• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铬在土壤-作物系统中的迁移及安全利用调控研究

罗泉达

罗泉达. 铬在土壤-作物系统中的迁移及安全利用调控研究 [J]. 福建农业学报,2023,38(6):746−752 doi: 10.19303/j.issn.1008-0384.2023.06.014
引用本文: 罗泉达. 铬在土壤-作物系统中的迁移及安全利用调控研究 [J]. 福建农业学报,2023,38(6):746−752 doi: 10.19303/j.issn.1008-0384.2023.06.014
LUO Q D. Chromium Migration and Application of Conditioners in Vegetable-growing Soil [J]. Fujian Journal of Agricultural Sciences,2023,38(6):746−752 doi: 10.19303/j.issn.1008-0384.2023.06.014
Citation: LUO Q D. Chromium Migration and Application of Conditioners in Vegetable-growing Soil [J]. Fujian Journal of Agricultural Sciences,2023,38(6):746−752 doi: 10.19303/j.issn.1008-0384.2023.06.014

铬在土壤-作物系统中的迁移及安全利用调控研究

doi: 10.19303/j.issn.1008-0384.2023.06.014
基金项目: 福建省科技计划引导性项目(2021N0022)
详细信息
    作者简介:

    罗泉达(1978 —),男,硕士,高级农艺师,主要从事农业生态环境研究(E-mail:nytlqd@163.com

  • 中图分类号: X53

Chromium Migration and Application of Conditioners in Vegetable-growing Soil

  • 摘要:   目的  探讨不同作物富集铬能力差异及施用不同类型调理剂对铬在土壤-芥菜系统迁移的影响。  方法  选择铬轻度污染农田进行田间试验,研究皱叶芥菜(Brassica juncea L. Czern and Coss)、花生(Arachis hypogaea L.)、甜玉米(Zea mays L. var. rugosa Bonaf.)、甘薯(Ficus tikoua Bur)、和毛豆(Glycine max Merrill )5种作物铬的富集效果;然后根据试验结果,选择高富集作物(皱叶芥菜)作为研究对象,研究不同调理剂对铬富集土壤的修复效果。调理剂修复效果试验设置对照(CK)、泥炭土(P)、有机肥(M)、沸石(Z)、硫酸亚铁(Fe)、有机肥+泥炭土(MP,1:2)、有机肥+沸石(MZ,1:2)、有机肥+泥炭土+硫酸亚铁(MPFe,3:6:1)、有机肥+沸石+硫酸亚铁(MZFe,3:6:1)9个试验处理。其中,硫酸亚铁用量为540 kg·hm−2,其他调理剂用量为5400 kg·hm−2  结果  作物富集效果试验表明,5种作物铬含量均未超过国家限量标准,皱叶芥菜富集铬能力最高,甜玉米富集铬能力最低,皱叶芥菜和花生富集铬能力显著高于甜玉米、甘薯和毛豆。调理剂修复效果试验表明,调理剂施用显著提升了土壤pH,各调理剂处理土壤pH提升0.45~0.93个单位。除Z和Fe外,其他调理剂处理均显著提升了皱叶芥菜产量,增产率为5.66%~12.77%。调理剂还显著降低了土壤有效态铬含量,降幅达39.8%~53.8%。与对照相比,P、M、Z、Fe、MP、MZ、MPFe和MZFe分别将皱叶芥菜铬含量降低了53%、33%、44%、32%、59%、40%、72%、82%,均未超过国家限量标准。  结论  皱叶芥菜铬富集能力显著高于花生、甜玉米、甘薯和毛豆;选择单施或复合施用有机肥、泥炭土、沸石及硫酸亚铁均可显著降低土壤有效性铬含量和皱叶芥菜中铬含量,其中,施用有机肥+泥炭土(沸石)+硫酸亚铁复合调理剂对皱叶芥菜降铬效果较好。
  • 图  1  不同农作物铬含量

    不同小写字母表示处理间差异显著(P<0.05),下同。

    Figure  1.  Changes in Cr content in vegetables

    Data with different lowercase letters indicate significant differences at P<0.05). Same for below.

