 北京市公园管理中心科技项目(ZX2019010、ZX2023011)
详细信息
    作者简介:

    朱莹(1973 —),女,硕士,教授级高级工程师,主要从事园林植物栽培及繁育工作,E-mail:873872972@qq.com

    通讯作者:

    陈红武(1970 —),男,硕士,副教授,主要从事观赏植物资源与应用研究,E-mail: ylchhw1971@nwafu.edu.cn)

  • 中图分类号: S682.1+9

GC-MS Analysis on Volatiles of Iris lactea var. chinensis at Different Flowering Stages

  • 摘要:   目的  检测马蔺[Iris lactea var. chinensis(Fisch.) Koidz.]不同花期的挥发性成分,探索其挥发性成分的释放规律,为花香机理研究和育种工作提供理论依据。  方法  以花蕾期、盛花期、衰败期的马蔺花朵为材料,采用顶空固相微萃取结合气相色谱-质谱联用(HS-SPME-GC-MS)分析其挥发性成分。  结果  3个时期共检测出69种化合物,挥发性成分总释放量呈递增趋势,物质种类以酮类、烯烃类、醛类为主,其次为醇类、酯类,而烷烃类、苯环类、含氮化合物含量较少。花蕾期的主要成分是己醛、环己酮、甲基庚烯酮、β-鸢尾酮,盛花期的主要成分是己醛、(−)-β-蒎烯、甲基庚烯酮,衰败期的主要成分是(−)-β-蒎烯、甲基庚烯酮、己醛、苯乙醇、环己酮。正交偏最小二乘判别分析表明3-甲基庚烷、甲基庚烯酮、(−)-β-蒎烯、正己酸乙酯、2-蒎烯、3-蒈烯、芳樟醇、苯乙醇、癸酸乙酯、β-鸢尾酮是马蔺不同花期的差异挥发性成分。香气活力值(Odor activity value,OAV)表明:2-甲氧基-3-仲丁基吡嗪、正己酸乙酯、芳樟醇、壬醛、己醛、反式-2-壬烯醛是马蔺的特征香气成分,其中2-甲氧基-3-仲丁基吡嗪的OAV极显著大于其他化合物(P<0.01),是马蔺的主要呈香物质。  结论  马蔺不同花期的挥发性成分差异明显,衰败期是香气最强的时期,己醛、甲基庚烯酮、环己酮、苯乙醇是马蔺的主要挥发性成分。
  • 图  1  马蔺不同花期的挥发性成分分类

    S1-S3分别表示花蕾期、盛花期、衰败期。

    Figure  1.  Classification of volatiles in I. lactea var. chinensis at flowering stages

    S1-S3: budding, blooming, and decaying stages, respectively.

    图  2  马蔺不同花期的OPLS-DA

    A:得分图;B:置换验证;C:VIP结果,数字编号参考表1

    Figure  2.  OPLS-DA of I. lactea var. chinensis at flowering stages

    A: score plot; B: replacement verification; C: VIP results with codes referred to those on Table 1.

    图  3  马蔺不同花期的香气活力值

    饼状图由内到外依次为S1、S2、S3。数字编号参考表1。

    Figure  3.  OAVs of I. lactea var. chinensis at flowering stages

    S1, S2, and S3 represent flowering stages from inside out on a pie chart. The codes reference table 1.

