Effects of Sowing Time and Ambient Temperature after Heading on Agronomic Traits and Grain Quality/Flavonoid Content of Ziliangyou 737
-
摘要:
目的 通过分期播种紫两优737,分析播期和灌浆期温度变化对紫两优737农艺性状、品质和类黄酮等含量的影响,为紫两优737的优质高产栽培提供技术支持。 方法 以紫两优737为材料,分期播种和种植,对紫两优737始穗后7、10、14、21 d环境温度变化和成熟期的农艺性状、品质及类黄酮含量等进行比较分析,并对相关关系进行回归分析。 结果 随着播期的推迟,有效积温EAT(Effective accumulated temperature)逐渐降低;紫两优737的株高降低,穗长随着播期的推迟先增加后逐渐减小。结实率和产量先降后升。始穗后10 d内的高温时数∑H(High temperature hours)、时热积温∑Th(Thermal accumulated temperature hour)严重影响水稻结实率;始穗后14 d内的日均温TA(Average temperature )对结实率也影响很大,当TA为31.645 ℃时,结实率最低,但是随着温度的升高,影响趋缓;始穗后21 d的日热积温∑Td(Daily thermal accumulated temperature)会造成水稻空瘪粒从而导致结实率下降。维生素含量与分期播种无明显相关,维生素绝对值较高的是VB5、VB6和VB2。随着播期的推迟,直链淀粉含量直线下降,直链淀粉含量受∑H、∑Td、∑Th影响,温度与直链淀粉含量显著正相关,后期高温对直链淀粉含量影响趋缓。在福建晚稻地区,TA控制在26.84 ℃以下,对于保持糯稻的品质较好;花青素和黄酮含量随播期推迟逐渐增加;随着播期推迟,种皮颜色由棕红色变为深黑色,始穗后14 d至成熟,∑Td、TA和EAT对二者影响显著,温度的升高直接导致种皮变为棕红色,二者含量随之下降。 结论 在确保安全齐穗的基础上,生产中可以调整紫两优737播期,抽穗灌浆期TA控制在26.84 ℃以下,使EAT控制在2336.69~2390 ℃·d,福建晚稻对应播期6月15~25日可使产量和品质兼顾。紫两优737要合理安排在高海拔地区种植或者抽穗灌浆期TA较低的地区。 Abstract:Objective Effects of seed sowing time and ambient temperature at grain-filling on the agronomic traits and rice quality/flavonoid content of Ziliangyou 737 were analyzed for improved the cultivation. Method Seeds of Ziliangyou 737 were sowed at intervals to vary the growing period and harvest season for studying the effects of sowing time and atmosphere temperature at grain-filling stage on the agronomic traits of the plants and quality and flavonoid content of the rice. In 7, 10, 14, and 21 d after start of grain-filling as well as at grain maturity, data were collected for a statistical analysis on the rice crops sowed on various dates. Result Under a shorter growing season, the plant height declined; the spike length became longer, then shorter; the seed setting rate and yield reduced, then increased; and the effective accumulated temperature (EAT) decreased gradually. The ∑H (High temperature hours) and ∑Th (Thermal accumulated temperature hour) within 10 d after grain-filling significantly affected the seeding rate of the mature seeds, so did the TA (Average temperature) within 14 d after grain-filling. When TA was 31.645 ℃, the seeding rate reached the lowest level, but the effect was lessened with increasing ambient temperature as the grain matured. High ∑Td (Daily thermal accumulated temperature) at 21 d after initial filling resulted in higher rate of failed grain-filling which translated to a lower seeding rate. VB5, VB6, and VB2 were the vitamins in the greatest amounts found in the grains, but no significant correlation was found between vitamin contents and sowing time. Late sowing caused linear decline in grain amylose due to decreased ∑H, ∑Td, and ∑Th. High temperature affected the amylose content positively, but the effect was less at the late