    图  2  调理剂对土壤pH值的影响

    Figure  2.  Effect of conditioners on soil pH

    图  3  调理剂对皱叶芥菜产量的影响

    Figure  3.  Effect of conditioners on mustard yield

    图  4  调理剂对土壤有效态铬含量的影响

    Figure  4.  Effect of conditioners on available Cr content in soil

    图  5  调理剂对皱叶芥菜铬含量的影响

    Figure  5.  Effect of conditioners on Cr content in mustard

    表  1  土壤和调理剂基本理化性质

    Table  1.   Physiochemical properties of soil and conditioners

    土壤和调理剂
    Soil and conditioners
    pH有机质
    Organic matter/
    (g·kg−1
    阳离子交换量
    Cation exchange capacity/
    (cmol·kg−1
    机械组成
    Mechanical composition/
    %
    重金属含量
    Total amount of heavy Metals/
    (mg·kg−1
    砂粒
    Sand
    粉粒
    Silt
    黏粒
    Clay

    Cd

    Pb

    As

    Hg

    Cr
    土壤 Soil 6.63 16.30 39.93 29.5 28.5 42.0 0.15 13 1.58 0.074 203
    沸石 Zeolite 6.02 ND 15 8.52 0.060 30
    有机肥 Organic fertilizer 8.55 51.8 0.62 16.4 2.05 0.200 25
    泥炭土 Peat soil 7.90 540 0.595 154 14.3 0.034 54
    ND:未检出。砂粒(2~0.02 mm),粉粒(0.02~0.002 mm),黏粒(<0.002 mm)。
    Sand (2-0.02 mm); silt (0.02-0.002 mm); clay (<0.002 mm).
    下载: 导出CSV
  • [1] NAKKEERAN E, PATRA C, SHAHNAZ T, et al. Continuous biosorption assessment for the removal of hexavalent chromium from aqueous solutions using Strychnos nux vomica fruit shell [J]. Bioresource Technology Reports, 2018, 3: 256−260. doi: 10.1016/j.biteb.2018.09.001
    [2] LIAN G Q, WANG B, LEE X Q, et al. Enhanced removal of hexavalent chromium by engineered biochar composite fabricated from phosphogypsum and distillers grains [J]. Science of the Total Environment, 2019, 697: 134119. doi: 10.1016/j.scitotenv.2019.134119
    [3] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[R]. 北京: 环境保护部, 国土资源部, 2014.
    [4] 赵方杰, 谢婉滢, 汪鹏. 土壤与人体健康 [J]. 土壤学报, 2020, 57(1):1−11.

    ZHAO F J, XIE W Y, WANG P. Soil and human health [J]. Acta Pedologica Sinica, 2020, 57(1): 1−11.(in Chinese)
    [5] 张桃林. 守护耕地土壤健康 支撑农业高质量发展 [J]. 土壤, 2021, 53(1):1−4.

    ZHANG T L. Protecting soil health of cultivated land to promote high-quality development of agriculture in China [J]. Soils, 2021, 53(1): 1−4.(in Chinese)
    [6] 孙志佳, 李保飞, 陈玉海, 等. 湛江东北部农用地土壤重金属污染及生态风险评价 [J]. 河北农业大学学报, 2022, 45(1):61−68.

    SUN Z J, LI B F, CHEN Y H, et al. Assessment of agricultural land on soil heavy metals pollution and ecological risk in the northeast of Zhanjiang City [J]. Journal of Hebei Agricultural University, 2022, 45(1): 61−68.(in Chinese)
    [7] ROMERO-ESTÉVEZ D, YÁNEZ-JÁCOME G S, NAVARRETE H. Non-essential metal contamination in Ecuadorian agricultural production: A critical review [J]. Journal of Food Composition and Analysis, 2023, 115: 104932. doi: 10.1016/j.jfca.2022.104932
    [8] DESMARIAS T L, COSTA M. Mechanisms of chromium-induced toxicity [J]. Current Opinion in Toxicology, 2019, 14: 1−7. doi: 10.1016/j.cotox.2019.05.003
    [9] ERTANI A, MIETTO A, BORIN M, et al. Chromium in agricultural soils and crops: A review [J]. Water, Air, & Soil Pollution, 2017, 228(5): 190.
    [10] 王成文, 许模, 张俊杰, 等. 土壤pH和Eh对重金属铬(Ⅵ)纵向迁移及转化的影响 [J]. 环境工程学报, 2016, 10(10):6035−6041. doi: 10.12030/j.cjee.201505010

    WANG C W, XU M, ZHANG J J, et al. Influence of soils pH and Eh on vertical migration and transformation of Cr(Ⅵ) [J]. Chinese Journal of Environmental Engineering, 2016, 10(10): 6035−6041.(in Chinese) doi: 10.12030/j.cjee.201505010
    [11] RAPTIS S, GASPARATOS D, ECONOMOU-ELIOPOULOS M, et al. Chromium uptake by lettuce as affected by the application of organic matter and Cr(VI)-irrigation water: Implications to the land use and water management [J]. Chemosphere, 2018, 210: 597−606. doi: 10.1016/j.chemosphere.2018.07.046
    [12] CHOPPALA G, KUNHIKRISHNAN A, SESHADRI B, et al. Comparative sorption of chromium species as influenced by pH, surface charge and organic matter content in contaminated soils [J]. Journal of Geochemical Exploration, 2018, 184: 255−260. doi: 10.1016/j.gexplo.2016.07.012
    [13] XIAO W D, YE X Z, ZHU Z Q, et al. Continuous flooding stimulates root iron plaque formation and reduces chromium accumulation in rice (Oryza sativa L. ) [J]. Science of the Total Environment, 2021, 788: 147786. doi: 10.1016/j.scitotenv.2021.147786
    [14] XIAO W D, YE X Z, ZHU Z Q, et al. Combined effects of rice straw-derived biochar and water management on transformation of chromium and its uptake by rice in contaminated soils [J]. Ecotoxicology and Environmental Safety, 2021, 208: 111506. doi: 10.1016/j.ecoenv.2020.111506
    [15] 罗泉达. 三种肥料对巨菌草修复镉污染土壤的效果研究 [J]. 福建农业学报, 2022, 37(3):398−404.