    表  1  马蔺不同花期的挥发性成分和含量

    Table  1.   Aromatics in I. lactea var. chinensis at flowering stages

    编号
    Code
    保留时间
    Retention time/min
    化合物
    Compound
    含量 Content/(µg·kg−1
    花蕾期 S1盛花期 S2衰败期 S3
    1 4.18 2,3-二甲基戊烷 Pentane, 2,3-dimethyl- 0.06±0.02
    2 4.26 环戊酮 Cyclopentanone 5.24±2.15 a 1.49±0.19 b
    3 4.46 2,5-二甲基己烷 Hexane, 2,5-dimethyl- 1.91±1.52
    4 4.56 1-戊醇1-Pentanol 0.68±0.26 a 2.05±0.81 a 2.52±1.84 a
    5 4.71 2-甲基丁酸甲酯 Butanoic acid, 2-methyl-, methyl ester 0.69±0.15 a 0.99±1.11 a
    6 5.43 己醛 Hexanal 69.55±40.44 a 113.68±37.47 a 127.41±41.84 a
    7 5.89 3-甲基庚烷 Heptane, 3-methyl- 1.56±1.41 b 2.77±3.71 b 19.59±13.82 a
    8 7.02 环己酮 Cyclohexanone 56.82±17.18 a 44.19±28.95 a 71.79±37.74 a
    9 7.29 壬烷 Nonane 2.25±1.32
    10 7.43 环己醇 Cyclohexanol 6.17±8.64 a 1.36±1.83 a
    11 7.53 正己醇 1-Hexanol 3.54±1.50 a 34.05±30.59 a 16.32±27.58 a
    12 8.18 1,2-二甲苯 1,2-Xylene 0.09±0.07 b 0.30±0.29 a
    13 8.52 庚醛 Heptanal 0.75±0.23 a 0.95±0.29 a 2.57±3.84 a
    14 10.35 环己烷基甲醛 Cyclohexanecarboxaldehyde 1.52±1.78 a 2.81±1.47 a
    15 10.46 间乙基甲苯 Benzene, 1-ethyl-3-methyl- 0.47±0.33
    16 11.24 甲基庚烯酮 5-Hepten-2-one, 6-methyl- 53.19±6.64 b 59.20±26.86 b 128.76±35.71 a
    17 11.39 (−)-β-蒎烯 (−)-β-Pinene 142.38±102.90 a 168.58±108.20 a
    18 11.41 月桂烯 β-Myrcene 22.40±15.64 a 30.70±40.27 a
    19 11.5 均三甲苯 Mesitylene 0.12±0.07 b 0.21±0.12 a
    20 11.7 正己酸乙酯 Hexanoic acid, ethyl ester 20.62±11.13 a 4.86±6.50 b
    21 11.74 癸烷 Decane 0.74±0.27 a 2.08±1.53 a
    22 11.85 正辛醛 Octanal 2.56±2.31 a 2.04±0.64 a 2.61±1.47 a
    23 12.54 4-异丙基甲苯 p-Cymene 0.30±0.03
    24 12.69 2-乙基己醇 1-Hexanol, 2-ethyl- 0.57±0.54 a 0.60±0.22 a
    25 12.72 桉叶油醇 Eucalyptol 0.15±0.01
    26 12.94 2-蒎烯 α-Pinene 28.27±15.30 a 35.96±20.04 a
    27 13.17 苯乙醛 Benzeneacetaldehyde 1.86±0.12 b 5.05±1.26 a
    28 13.21 3-蒈烯 3-Carene 14.70±12.33
    29 13.55 萜品烯 γ-Terpinene 0.65±0.16 a 0.56±0.56 a
    30 14.01 顺-α,α-5-三甲基-5-乙烯基四氢化呋喃-2-甲醇 Linalool oxide 0.85±0.39
    31 14.07 1-辛醇 1-Octanol 0.28±0.06
    32 14.31 对二乙苯 Benzene, 1,4-diethyl- 1.57±1.89
    33 14.92 芳樟醇 Linalool 3.82±1.78 b 15.28±3.95 a 17.86±10.53 a
    34 15.06 壬醛 Nonanal 17.90±12.85 a 15.71±4.51 a 24.60±14.64 a
    35 15.33 苯乙醇 Phenethyl alcohol 15.28±5.04 b 32.67±23.32 ab 58.63±41.87 a
    36 15.86 邻甲基苯乙酮 Ethanone, 1-(2-methylphenyl)- 5.51±5.45
    37 16.77 反式-2-壬烯醛 2-Nonenal, (E)- 2.31±0.98