filling stage. Controlling TA at a level below 26.84 ℃ could help maintain the quality of the waxy rice crop sowed in late season in Fujian. The contents of anthocyanins and flavonoids correlated to the sowing time as shown by the color of seed hull that changed from reddish brown to dark black. From 14 d after grain-filling till maturity, ∑Td, TA, and EAT became extremely significant factors in the color change as a rising temperature mitigated anthocyanins and flavonoids. Conclusion Scheduling of Ziliangyou 737 sowing significantly affected the growth and grain quality of the waxy rice. By controlling a TA less than 26.84 ℃ and an EAT at 2336.69–2390℃·d during grain-filling, crop yield and rice quality could be maximized. In Fujian, sowing between June 15 and 25 would thus be desirable. For other localities, cultivation in areas at high altitude or those that provide low TA at grain-filling stage would be recommended for Ziliangyou 737. -
Key words:
- Ziliangyou 737 /
- flavonoid /
- temperature /
- sowing time /
- grain quality
-
表 1 不同播期处理的温度因子
Table 1. Temperatures indices of different sowing time
指标
Index记录时间
Recording timeⅠ期
Stage ⅠⅡ期
Stage ⅡⅢ期
Stage ⅢⅣ期
Stage ⅣⅤ期
Stage ⅤⅥ期
Stage Ⅵ高温时数 ∑H/h 始穗后7 d 37.67 56.67 51.33 4.00 8.67 22.67 始穗后10 d 51.00 82.33 63.33 16.00 18.67 42.00 始穗后14 d 80.00 113.00 65.33 20.67 19.00 47.33 始穗后21 d 137.67 164.33 82.67 35.00 41.67 47.33 成熟期 259.67 190.00 139.00 82.33 66.33 47.33 时热积温 ∑Th/(℃·h) 始穗后7 d 50.09 75.13 69.13 2.40 4.90 25.18 始穗后10 d
68.47 108.36 82.70 5.80 10.60 50.17 始穗后14 d 109.78 155.34 84.8 17.26 10.70 57.29 始穗后21 d 120.40 164.47 91.66 21.06 16.30 57.29 成熟期 329.11 165.67 156.83 81.55 67.99 57.29 日热积温 ∑Td/(℃·d) 始穗后7 d 7.33 6.35 6.73 4.52 5.40 5.54 始穗后10 d 10.30 9.60 9.85 8.57 9.90 7.53 始穗后14 d 13.75 13.67 12.05 11.27 10.00 9.45 始穗后21 d 20.24 20.52 20.72 18.57 15.54 9.45 成熟期 51.69 39.99 35.55 28.02 19.45 9.45 日平均气温 TA/℃ 始穗后7 d 30.97 33.01 32.13 28.55 28.63 29.09 始穗后10 d 30.55 32.99 31.69 28.76 28.61 29.84 始穗后14 d 30.99 32.97 30.77 28.74 28.30 29.11 始穗后21 d 31.69 32.37 30.12 28.59 28.56 26.40 成熟期 30.67 30.20 29.53 28.47 25.62 23.18 表 2 不同播期紫两优737生育期及积温
Table 2. Growth period and EAT of Ziliangyou 737 under varied sowing times
时期
Stage播期
Seeding time/
(月-日)始穗期
Initial heading time/
(月-日)成熟期
Maturation time/
(月-日)始穗前有效积温
EAT before initial heading/
(℃·d)抽穗灌浆期有效积温
EAT of initial heading to maturation/
(℃·d)有效积温
EAT/
(℃·d)Ⅰ期 Stage Ⅰ 05-15 07-30 09-20 1358.18 1058.85 2417.03 Ⅱ期 Stage Ⅱ 05-25 08-12 09-26 1520.43 891.85 2412.28 Ⅲ期 Stage Ⅲ 06-05 08-23 10-04 1597.28 737.28 2393.92 Ⅳ期 Stage Ⅳ 06-15 09-01 10-09 1643.78 684.30 2328.08 Ⅴ期 Stage Ⅴ 06-25 09-11 10-28 1664.35 698.58 2362.93 Ⅵ期 Stage Ⅵ 07-05 09-25 11-09 1719.00 556.50 2275.50 表 3 紫两优737不同播期下农艺性状比较
Table 3. Agronomic traits of Ziliangyou 737 under varied sowing times
时期
Stage株高
