Light Response Curves and Photosynthesis Models on Plants Exposed to Monochromatic Lights
-
摘要:
目的 研究不同植物幼苗在多种单色光条件下的光合响应曲线及其数学模型,为植物工厂作物栽培架等现代农业种植设施的研发提供理论依据。 方法 应用植物特征光谱试验方法及其测试系统,获取10种植物幼苗的22种单色光的光合响应曲线;选择红椎与马褂木两个具有代表性的植物,得出对应单色光光合响应曲线的数学模型;根据渐近线型单色光植物光合响应曲线的特点提出准饱和点光强的概念及计算方法,再依据所测定的植物幼苗22种单色光的饱和点光强,比较理论计算值与实际测定值的偏差程度,并以此为基础绘制植物光合作用饱和点曲线。 结果 植物幼苗的光合响应曲线可分为两类,以红椎为代表的一类植物光合响应曲线呈渐近线型,这类曲线没有极值;以马褂木为代表的一类植物光合响应曲线则有拐点,这类曲线有极值。模型计算得到的准饱和点光强与实际测定的饱和点光强具有较高的拟合度,经过对数据的综合处理,获得对应的饱和点曲线和补偿点曲线。 结论 采用植物特征光谱试验方法及其测试系统可以得到植物在单色光条件下的光合响应曲线,揭示了不同植物光合作用的规律及特点。由此提出的植物光合响应数学模型与实测值具有较高拟合度,可作为研究分析植物光合作用现象的重要参考。 Abstract:Objective Mathematical models of the photosynthetic responses of plants exposed to monochromatic lights were constructed for the development of indoor agricultural cultivation. Method An experimentation was designed to generate varied wavelengths of monochromatic lights and test, measure, and construct a mathematical model for the photosynthetic responses of plants exposed to the light source. On seedlings of 10 different plant species grown under 22 varied monochromatic lights, the photosynthetic rates of the plants were measured to obtain light response curves (LRCs). Using Castanopsis hystrix and Liriodendron chinense (Hemsl.) Sarg as two representative plants, mathematical models were constructed. From the asymptotic linear curve, the light intensity at quasi-saturation point was calculated. Then, the calculated theoretical and measured empirical data were compared to test the validity of the prediction model. Result Of all the LRCs, there were two types—one of C. hystrix, which was asymptotic linear showing no plateau, and another of L. chinense, which had an inflection point. A high degree of fitting was found between the light intensity at quasi-saturation point calculated from the model and that measured empirically. After a data treatment, curves with light saturation and compensation points were obtained. Conclusion The specially designed monochromatic lights generating method and plant photosynthesis measuring system enabled a successful construction of the LRCs. The patterns and characteristics of the photosynthesis of different plants in response to the monochromatic lights varied. The high fitting on the photosynthetic response data between the values calculated from the mathematical model and those measured from the experiment suggested an applicability of the current methodology for studies on plant photosynthesis. Since the developed method and test system were not species-specific, they could be used universally for research on other plants. And using the mathematical model, optimal light wavelength and intensity at saturation point could be estimated for designing artificially controlled agriculture facilities such as “plant factories” for indoor mass crop cultivation. -
表 1 多种单色光发生器产生的22种单色光
Table 1. Twenty-two monochromatic lights produced by light generating device
波长
Wavelength λ/nm半峰全宽
Full width of
half peak ∆λ/nm波长
Wavelength λ/nm半峰全宽