    38 16.89 2-甲氧基-3-仲丁基吡嗪 Pyrazine, 2-methoxy-3-(1-methylpropyl)- 2.56±1.26 a 7.59±2.69 a 10.39±9.60 a
    39 17.15 1-壬醇 1-Nonanol 0.24±0.22 b 0.69±0.41 a
    40 17.76 水杨酸甲酯 Methyl salicylate 7.33±10.37
    41 17.81 辛酸乙酯 Octanoic acid, ethyl ester 1.46±1.54 b 8.78±5.83 a 2.50±1.74 b
    42 17.93 十二烷 Dodecane 0.75±0.04 a 0.63±0.29 a 0.79±0.17 a
    43 18.11 癸醛 Decanal 6.40±3.72 a 3.87±0.67 a 7.42±6.12 a
    44 18.47 β-环柠檬醛 β-Cyclocitral 0.43±0.41 ab 0.10±0.08 b 1.10±0.95 a
    45 19.28 1,3-二叔丁基苯 Benzene, 1,3-bis(1,1-dimethylethyl)- 1.31±1.63 a 0.80±0.88 a 1.65±1.72 a
    46 20.14 (+)-异薄荷醇 (1S,2R,5R)-(+)-Isomenthol 0.05±0.04
    47 20.6 甲基壬基甲酮2-Undecanone 0.38±0.05
    48 20.63 壬酸乙酯 Nonanoic acid, ethyl ester 0.26±0.04
    49 20.98 十一醛 Undecanal 0.25±0.28
    50 21.39 癸酸甲酯 Decanoic acid, methyl ester 1.02±0.49 a 0.88±0.66 a
    51 23.28 癸酸乙酯 Decanoic acid, ethyl ester 5.07±5.04 a 31.26±28.24 a 4.49±2.95 a
    52 23.43 十四烷 Tetradecane 0.42±0.26 a 0.67±0.13 a 0.69±0.28 a
    53 23.69 月桂醛 Dodecanal 0.57±0.50 a 0.06±0.02 b
    54 24.51 异丁酸苯乙酯 Benzylcarbinol isobutyrate 1.46±1.21
    55 24.63 香叶基丙酮 Geranyl acetone 1.55±2.32
    56 24.76 石竹烯 Caryophyllene 0.48±0.26
    57 25.67 异戊酸苯乙酯 β-Phenylethyl isovalerate 1.13±1.08 a 12.25±3.92 a 10.76±13.15 a
    58 25.79 2-十三烷酮 2-Tridecanone 0.54±0.18 a 0.38±0.00 b
    59 25.88 正十五烷 Pentadecane 0.93±0.95 a 0.29±0.15 b 0.32±0.12 b
    60 26 β-鸢尾酮 β-Irone 38.42±10.40
    61 26.12 十三醛 Tridecanal 0.32±0.29 a 0.39±0.45 a
    62 26.37 月桂酸甲酯 Dodecanoic acid, methyl ester 1.19±0.53 a 0.74±0.10 ab 0.50±0.33 b
    63 27.64 月桂酸乙酯 Dodecanoic acid, ethyl ester 3.21±1.46 a 13.55±12.97 a 2.17±2.34 a
    64 27.76 正十六烷 Hexadecane 1.59±2.09 a 0.66±0.11 a 0.78±0.20 a
    65 27.98 肉豆蔻醛 Tetradecanal 0.47±0.45 a 0.17±0.10 a
    66 28.87 豆蔻醇 1-Tetradecanol 0.66±0.19
    67 29.28 正十七烷 Heptadecane 1.40±1.96 a 0.43±0.04 a 0.62±0.29 a
    68 30.49 十四酸乙酯 Tetradecanoic acid, ethyl ester 0.28±0.22 a 0.49±0.54 a 0.15±0.08 a
    69 32.83 十六酸乙酯 Hexadecanoic acid, ethyl ester 0.40±0.34 a 0.21±0.02 a
    根据保留时间对物质进行编号“1~69”。“—”表示未鉴定出,同一行中不同的小写字母表示在0.05水平上差异显著。
    1-69: codes for compounds exited at different analytical retention time. "—" indicates not identified. Data with different lowercase letters on same line indicate significant difference at 0.05 level.
    下载: 导出CSV
  • [1] 陈秀中, 王琪. 中华民族传统赏花理论探微 [J]. 北京林业大学学报, 2001, 23(S1):16−21.