Plant height/
cm有效穗
Effective
spikes穗长
Spike length/
cm穗均粒数
Grain number
per spike千粒重
1000-grain
weight/g结实率
Seeding rate/
%产量
Yield/
(kg·hm−2)Ⅰ期 Stage Ⅰ 116.70±0.42 a 12.95±0.39 a 24.37±0.39 b 216.34±6.45 a 23.67±0.04 c 72.82±0.05 cd 10900.46±141.42 a Ⅱ期 Stage Ⅱ 117.90±0.71 a 11.33±0.17 b 25.09±0.17 a 227.67±18.96 a 24.72±0.24 ab 69.96±2.91 de 9425.31±318.20 bc Ⅲ期 Stage Ⅲ 118.30±0.99 a 11.60±0.28 b 25.05±0.28 a 230.95±18.94 a 25.27±0.22 a 64.67±2.82 e 8725.43±35.36 c Ⅳ期 Stage Ⅳ 109.30±1.27 b 11.27±0.11 b 24.71±0.11 ab 238.13±25.07 a 24.27±0.40 b 81.09±1.36 b 9675.22±601.04 abc Ⅴ期 Stage Ⅴ 108.30±0.42 b 12.25±0.26 ab 23.38±0.26 c 202.44±0.3 ab 24.24±0.01 bc 88.29±4.89 a 10600.32±777.82 ab Ⅵ期 Stage Ⅵ 106.00±1.13 c 12.25±0.13 ab 23.26±0.13 c 169.67±22.99 b 24.62±0.28 b 78.18±2.57 bc 9275.24±954.59 bc 表中同列数据后不同小写字母表示差异显著(P<0.05)。下同。
Data with different lowercase letters on the same line indicate significant difference (P<0.05). Same for below.表 4 紫两优737不同处理下维生素、花青素和黄酮含量分析
Table 4. Vitamin, anthocyanin, and flavonoids contents in grains of Ziliangyou 737 under different treatments
时期
Stage盐酸硫胺素
VB1/
(ng·g−1)核黄素
VB2/
(ng·g−1)烟酰胺
VB3/
(ng·g−1)腺嘌呤
VB4/
(ng·g−1)泛酸
VB5/
(ng·g−1)吡哆醇
VB6 /
(ng·g−1)维生素 H
VB7/
(ng·g−1)花青素
Anthocyanin/
(mg·g−1)黄酮
Flavonoids/
(mg·g−1)Ⅰ期 Stage Ⅰ 107.75±5.62 b 411.02±11.76 b 200.91±1.70 a 231.99±9.13 e 7393.42±74.59 e 519.35±7.09 b 1.93±0.20 a 0.66±0.01 e 4.05±0.07 d Ⅱ期 Stage Ⅱ 109.01±0.55 b 355.65±4.10 d 122.94±0.18 d 230.65±2.42 e 7920.29±58.71 d 449.31±4.54 c 1.64±0.11 bcd 1.15±0.02 d 4.86±0.05 c Ⅲ期 Stage Ⅲ 124.02±2.86 a 318.68±1.97 f 101.22±1.23 e 304.00±0.63 c 9527.39±13.60 a 520.39±3.93 b 1.53±0.15 cd 1.11±0.01 d 4.03±0.02 d Ⅳ期 Stage Ⅳ 98.53±3.89 c 337.57±3.97 e 84.80±1.39 f 323.33±6.66 b 9252.41±105.79 b 514.27±4.30 b 1.36±0.25 d 1.60±0.02 c 5.09±0.03 b Ⅴ期 Stage Ⅴ 71.67±1.00 d 393.67±8.01 c 127.66±0.81 c 271.21±1.07 d 6426.90±33.01 f 658.47±0.18 a 1.85±0.05 ab 3.48±0.06 b 4.88±0.06 c Ⅵ期 Stage Ⅵ 75.90±2.40 d 485.62±1.89 a 147.69±1.85 b 394.52±3.71 a 8367.48±26.14 c 665.49±0.82 a 1.67±0.12 abc 5.68±0.09 a 6.01±0.07 a 表 5 不同播期紫两优737稻米品质分析
Table 5. Grain quality of Ziliangyou 737 under varied sowing times
时期
Stage长度
Length/mm糙米率
Brown rice rate/%精米率
Milled rice rate/%整精米率
Inferior head rice rate/%碱消值
Alkali spreading value直链淀粉
Amylose content/%Ⅰ期 Stage Ⅰ 6.15±0.07 b 78.80±0.14 abc 69.65±1.06 a 56.95±2.76 ab 6.00±0.00 b 4.10±0.28 a Ⅱ期Stage Ⅱ 6.20±0.00 b 78.90±0.00 ab 65.10±1.98 bc 45.40±7.21 c 6.00±0.00 b 3.10±0.28 b Ⅲ期 Stage Ⅲ 6.30±0.00 a 78.15±0.07 d 66.30±0.28 b 60.30±0.28 a 6.25±0.07 a 2.65±0.35 bc Ⅳ期 Stage Ⅳ 6.20±0.00 b 78.55±0.07 bcd 65.20±0.99 bc 51.85±0.64 bc 6.15±0.21 ab 2.25±0.21 cd Ⅴ期 Stage Ⅴ 6.20±0.00 b 79.05±0.07 a 62.10±1.56 bc 31.45±0.21 d 6.20±0.00 ab 1.70±0.28 de Ⅵ期 Stage Ⅵ 6.20±0.00 b 78.40±0.42 cd 67.65±1.20 ab 62.45±1.06 a 6.25±0.07 a 1.10±0.14 e 表 6 不同温度因子与结实率的关系