    LUO Q D. Fertilizer-enhanced phytoextraction of Pennisetum sinese roxb on cadmium in soil [J]. Fujian Journal of Agricultural Sciences, 2022, 37(3): 398−404.(in Chinese)
    [16] 徐榕, 王华伟, 孙英杰, 等. 沼渣协同硫酸亚铁修复Cr(Ⅵ)污染土壤 [J]. 环境科学学报, 2021, 41(10):4161−4169.

    XU R, WANG H W, SUN Y J, et al. Remediation of Cr(Ⅵ) from contaminated soil with the combination of biogas residue and ferrous sulfate [J]. Acta Scientiae Circumstantiae, 2021, 41(10): 4161−4169.(in Chinese)
    [17] 李顺江, 李鹏, 李新荣, 等. 不同肥源、施氮量对土壤-作物系统中铬、镉含量的影响 [J]. 农业资源与环境学报, 2015, 32(3):235−241.

    LI S J, LI P, LI X R, et al. The influence of concentration of chromium, cadmium in soil-crop system under different fertilizers and fertilization amount [J]. Journal of Agricultural Resources and Environment, 2015, 32(3): 235−241.(in Chinese)
    [18] 宁川川, 王建武, 蔡昆争. 有机肥对土壤肥力和土壤环境质量的影响研究进展 [J]. 生态环境学报, 2016, 25(1):175−181.

    NING C C, WANG J W, CAI K Z. The effects of organic fertilizers on soil fertility and soil environmental quality: A review [J]. Ecology and Environmental Sciences, 2016, 25(1): 175−181.(in Chinese)
    [19] 孙莹, 侯玮, 迟美静, 等. 氮肥与有机肥配施对设施土壤腐殖质组分的影响 [J]. 土壤学报, 2019, 56(4):940−952. doi: 10.11766/trxb201807270342

    SUN Y, HOU W, CHI M J, et al. Effect of combined application of nitrogen fertilizer and organic manure on soil humus composition in greenhouse [J]. Acta Pedologica Sinica, 2019, 56(4): 940−952.(in Chinese) doi: 10.11766/trxb201807270342
    [20] JIANG W J, CAI Q A, XU W, et al. Cr(VI) adsorption and reduction by humic acid coated on magnetite [J]. Environmental Science & Technology, 2014, 48(14): 8078−8085.
    [21] CHWASTOWSKI J, STAROŃ P, KOŁOCZEK H, et al. Adsorption of hexavalent chromium from aqueous solutions using Canadian peat and coconut fiber [J]. Journal of Molecular Liquids, 2017, 248: 981−989. doi: 10.1016/j.molliq.2017.10.152
    [22] YANG S, CHENG Y, ZOU H, et al. Synergistic roles of montmorillonite and organic matter in reducing bioavailable state of chromium in tannery sludge [J]. Environmental Science and Pollution Research, 2022, 29(58): 87298−87309. doi: 10.1007/s11356-022-21897-1
    [23] SHI W Y, SHAO H B, LI H, et al. Progress in the remediation of hazardous heavy metal-polluted soils by natural zeolite [J]. Journal of Hazardous Materials, 2009, 170(1): 1−6. doi: 10.1016/j.jhazmat.2009.04.097
    [24] 李喜林, 仝重凯, 刘玲, 等. 粉煤灰合成沸石对铬污染土壤中Cr(Ⅲ)的吸附稳定化效果及机制研究 [J]. 安全与环境学报, 2021, 21(3):1240−1248.

    LI X L, TONG Z K, LIU L, et al. Study on the stabilization effect and mechanism of the synthesized zeolite from fly ash on Cr (Ⅲ) in chromium contaminated soil [J]. Journal of Safety and Environment, 2021, 21(3): 1240−1248.(in Chinese)
    [25] 文叶轩, 郝硕硕, 朱家亮, 等. 天然和改性沸石对铬吸附特征研究 [J]. 中国陶瓷, 2015, 51(7):16−20.