    CHEN X Z, WANG Q. Studies on Chinese principles in appreciating traditional flowers [J]. Journal of Beijing Forestry University, 2001, 23(S1): 16−21.(in Chinese)
    [2] PICHERSKY E, GERSHENZON J. The formation and function of plant volatiles: Perfumes for pollinator attraction and defense [J]. Current Opinion in Plant Biology, 2002, 5(3): 237−243. doi: 10.1016/S1369-5266(02)00251-0
    [3] 许玉凤, 史国旭, 金罡, 等. 鸢尾属植物马蔺(Iris lactea Pall. var. chinensis)的研究进展 [J]. 种子, 2011, 30(4):67−70. doi: 10.3969/j.issn.1001-4705.2011.04.018

    XU Y F, SHI G X, JIN G, et al. Recent progresses in the research of iris lactea pall. var. chinensis [J]. Seed, 2011, 30(4): 67−70.(in Chinese) doi: 10.3969/j.issn.1001-4705.2011.04.018
    [4] 刘玉艳, 赵会芝, 伍敏华, 等. 干旱胁迫下马蔺与高羊茅的生理反应比较 [J]. 河北农业大学学报, 2008, 31(4):41−46. doi: 10.3969/j.issn.1000-1573.2008.04.008

    LIU Y Y, ZHAO H Z, WU M H, et al. Physiological responses of Iris lactea var. chinensis and Festuca arundinaces to drought stress [J]. Journal of Agricultural University of Hebei, 2008, 31(4): 41−46.(in Chinese) doi: 10.3969/j.issn.1000-1573.2008.04.008
    [5] 袁泽斌. 马蔺对混合盐胁迫的响应及盐碱土改良效果的研究[D]. 苏州: 苏州大学, 2020

    YUAN Z B. Study on the response of iris lactea var. chinensis to mixed saline stress and the improvement effect of saline-alkali soil[D]. Suzhou: Soochow University, 2020. (in Chinese)
    [6] GOODRICH K R, RAGUSO R A. The olfactory component of floral display in Asimina and Deeringothamnus (Annonaceae) [J]. The New Phytologist, 2009, 183(2): 457−469. doi: 10.1111/j.1469-8137.2009.02868.x
    [7] ASCRIZZI R, FLAMINI G. Iris lutescens on serpentine soil: Volatile emission profiles in different organs of its two colour morphs [J]. Plant Biosystems - an International Journal Dealing With All Aspects of Plant Biology, 2021, 155(2): 406−414. doi: 10.1080/11263504.2020.1756973
    [8] WANG H, CONCHOU L, BESSIÈRE J M, et al. Flower color polymorphism in Iris lutescens (Iridaceae): Biochemical analyses in light of plant-insect interactions [J]. Phytochemistry, 2013, 94: 123−134. doi: 10.1016/j.phytochem.2013.05.007
    [9] YUAN Y, SUN Y, ZHAO Y C, et al. Identification of floral scent profiles in bearded irises [J]. Molecules, 2019, 24(9): 1773. doi: 10.3390/molecules24091773
    [10] ZITO P, ROSSELLI S, BRUNO M, et al. Floral scent in Iris planifolia (Iridaceae) suggests food reward [J]. Phytochemistry, 2019, 158: 86−90. doi: 10.1016/j.phytochem.2018.11.011
    [11] 孔兰, 樊荣辉, 林榕燕, 等. 杂交兰花色花香生物合成途径的转录组分析 [J]. 西北植物学报, 2021, 41(1):86−95.