Full width of
half peak ∆λ/nm420 13.9 575 22.6 435 17.9 600 20.3 445 12.9 620 17.9 450 19.4 630 17 465 15.6 650 20.5 475 25 660 11.8 500 24.2 675 26.3 520 20.5 690 26.6 535 18.7 700 33.7 550 22.4 730 28.2 565 15.7 750 28.8 表 2 红椎的光合响应曲线对应22个单色光的参数值
Table 2. Measurements related to 22 monochromatic lights on LRC of C. hystrix
波长
Wavelength
λ/nmPnb Ic/
(μmol·m−2·s−1)Ic′/
(μmol·m−2·s−1)αλ/
(m2·s−1·μmol−1)R2 波长
Wavelength
λ/nmPnb Ic/
(μmol·m−2·s−1)Ic′/
(μmol·m−2·s−1)αλ/
(m2·s−1·μmol−1)R2 420 3.45 5 12 0.015 0.995 2 575 3.14 15 14 0.01 0.995 8 435 3.47 10 13 0.013 0.996 4 600 3.45 10 15 0.013 0.990 9 445 3.5 10 14 0.012 0.993 8 620 3.45 10 14 0.015 0.990 1 450 3.09 10 14 0.013 0.993 6 630 3.51 15 14 0.013 0.993 465 3.12 15 17 0.013 0.996 8 650 3.44 15 15 0.016 0.991 7 475 2.83 10 12 0.013 0.997 2 660 3.37 10 12 0.015 0.998 500 3.13 15 12 0.011 0.995 8 675 3.28 10 11 0.014 0.996 3 520 3.51 15 13 0.013 0.985 4 690 2.81 10 6 0.007 4 0.988 7 535 3.95 15 16 0.012 0.993 1 700 3.33 25 25 0.007 8 0.991 5 550 3.31 15 17 0.011 0.994 7 730 3.59 30 24 0.007 8 0.987 4 565 4.47 15 12 0.006 9 0.998 750 5.64 25 20 0.002 2 0.987 5 表 3 红椎的准饱和点光强实测值
$ {I_{sat}} $ 与理论计算值$ {I'_{sat}} $ 的比较($ {p'_n} = 0.001 $ )Table 3. Measured
$ {I_{sat}} $ and theoretical$ {I'_{sat}} $ at quasi-saturation point of C. hystrix($ {p'_n} = 0.001 $ )波长
Wavelength λ/nmIsat/
(μmol·m−2·s−1)Isat’/
(μmol·m−2·s−1)波长
Wavelength λ/nmIsat/
(μmol·m−2·s−1)Isat’/
(μmol·m−2·s−1)420 —— 273 575 —— 347 435 300 311 600 300 313 445 300 316 620 200 284 450 300 293 630 200 301 465 300 299 650 200 264 475 200 287 660 400 276 500 —— 328 675 400 287 520 —— 301 690 500 416 535 —— 338 700 500 441 550 300 342 730 —— 449 565 —— 506 750 —— 1154 表 4 马褂木的补偿响应系数、修正系数、补偿比率系数和补偿点光强
Table 4. Compensation response coefficient, correction coefficient, compensation ratio coefficient, and light intensity at compensation point of L. chinense
波长
Wavelength
λ/nmηλ
(10−3)βλ
(10−3)γλ
(10−3)Ic/
(μmol·m−2·s−1)Ic’/
(μmol·m−2·s−1)R2 波长
Wavelength
λ/nmηλ
(10−3)βλ
(10−3)γλ
(10−3)Ic/
(μmol·m−2·s−1)Ic’/
(μmol·m−2·s−1)R2 420 37 1.3 1.8 20 21 0.982 7 575 42 0.86 2 10 17 0.991 1 435 44 0.52 3.9 20 20 0.991 6 600 52 0.62 3.3 10 16 0.990 4 445 61 0.48 6.2 10 15 0.992 7 620 57 0.2 6.2 20 18 0.996 2 450 56 0.43 7.5 15 17 0.988 630 66 0.38 5.3 10 16 0.984 5 465 39 1.1 1.1 20 18 0.992 9 650 55 0.61 3.1 15 16 0.994 7 475 62 0.47 5.6 10 18 0.991 6 660 57 0.9 2.6 10 15 0.995 3 500 46 1.8 9.1×10−8 10 18 0.994 9 675 67 0.31 6.5 10 14 0.996 5 520 36 1.8 8.4×10−7 20 21 0.988 8 690 36 0.35 2.5 10 11 0.994 4 535 41 2 0.78 15 14 0.995 700 36 0.33 2.9 25 33 0.993 550 34 1.4 0.28 20 19 0.998 3 730 25 0.92 1.7×10−7 15 25 0.996 8 565 38 2.4 6.3×10−7 20 16 0.991 8 750 35 1.8 0.99 20 18 0.999 1 表 5 马褂木饱和点光强的实测值与理论计算值比较(
$ {p'_n} = 0 $ )Table 5. Measured and theoretical values of light intensity at saturation point of L. chinense (
$ {p'_n} = 0 $ )波长
Wavelength λ/nmIsat/
(μmol·m−2·s−1)Isat’/
(μmol·m−2·s−1)波长
Wavelength λ/nmIsat/
(μmol·m−2·s−1)Isat’/