Table 6. Correlation between temperature and seeding rate
因素x
Factors x关系式
Relation expression决定系数
Decision coefficient显著性
Significance序号
Serial高温时数(始穗后7 d)∑H(heading for 7 days)/h y=86.652×0.995x R2=0.821 P<0.05 1A 高温时数(始穗后10 d)∑H(heading for 10 days)/h y=89.245×0.996x R2=0.726 P<0.05 1B 时热积温(始穗后7 d)∑Th(heading for 7 days)/(℃·h) y=85.269×0.997x R2=0.850 P<0.01 1C 时热积温(始穗后10 d)∑Th(heading for 10 days)/(℃·h) y=85.829×0.998x R2=0.746 P<0.05 1D 日热积温(始穗后21 d)∑Td(heading for 21 days)/(℃·d) y=-0.534x2+15.196x−17.897 R2=0.956 P<0.01 1E 日均温(始穗后7 d)TA(heading for 7 days)/℃ y=357.745×0.95x R2=0.780 P<0.05 1F 日均温(始穗后10 d)TA(heading for 10 days)/℃ y=451.521×0.945x R2=0.743 P<0.05 1G 日均温(始穗后14 d)TA(heading for 14 days)/℃ y=1.759x2−111.328x+1828.979 R2=0.956 P<0.01 1H y 表示结实率。
y means seeding rate.表 7 不同温度因子与直链淀粉含量的关系
Table 7. Correlation between temperature and grain amylose content
因素x
Factors x关系式
Relation expression决定系数
Decision coefficient显著性
Significance序号
Serial时热积温(始穗到成熟) ∑Th(heading to maturation)/(℃·h) L=−2.886×10−5x2+0.021x+0.336 R2=0.937 P<0.05 2A 高温时数(始穗到成熟) ∑H(heading to maturation)/h L=−1.635×10−5x2+0.018x+0.562 R2=0.956 P<0.01 2B 日热积温(始穗到成熟) ∑Td(heading to maturation)/(℃·d) L=−0.001x2+0.039x+0.709 R2=0.998 P<0.01 2C 日均温(始穗到成熟) TA(heading to maturation)/℃ L=0.047x2−2.163x+26.197 R2=0.922 P<0.05 2D 有效积温(播种到始穗) EAT(seeding to heading)/(℃·d) L=−1.499×10−5x2+0.038x−19.842 R2=0.986 P<0.01 2E 有效积温(始穗到成熟) EAT(heading to maturation )/(℃·d) L=−8.931×10−7x2+0.007x−2.671 R2=0.962 P<0.01 2F 有效积温 EAT/(℃·d) L=3.549×10−6x2−17.378 R2=0.752 P<0.01 2G 式中L 表示直链淀粉含量。
L means amylose content.表 8 不同温度因子与花青素含量的关系式
Table 8. Correlation between temperature and anthocyanin content
因素 x
Factor x关系式
Relation expression决定系数
Decision coefficient显著性
Significance序号
Serial日热积温(始穗后14 d)∑Td(heading for 14 days)/(℃·d) AY=0.412x2−10.587x+68.578 R2=0.972 P<0.01 3A 日热积温(始穗后21 d)∑Td(heading for 21 days)/(℃·d) AY=-0.006x2−0.261x+8.693 R2=0.978 P<0.01 3B 日热积温(始穗到成熟) ∑Td(heading to maturation)/(℃·d) AY=0.004x2−0.336x+8.524 R2=0.988 P<0.01 3C 日均温(始穗后21 d)TA(heading for 21 days)/℃ AY=0.189x2−11.897x+188.184 R2=0.904 P<0.05 3D 日均温(始穗到成熟)TA(heading to maturation)/℃ AY=0.049x2−3.187x+52.714 R2=0.996 P<0.01 3E 有效积温(播种到始穗)EAT(seeding to heading)/(℃·d) AY=7.889×10−5x2−0.231x+168.530 R2=0.882 P<0.05 3F 有效积温(始穗到成熟)EAT(heading to maturation)/(℃·d) AY=41.701×0.996x R2=0.812 P<0.05 3G 有效积温 EAT/(℃·d) AY=8.439×1012×0.998x R2=0.723 P<0.05 3H AY表示花青素含量。
AY: anthocyanin.表 9 不同温度因子与黄酮含量的关系
Table 9. Correlation between temperature and flavonoid content
因素 x
Factor x关系式
Relation expression决定系数
Decision coefficient显著性
Significance序号
Serial日热积温(始穗后21 d) ∑Td(heading for 21 days)/(℃·d) FY=7.880×0.972x R2=0.697 P<0.05 4A 日热积温(始穗至成熟) ∑Td(heading to maturation)/(℃·d) FY=6.158×0.992x R2=0.687 P<0.05 4B 有效积温 EAT/(℃·d) FY=1240.327×0.998x R2=0.736 P<0.05 4C FY表示黄酮含量。