    KONG L, FAN R H, LIN R Y, et al. Transcriptome analysis of pigment biosynthesis and floral scent biosynthesis in Cymbidium hybrid [J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(1): 86−95.(in Chinese)
    [12] 程玉芬, 张志伟, 贾永霞, 等. 对叶榕花序不同发育时期气味成分的变化及其对传粉者的吸引作用 [J]. 热带亚热带植物学报, 2019, 27(3):299−308. doi: 10.11926/jtsb.4016

    CHENG Y F, ZHANG Z W, JIA Y X, et al. Odour composition variation at different stages of Ficus hispida inflorescence and the attraction to pollinators [J]. Journal of Tropical and Subtropical Botany, 2019, 27(3): 299−308.(in Chinese) doi: 10.11926/jtsb.4016
    [13] 徐鑫鑫, 秦民坚. 马蔺根的化学成分研究 [J]. 药学与临床研究, 2010, 18(3):260−261,264.

    XU X X, QIN M J. Chemical constituents in the roots of iris lactea Pall. var. Chinensis [J]. Pharmaceutical and Clinical Research, 2010, 18(3): 260−261,264.(in Chinese)
    [14] YUN J, CUI C J, ZHANG S H, et al. Use of headspace GC/MS combined with chemometric analysis to identify the geographic origins of black tea [J]. Food Chemistry, 2021, 360: 130033. doi: 10.1016/j.foodchem.2021.130033
    [15] VAN GEMERT L J. Compilations of odour threshold values in air, water and other media[M]. Boelens Aroma Chemical Information Service, 2003.
    [16] 李程勋, 李爱萍, 徐晓俞, 等. 百香果果皮精油提取及香气成分分析 [J]. 福建农业学报, 2019, 34(4):495−501.

    LI C X, LI A P, XU X Y, et al. Extraction and aromatics of essential oil from passion fruit peels [J]. Fujian Journal of Agricultural Sciences, 2019, 34(4): 495−501.(in Chinese)
    [17] 周晨晨, 范俊俊, 谭瑞楠, 等. ‘白兰地’海棠不同花期与不同花器官的香气成分分析 [J]. 福建农业学报, 2022, 37(8):1038−1047.

    ZHOU C C, FAN J J, TAN R N, et al. Aromatics in floral organs of Malus Brandywine during different flowering stages [J]. Fujian Journal of Agricultural Sciences, 2022, 37(8): 1038−1047.(in Chinese)
    [18] 范俊俊. 观赏海棠花朵香型分析与判别模型构建[D]. 南京: 南京林业大学, 2019.

    FAN J J. Analysis and discrimination model construction of flower scent intensity type for flowering crabapple[D]. Nanjing: Nanjing Forestry University, 2019. (in Chinese)
    [19] 肖文芳, 李佐, 陈和明, 等. 基于HS-SPME-GC-MS的4种不同蝴蝶兰种质资源花朵挥发性成分比较分析 [J]. 中国农业大学学报, 2021, 26(3):38−52.

    XIAO W F, LI Z, CHEN H M, et al. Analysis of volatile components in flowers of four different Phalaenopsis germplasm resources by headspace solid phase microextraction coupled with gas chromatography-mass spectrometry [J]. Journal of China Agricultural University, 2021, 26(3): 38−52.(in Chinese)
    [20] 强文彦, 孟庆然, 张志国, 等. 萱草不同品种花瓣挥发性物质的HS-SPME-GC-MS分析 [J]. 园艺学报, 2023, 50(1):116−130.

    QIANG W Y, MENG Q R, ZHANG Z G, et al. Analysis of petal volatile components among different Hemerocallis cultivars based on HS-SPME-GC-MS [J]. Acta Horticulturae Sinica, 2023, 50(1): 116−130.(in Chinese)
    [21] 周小理, 朱思怡, 周一鸣, 等. 不同萱草杂交品种花部风味物质分析[J/OL]. 分子植物育种: 1−12. [2023-03-12]. http://kns.cnki.net/kcms/detail/46.1068.S.20221015.1117.004.html.