(μmol·m−2·s−1)420 400 324 575 —— 429 435 600 521 600 500 478 445 600 465 620 800 808 450 500 472 630 700 573 465 300 385 650 500 494 475 500 491 660 400 390 500 300 281 675 600 594 520 —— 292 690 700 755 535 —— 249 700 900 780 550 —— 352 730 —— 553 565 —— 218 750 —— 252 -
[1] 刘文科, 查凌雁. 植物工厂植物光质生理及其调控[M]. 北京: 中国农业科学技术出版社, 2019: 2-10. [2] 刘银春, 吴金华, 吴运铨. 一种植物特征光谱实验箱及其实验方法ZL201310230571. X[P]. 2015-05-06. [3] 杨其长. 植物工厂[M]. 北京: 清华大学出版社, 2019: 3-20. [4] BIAN Z H, CHENG R F, YANG Q C, et al. Continuous light from red, blue, and green light-emitting diodes reduces nitrate content and enhances phytochemical concentrations and antioxidant capacity in lettuce [J]. Journal of the American Society for Horticultural Science, 2016, 141(2): 186−195. doi: 10.21273/JASHS.141.2.186 [5] 樊晚林, 温振英, 周雨琦, 等. 3种野牡丹属植物的光合特性 [J]. 森林与环境学报, 2019, 39(2):188−193.FAN W L, WEN Z Y, ZHOU Y Q, et al. Photosynthetic characteristics of 3 Melastoma L. species [J]. Journal of Forest and Environment, 2019, 39(2): 188−193.(in Chinese) [6] 张涛, 王瑞敏, 陈燕琼, 等. 8种绿化树种对城市夜间照明的生理适应性 [J]. 森林与环境学报, 2019, 39(4):424−430.ZHANG T, WANG R M, CHEN Y Q, et al. Physiological adaptations of eight greening-trees in an urban area under night lighting [J]. Journal of Forest and Environment, 2019, 39(4): 424−430.(in Chinese) [7] BIAN Z H, CHENG R F, WANG Y, et al. Effect of green light on nitrate reduction and edible quality of hydroponically grown lettuce (Lactuca sativa L. ) under short-term continuous light from red and blue light-emitting diodes [J]. Environmental and Experimental Botany, 2018, 153: 63−71. doi: 10.1016/j.envexpbot.2018.05.010 [8] 卢思, 罗梅秀, 刘丹, 等. 不同光质对三叶青茎叶显微结构和激素的影响 [J]. 森林与环境学报, 2019, 39(1):15−20.LU S, LUO M X, LIU D, et al. Responses of Tetrastigma hemsleyanum microstructure and phytohormone content to different light quality [J]. Journal of Forest and Environment, 2019, 39(1): 15−20.(in Chinese) [9] 粟春青, 蒋霞, 亢亚超, 等. 金花茶幼苗对铅胁迫的生长生理响应 [J]. 森林与环境学报, 2019, 39(5):467−474.SU C Q, JIANG X, KANG Y C, et al. Growth and physiological response of Camellia petelotii seedlings to Pb stress [J]. Journal of Forest and Environment, 2019, 39(5): 467−474.(in Chinese) [10] 刘莉娜, 张卫强, 黄芳芳, 等. 盐胁迫对银叶树幼苗光合特性与叶绿素荧光参数的影响 [J]. 森林与环境学报, 2019, 39(6):601−607.LIU L N, ZHANG W Q, HUANG F F, et al. Effects of NaCl stress on the photosynthesis and cholorophyll fluorescence of Heritiera littoralis seedlings [J]. Journal of Forest and Environment, 2019, 39(6): 601−607.(in Chinese) [11] 赵子豪, 宋琦, 李利, 等. 南方四季杨雌雄幼苗对镉胁迫光合生理响应的差异 [J]. 森林与环境学报, 2019, 39(2):201−207.ZHAO Z H, SONG Q, LI L, et al. Difference in photosynthesis and physiological response of male and female Populus deltoides × nigra to Cd stress [J]. Journal of Forest and Environment, 2019, 39(2): 201−207.(in Chinese) [12] SHAO L Z, FU Y M, LIU H, et al. Changes of the antioxidant capacity in Gynura bicolor DC under different light sources [J]. Scientia Horticulturae, 2015, 184: 40−45. doi: 10.1016/j.scienta.2014.12.010 [13] 何天友, 于增金, 沈少炎, 等. 花吊丝竹对干旱胁迫的光合和生理响应 [J]. 