FY: flavonoids.表 10 维生素、花青素及黄酮含量相关性分析
Table 10. Correlation among vitamin, anthocyanin, and flavonoids
指标
Index盐酸硫胺素
VB1核黄素
VB2烟酰胺
VB3腺嘌呤
VB4泛酸
VB5吡哆醇
VB6维生素 H
VB7花青素
Anthocyanin黄酮
Flavonoids盐酸硫胺素 VB1 1.00 核黄素 VB2 −0.69 1.00 烟酰胺 VB3 −0.12 0.64 1.00 腺嘌呤 VB4 −0.42 0.43 −0.29 1.00 泛酸 VB5 0.57 −0.43 −0.57 0.47 1.00 吡哆醇 VB6 −0.85* 0.70 0.16 0.59 −0.39 1.00 维生素 H VB7 −0.30 0.53 0.86* −0.45 −0.86* 0.33 1.00 花青素 Anthocyanin −0.84* 0.77 0.04 0.75 −0.20 0.88* 0.10 1.00 黄酮 Flavonoids −0.74 0.62 −0.16 0.71 −0.01 0.55 −0.21 0.85* 1.00 * 表示相关性显著。
* indicate significant difference. -
[1] 孙玲, 张名位, 池建伟, 等. 黑米的抗氧化性及其与黄酮和种皮色素的关系 [J]. 营养学报, 2000, 22(3):246−249.SUN L, ZHANG M W, CHI J W, et al. The antioxidation activity of black rice and its correlation with flavonoids and pigment [J]. Acta Nutrimenta Sinica, 2000, 22(3): 246−249.(in Chinese) [2] 张名位, 郭宝江, 池建伟, 等. 不同品种黑米的抗氧化作用及其与总黄酮和花色苷含量的关系 [J]. 中国农业科学, 2005, 38(7):1324−1331.ZHANG M W, GUO B J, CHI J W, et al. Antioxidations and their correlations with total flavonid and anthocyanin contents in different black rice varieties [J]. Scientia Agricultura Sinica, 2005, 38(7): 1324−1331.(in Chinese) [3] 杨加珍, 曾亚文, 杜娟, 等. 紫黑米种质功能成分综合研究与利用 [J]. 生物技术进展, 2015, 5(1):47−53.YANG J Z, ZENG Y W, DU J, et al. Comprehensive utilization and research of functional components of purple black rice germplasm [J]. Current Biotechnology, 2015, 5(1): 47−53.(in Chinese) [4] 郑建华, 王洪飞, 周鹏, 等. 籼型紫黑糯稻光温敏核不育系紫392S选育与应用 [J]. 杂交水稻, 2021, 36(6):13−17.ZHENG J H, WANG H F, ZHOU P, et al. Breeding and application of PTGMS line Zi392S of indica-type glutinous rice with purple-black grains [J]. Hybrid Rice, 2021, 36(6): 13−17.(in Chinese) [5] 黄庭旭, 郑建华, 游晴如, 等. 两系特种稻新品种紫两优737的选育与应用 [J]. 福建农业学报, 2020, 35(11):1171−1178.HUANG T X, ZHENG J H, YOU Q R, et al. Breeding and application of new two-line special rice variety ziliangyou 737 [J]. Fujian Journal of Agricultural Sciences, 2020, 35(11): 1171−1178.(in Chinese) [6] 王洪飞, 周鹏, 涂诗航, 等. 两系杂交紫糯稻紫两优737在宁化种植表现及关键栽培技术 [J]. 福建稻麦科技, 2020, 38(1):34−36.WANG H F, ZHOU P, TU S H, et al. Planting performance and the key cultivation techniques of two-line hybrid purple glutinous rice variety Ziliangyou 737 in Ninghua County [J]. Fujian Science and Technology of Rice and Wheat, 2020, 38(1): 34−36.(in Chinese) [7] 王洪飞, 陈建云, 郑建华, 等. 两系特种稻紫两优737在云南高原种植表现及丰产栽培技术 [J]. 福建稻麦科技, 2020, 38(2):21−24.WANG H F, CHEN J Y, ZHENG J H, et al. Planting performance and high-yielding cultivation techniques of two-line special rice Ziliangyou 737 in Yunnan Plateau [J]. Fujian Science and Technology of Rice and Wheat, 2020, 38(2): 21−24.(in Chinese) [8] 郑建初, 盛婧, 汤日圣, 等. 南京和安庆地区高温发生规律及高温对水稻结实率的影响 [J]. 江苏农业学报, 2007, 23(1):1−4.ZHENG J C, SHENG J, TANG R S, et al. Regularity of high temperature and its effects on pollen vigor and seed setting rate of rice in Nanjing and Anqing [J]. Jiangsu Journal of Agricultural Sciences, 2007, 23(1): 1−4.