    WEN Y X, HAO S S, ZHU J L, et al. Research on adsorption characteristics of chromium on natural and modified zeolite [J]. China Ceramics, 2015, 51(7): 16−20.(in Chinese)
    [26] 孙星星, 朱靖, 陶润萍, 等. 外源铁对水稻累积土壤镉的影响 [J]. 扬州大学学报(自然科学版), 2022, 25(1):74−78.

    SUN X X, ZHU J, TAO R P, et al. Effect of exogenous iron on soil Cd accumulation of rice [J]. Journal of Yangzhou University (Natural Science Edition), 2022, 25(1): 74−78.(in Chinese)
    [27] GRAHAM A M, BOUWER E J. Rates of hexavalent chromium reduction in anoxic estuarine sediments: PH effects and the role of acid volatile sulfides [J]. Environmental Science & Technology, 2010, 44(1): 136−142.
    [28] OLAZABAL M A, NIKOLAIDIS N P, SUIB S A, et al. Precipitation equilibria of the chromium(VI)/iron(III) system and spectrospcopic characterization of the precipitates [J]. Environmental Science & Technology, 1997, 31(10): 2898−2902.
    [29] ZHAO X L, SU Y C, LI S B, et al. A green method to synthesize flowerlike Fe(OH)3 microspheres for enhanced adsorption performance toward organic and heavy metal pollutants [J]. Journal of Environmental Sciences, 2018, 73: 47−57. doi: 10.1016/j.jes.2018.01.010
    [30] XU B, WANG F, ZHANG Q H, et al. Influence of iron plaque on the uptake and accumulation of chromium by rice (Oryza sativa L. ) seedlings: Insights from hydroponic and soil cultivation [J]. Ecotoxicology and Environmental Safety, 2018, 162: 51−58. doi: 10.1016/j.ecoenv.2018.06.063
    [31] LIU D H, ZOU J H, WANG M, et al. Hexavalent chromium uptake and its effects on mineral uptake, antioxidant defence system and photosynthesis in Amaranthus viridis L [J]. Bioresource Technology, 2008, 99(7): 2628−2636. doi: 10.1016/j.biortech.2007.04.045
    [32] RIZWAN M, ALI S, QAYYUM M F, et al. Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: A critical review [J]. Environmental Science and Pollution Research, 2016, 23(3): 2230−2248. doi: 10.1007/s11356-015-5697-7
    [33] WU J Q, SHA C Y, WANG M, et al. Effect of organic fertilizer on soil bacteria in maize fields [J]. Land, 2021, 10(3): 328. doi: 10.3390/land10030328
    [34] WYSZKOWSKA J, BOROWIK A, ZABOROWSKA M, et al. Sensitivity of Zea mays and soil microorganisms to the toxic effect of chromium (VI) [J]. International Journal of Molecular Sciences, 2022, 24(1): 178. doi: 10.3390/ijms24010178
    [35] TANG X, HUANG Y, LI Y, et al. Study on detoxification and removal mechanisms of hexavalent chromium by microorganisms [J]. Ecotoxicology and Environmental Safety, 2021, 208: 111699. doi: 10.1016/j.ecoenv.2020.111699
    [36] ANTONIADIS V, ZANNI A A, LEVIZOU E, et al. Modulation of hexavalent chromium toxicity on Οriganum vulgare in an acidic soil amended with peat, lime, and zeolite [J]. Chemosphere, 2018, 195: 291−300. doi: 10.1016/j.chemosphere.2017.12.069
    [37] ZHOU J M, CHEN H L, TAO Y L, et al. Biochar amendment of chromium-polluted paddy soil suppresses greenhouse gas emissions and decreases chromium uptake by rice grain [J]. Journal of Soils and Sediments, 2019, 19(4): 1756−1766. doi: 10.1007/s11368-018-2170-5
    [38] LEYVA-RAMOS R, JACOBO-AZUARA A, DIAZ-FLORES P E, et al. Adsorption of chromium(VI) from an aqueous solution on a surfactant-modified zeolite [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2008, 330(1): 35−41.
    [39] RADZIEMSKA M, WYSZKOWSKI M, BĘŚ A, et al. The applicability of compost, zeolite and calcium oxide in assisted remediation of acidic soil contaminated with Cr(III) and Cr(VI) [J]. Environmental Science and Pollution Research, 2019, 26(21): 21351−21362. doi: 10.1007/s11356-019-05221-y
    [40] RADZIEMSKA M, WYSZKOWSKI M. Using compost, zeolite and calcium oxide to limit the effect of chromium (III) and (VI) on the content of trace elements in plants [J]. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 2017, 65(2): 709−719. doi: 10.11118/actaun201765020709
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  373
  • HTML全文浏览量:  178
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-23
  • 修回日期:  2023-05-15
  • 网络出版日期:  2023-06-02
  • 刊出日期:  2023-06-28

目录

    /

    返回文章
    返回