森林与环境学报, 2020, 40(1):68−75.HE T Y, YU Z J, SHEN S Y, et al. Photosynthetic and physiological responses of Dendrocalamus minor var. amoenus to drought stress [J]. Journal of Forest and Environment, 2020, 40(1): 68−75.(in Chinese) [14] BIAN Z H, YANG Q C, LIU W K. Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: A review [J]. Journal of the Science of Food and Agriculture, 2015, 95(5): 869−877. doi: 10.1002/jsfa.6789 [15] 李义博, 宋贺, 周莉, 等. C4植物玉米的光合-光响应曲线模拟研究 [J]. 植物生态学报, 2017, 41(12):1289−1300. doi: 10.17521/cjpe.2017.0158LI Y B, SONG H, ZHOU L, et al. Modeling study on photosynthetic-light response curves of a C4 plant, maize [J]. Chinese Journal of Plant Ecology, 2017, 41(12): 1289−1300.(in Chinese) doi: 10.17521/cjpe.2017.0158 [16] 闫小红, 尹建华, 段世华, 等. 四种水稻品种的光合光响应曲线及其模型拟合 [J]. 生态学杂志, 2013, 32(3):604−610. doi: 10.13292/j.1000-4890.2013.0084YAN X H, YIN J H, DUAN S H, et al. Photosynthesis light response curves of four rice varieties and model fitting [J]. Chinese Journal of Ecology, 2013, 32(3): 604−610.(in Chinese) doi: 10.13292/j.1000-4890.2013.0084 [17] 李佳, 刘济明, 文爱华, 等. 米槁幼苗光合作用及光响应曲线模拟对干旱胁迫的响应 [J]. 生态学报, 2019, 39(3):913−922.LI J, LIU J M, WEN A H, et al. Simulated photosynthetic responses of Cinnamomum migao during drought stress evaluated using Light-response Models [J]. Acta Ecologica Sinica, 2019, 39(3): 913−922.(in Chinese) [18] 叶子飘. 光合作用对光和CO2响应模型的研究进展 [J]. 植物生态学报, 2010, 34(6):727−740. doi: 10.3773/j.issn.1005-264x.2010.06.012YE Z P. A review on modeling of responses of photosynthesis to light and CO2 [J]. Chinese Journal of Plant Ecology, 2010, 34(6): 727−740.(in Chinese) doi: 10.3773/j.issn.1005-264x.2010.06.012 [19] 叶子飘, 于强. 一个光合作用光响应新模型与传统模型的比较 [J]. 沈阳农业大学学报, 2007, 38(6):771−775. doi: 10.3969/j.issn.1000-1700.2007.06.001YE Z P, YU Q. Comparison of A new model of light response of photosynthesis with traditional models [J]. Journal of Shenyang Agricultural University, 2007, 38(6): 771−775.(in Chinese) doi: 10.3969/j.issn.1000-1700.2007.06.001 [20] 秦惠珍, 韦霄, 唐健民, 等. 东兴金花茶和长尾毛蕊茶光合响应曲线拟合模型比较研究 [J]. 江苏农业科学, 2020, 48(15):165−170. doi: 10.15889/j.issn.1002-1302.2020.15.029QIN H Z, WEI X, TANG J M, et al. Comparative study on fitting models of photosynthetic response curves between Camellia tunghinensis Chang and Camellia caudata Wall [J]. Jiangsu Agricultural Sciences, 2020, 48(15): 165−170.(in Chinese) doi: 10.15889/j.issn.1002-1302.2020.15.029 [21] 钱一凡, 廖咏梅, 权秋梅, 等. 4种光响应曲线模型对3种十大功劳属植物的实用性 [J]. 植物研究, 2014, 34(5):716−720. doi: 10.7525/j.issn.1673-5102.2014.05.021QIAN Y F, LIAO Y M, QUAN Q M, et al. Practicability of four models of light-response curves of photosynthesis to three Mahonia species [J]. Bulletin of Botanical Research, 2014, 34(5): 716−720.(in Chinese) doi: 10.7525/j.issn.1673-5102.2014.05.021 [22] KORSAKOVA S, PLUGATAR Y, ILNITSKY O, et al. A research on models of the photosynthetic light response curves on the example of evergreen types of plants [J]. Agronomy Research, 2019, 17(2): 518−539. [23] 刘银春, 段亚凡, 林火养, 等. 双驼峰光谱发光装置及可输出多种单色光的装置: CN209102595U[P]. 2019-07-12.