(in Chinese) [9] 洪晓富, 闫川, 范天云. 高温对水稻灌浆结实影响的研究进展 [J]. 农业科技通讯, 2011(12):107−110.HONG X F, YAN C, FAN T Y. Research progress on the effect of high temperature on rice filling and fruiting [J]. Bulletin of Agricultural Science and Technology, 2011(12): 107−110.(in Chinese) [10] 陶龙兴, 谈惠娟, 王熹, 等. 超级杂交稻国稻6号对开花结实期高温热害的反应 [J]. 中国水稻科学, 2007, 21(5):518−524.TAO L X, TAN H J, WANG X, et al. Effects of high temperature stress on super hybrid rice Guodao 6 during flowering and filling phases [J]. Chinese Journal of Rice Science, 2007, 21(5): 518−524.(in Chinese) [11] 王晓光. 有色稻果皮色泽遗传分析及色泽对产量性状影响机理初探[D]. 北京: 中国农业科学院, 2009.WANG X G. Genetic analysis of pericarp color of rice and preliminary research on influence mechanism of pericarp color on yield characters[D]. Beijing: Chinese Academy of Agricultural Sciences, 2009. (in Chinese) [12] 张圣美, 刘晓慧, 尚静, 等. 高温胁迫对茄子花青素含量及其合成相关酶活性和基因表达的影响 [J]. 上海农业学报, 2020, 36(6):6−12.ZHANG S M, LIU X H, SHANG J, et al. Effects of high temperature stress on anthocyanin concentration, enzyme activities related to its synthesis and gene expression in eggplant [J]. Acta Agriculturae Shanghai, 2020, 36(6): 6−12.(in Chinese) [13] 房贤涛, 郑建华, 游晴如, 等. 不同生境对紫两优737类黄酮及B族维生素含量的影响 [J]. 福建农业学报, 2022, 37(12):1536−1545.FANG X T, ZHENG J H, YOU Q R, et al. Effects of habitats on flavonoids and vitamin B contents in Ziliangyou 737 [J]. Fujian Journal of Agricultural Sciences, 2022, 37(12): 1536−1545.(in Chinese) [14] 金志凤, 杨太明, 李仁忠, 等. 浙江省高温热害发生规律及其对早稻产量的影响 [J]. 中国农业气象, 2009, 30(4):628−631.JIN Z F, YANG T M, LI R Z, et al. High temperature induced heat damage and its impacts on early rice yields in Zhejiang Province [J]. Chinese Journal of Agrometeorology, 2009, 30(4): 628−631.(in Chinese) [15] 朱珠, 陶福禄, 娄运生, 等. 1981—2009年江苏省气候变化趋势及其对水稻产量的影响 [J]. 中国农业气象, 2012, 33(4):567−572.ZHU Z, TAO F L, LOU Y S, et al. Trends in climate and their effects on rice yields in Jiangsu Province from 1981 to 2009 [J]. Chinese Journal of Agrometeorology, 2012, 33(4): 567−572.(in Chinese) [16] 黄晚华, 张超, 李晶, 等. 湖南超级早稻灌浆期高温热害指标及特征分析[C]//湖南省气象学会生态与农业气象论文集. 长沙: 湖南省气象学会, 2015: 377-382.HUANG W H, ZHANG C, LI J, et al. The analysis index and characteristics of Hunan high temperature super early rice filling stage and[C]//Collection of ecological and agricultural meteorology of Hunan Meteorological Society. Changsha: Hunan Meteorological Society, 2015: 377-382. (in Chinese) [17] 马义虎, 何贤彪, 朱练峰, 等. 播期对浙东南地区直播晚粳稻产量、生育期及温光利用的影响 [J]. 核农学报, 2022, 36(12):2462−2473.MA Y H, HE X B, ZHU L F, et al. Effects of seeding dates on grain yield, growth period and utilization of temperature and sunshine of late Japonica rice under the direct seeding in southeastern Zhejiang Province [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(12): 2462−2473.