    ZHOU X L, ZHU S Y, ZHOU Y M, et al. Analysis of flavor substances in flowers of different hybrids of hemerocallis [J]. Molecular Plant Breeding: 1−12. [2023-03-12]. http://kns.cnki.net/kcms/detail/46.1068.S.20221015.1117.004.html (in Chinese)
    [22] KNUDSEN J T, ERIKSSON R, GERSHENZON J, et al. Diversity and distribution of floral scent [J]. The Botanical Review, 2006, 72(1): 1. doi: 10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2
    [23] 徐瑾, 李莹莹, 郑成淑, 等. 菊花不同花期及花序不同部位香气成分和挥发研究 [J]. 西北植物学报, 2012, 32(4):722−730.

    XU J, LI Y Y, ZHENG C S, et al. Studies of aroma compounds in Chrysanthemum in different florescence and inflorescence parts and aroma releasing [J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(4): 722−730.(in Chinese)
    [24] 邹晶晶, 蔡璇, 曾祥玲, 等. 桂花不同品种开花过程中香气活性物质的变化 [J]. 园艺学报, 2017, 44(8):1517−1534.

    ZOU J J, CAI X, ZENG X L, et al. Changes of aroma-active compounds in different cultivars of Osmanthus fragrans during flowering [J]. Acta Horticulturae Sinica, 2017, 44(8): 1517−1534.(in Chinese)
    [25] 辛晓栋, 温欣宇, 降佳君, 等. 基于非靶向代谢组学的槟榔花香关键代谢物的筛选[J]. 热带作物学报, 2023,44(7):1328−1336.

    XIN X D, WEN X Y, XIE J J, et al. Screening of key metabolites of areca flower fragrance based on non-targeted metabonomics [J]. Chinese Journal of Tropical Crops, 2023,44(7):1328−1336. (in Chinese)
    [26] WOO J, YANG H, YOON M, et al. 3-carene, a phytoncide from pine tree has a sleep-enhancing effect by targeting the GABAA-benzodiazepine receptors [J]. Experimental Neurobiology, 2019, 28(5): 593−601. doi: 10.5607/en.2019.28.5.593
    [27] SCHIESTL F P. The evolution of floral scent and insect chemical communication [J]. Ecology Letters, 2010, 13(5): 643−656. doi: 10.1111/j.1461-0248.2010.01451.x
    [28] LILLEY B D, BREWER J H. The selective antibacterial action of phenylethyl alcohol [J]. Journal of the American Pharmaceutical Association (Scientific edition), 1953, 42(1): 6−8. doi: 10.1002/jps.3030420103
    [29] ROSS G N, FALES H M, LLOYD H A, et al. Novel chemistry of abdominal defensive glands of nymphalid butterfly Agraulis vanillae [J]. Journal of Chemical Ecology, 2001, 27(6): 1219−1228. doi: 10.1023/A:1010372114144
    [30] ZERINGÓTA V, PEREIRA-JUNIOR R A, SARRIA A L F, et al. Identification of a non-host semiochemical from miniature pinscher, Canis lupus familiaris, that repels Rhipicephalus sanguineus sensu lato (Acari: Ixodidae) [J]. Ticks and Tick-Borne Diseases, 2021, 12(1): 101582. doi: 10.1016/j.ttbdis.2020.101582
    [31] CARDOZA Y J, ALBORN H T, TUMLINSON J H. In vivo volatile emissions from peanut plants induced by simultaneous fungal infection and insect damage [J]. Journal of Chemical Ecology, 2002, 28(1): 161−174. doi: 10.1023/A:1013523104853
    [32] VENCL F V, OTTENS K, DIXON M M, et al. Pyrazine emission by a tropical firefly: An example of chemical aposematism? [J]. Biotropica, 2016, 48(5): 645−655. doi: 10.1111/btp.12336
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  511
  • HTML全文浏览量:  194
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-13
  • 修回日期:  2023-03-15
  • 网络出版日期:  2023-07-06
  • 刊出日期:  2023-07-28

目录

    /

    返回文章
    返回