(in Chinese) [18] 徐俊豪, 解嘉鑫, 熊若愚, 等. 播期对南方双季晚籼稻温光资源利用、产量及品质形成的影响 [J]. 中国稻米, 2021, 27(5):115−120.XU J H, XIE J X, XIONG R Y, et al. Effects of sowing date on temperature and light resource utilization, yield and quality formation of double-season late indica rice in South China [J]. China Rice, 2021, 27(5): 115−120.(in Chinese) [19] 许轲, 孙圳, 霍中洋, 等. 播期、品种类型对水稻产量、生育期及温光利用的影响 [J]. 中国农业科学, 2013, 46(20):4222−4233.XU K, SUN Z, HUO Z Y, et al. Effects of seeding date and variety type on yield, growth stage and utilization of temperature and sunshine in rice [J]. Scientia Agricultura Sinica, 2013, 46(20): 4222−4233.(in Chinese) [20] 段骅, 佟卉, 刘燕清, 等. 高温和干旱对水稻的影响及其机制的研究进展 [J]. 中国水稻科学, 2019, 33(3):206−218.DUAN H, TONG H, LIU Y Q, et al. Research advances in the effect of heat and drought on rice and its mechanism [J]. Chinese Journal of Rice Science, 2019, 33(3): 206−218.(in Chinese) [21] 杨军, 章毅之, 贺浩华, 等. 水稻高温热害的研究现状与进展 [J]. 应用生态学报, 2020, 31(8):2817−2830.YANG J, ZHANG Y Z, HE H H, et al. Current status and research advances of high-temperature hazards in rice [J]. Chinese Journal of Applied Ecology, 2020, 31(8): 2817−2830.(in Chinese) [22] 骆宗强, 石春林, 江敏, 等. 孕穗期高温对水稻物质分配及产量结构的影响 [J]. 中国农业气象, 2016, 37(3):326−334.LUO Z Q, SHI C L, JIANG M, et al. Effect of high temperature on rice dry matter partition and yield component during booting stage [J]. Chinese Journal of Agrometeorology, 2016, 37(3): 326−334.(in Chinese) [23] 林聃, 江敏, 苗波, 等. 水稻高温热害模型研究及其在福建省的应用 [J]. 中国水稻科学, 2023, 37(3):307−320.LIN D, JIANG M, MIAO B, et al. Research on simulation model of high temperature stress on rice and its application in Fujian Province [J]. Chinese Journal of Rice Science, 2023, 37(3): 307−320.(in Chinese) [24] 喻莎, 陆魁东, 谢佰承, 等. 高温时数和热积温对超级早稻结实率的影响 [J]. 中国农业气象, 2016, 37(4):454−463.YU S, LU K D, XIE B C, et al. Effects of high temperature hours and thermal accumulated temperature on seed setting rate of super hybrid rice [J]. Chinese Journal of Agrometeorology, 2016, 37(4): 454−463.(in Chinese) [25] 田绍平, 蒋鹏, 熊洪, 等. 农艺措施对糯稻产量及稻米品质的影响 [J]. 四川职业技术学院学报, 2016, 26(6):137−145.TIAN S P, JIANG P, XIONG H, et al. Effect of agronomic measures on glutinous rice yield and grain quality [J]. Journal of Sichuan Vocational and Technical College, 2016, 26(6): 137−145.(in Chinese) [26] 蒋鹏, 熊洪, 张林, 等. 施氮量和氮肥运筹模式对糯稻产量及品质的影响 [J]. 作物研究, 2015, 29(6):595−598.JIANG P, XIONG H, ZHANG L, et al. Effect of nitrogen rates and nitrogen application regimes on grain yield and rice quality of glutinous rice [J]. Crop Research, 2015, 29(6): 595−598.(in Chinese) [27] 孟亚利, 周治国. 结实期温度与稻米品质的关系 [J]. 中国水稻科学, 1997, 11(1):51−54.MENG Y L, ZHOU Z G. Relationship between rice grain quality and temperature during seed setting period [J]. Chinese Journal of Rice Science, 1997, 11(1): 51−54.(in Chinese) [28] 邹德堂, 韩笑, 孙健, 等. 有色稻米B族维生素含量与种皮颜色关系研究 [J]. 东北农业大学学报, 2020, 51(9):1−8.ZOU D T, HAN X, SUN J, et al. Study on relationship between B vitamins content and seed coat color of colored rice [J]. Journal of Northeast Agricultural University, 2020, 51(9): 1−8.(in Chinese) [29] XU J S, PATASSINI S, BEGLEY P, et al. Cerebral deficiency of vitamin B5 (d-pantothenic acid; pantothenate) as a potentially-reversible cause of neurodegeneration and dementia in sporadic Alzheimer’s disease [J]. Biochemical and Biophysical Research Communications, 2020, 527(3): 676−681. doi: 10.1016/j.bbrc.2020.05.015 [30] ISMAIL N, KUREISHY N, CHURCH S J, et al. Vitamin B5 (d-pantothenic acid) localizes in myelinated structures of the rat brain: Potential role for cerebral vitamin B5 stores in local myelin homeostasis [J]. Biochemical and Biophysical Research Communications, 2020, 522(1): 220−225. doi: 10.1016/j.bbrc.2019.11.052 [31] 司少艳, 申玉龙, 秦亚亚, 等. 维生素B6对非小细胞肺癌的放疗增效作用 [J]. 癌症进展, 2022, 20(18):1880−1883.SI S Y, SHEN Y L, QIN Y Y, et al. Synergistic effect of vitamin B6 on radiotherapy for non-small cell lung cancer [J]. Oncology Progress, 2022, 20(18): 1880−1883.(in Chinese) [32] 马林楠, 刘卓, 吴芳, 等. 奥卡西平+维生素B6+左乙拉西坦治疗癫痫患儿的效果及对其视频脑电图的影响 [J]. 海南医学, 2023, 34(10):1432−1435.MA L N, LIU Z, WU F, et al. Curative effect of oxcarbazepine combined with vitamin B6 and levetiracetam in children with epilepsy and its influences on video EEG [J]. Hainan Medical Journal, 2023, 34(10): 1432−1435.(in Chinese) [33] 罗小宁, 张羽, 郭蒸. 斑蝥酸钠维生素B6联合同期放化疗治疗中晚期宫颈癌疗效观察 [J]. 江西中医药大学学报, 2022, 34(6):33−36.LUO X N, ZHANG Y, GUO Z. The effect of sodium cantharidate vitamin B6 combined with concurrent chemoradiotherapy on advanced cervical cancer [J]. Journal of Jiangxi University of Chinese Medicine, 2022, 34(6): 33−36.(in Chinese) [34] 陈继卫, 沈朝栋, 贾玉芳, 等. 鸡爪槭转色期叶色变化生理研究 [J]. 核农学报, 2010, 24(1):171−175,180.CHEN J W, SHEN C D, JIA Y F, et al. Physiological changes of Japanese maple(Acer palmatum thunb)leaves during color-changing period [J]. Journal of Nuclear Agricultural Sciences, 2010, 24(1): 171−175,180.(in Chinese) [35] 孙苏南. 三杉秋冬叶色变化及植物造景研究[D]. 杭州: 浙江农林大学, 2013.SUN S N. Color changes on leaves and landscape design of Metasequoia glyptostroboides, Taxodium ascendens, Taxodium distichum[D]. Hangzhou: Zhejiang A & F University, 2013. (in Chinese) [36] 李小康. 中红杨叶色变化的生理生化研究[D]. 郑州: 河南农业大学, 2008.LI X K. Study on changes of physiology and biochemistry during its leafcolour transformation of Populus × euramericana’Zhonghong’[D]. Zhengzhou: Henan Agricultural University, 2008. (in Chinese) [37] 费芳, 王慧颖, 唐前瑞. 温度对红花檵木叶色的影响研究 [J]. 湖南理工学院学报(自然科学版), 2008, 21(2):88−90.FEI F, WANG H Y, TANG Q R. Study on the impact of temperature on Loropetalum Chinese var. rubrum leaves color [J]. Journal of Hunan Institute of Science and Technology (Natural Sciences Edition), 2008, 21(2): 88−90.(in Chinese)