Effect of Ambient Temperature on Growth and Development of Harmonia dimidiata Fabricius
-
摘要:
目的 研究温度对红肩瓢虫(Harmonia dimidiate Fabricius)生长发育的影响,探讨其大量扩繁及生防应用的适宜温度。 方法 以地中海粉螟(Ephestia kuehniella Zeller)卵为饲料,设置15、20、25、30和32 ℃等5个温度处理,研究温度对红肩瓢虫各阶段发育历期及存活率影响,采用最小二乘法测算红肩瓢虫各发育阶段的发育起点温度和有效积温,采用线性日度方程模拟温度与红肩瓢虫发育速率间的关系。 结果 20~30 ℃的温度范围适于红肩瓢虫卵的孵化,孵化率均达85%以上;发育至成虫的总存活率以20 ℃时最高,达87.50%,其次为25 ℃(82.50%)>30 ℃(77.50%)>32 ℃(45.00%)>15 ℃(35.00%),可见15 ℃低温和32 ℃高温均不适宜红肩瓢虫存活。15~32 ℃范围内,红肩瓢虫均可完成发育,温度升高发育速率加快、发育历期缩短,20~32 ℃区间内各处理间的总发育历期均无显著性差异,而15 ℃时极显著长于其他温度处理,说明15 ℃低温不适宜红肩瓢虫生长发育。红肩瓢虫各发育阶段中,2龄幼虫的发育起点温度最高,为12.74 ℃,蛹期最低,为9.24 ℃,从卵至成虫整个发育历期的发育起点温度和有效积温分别为9.87 ℃和324.82日·度。 结论 综合存活率与发育历期,以地中海粉螟卵为饲料,20~30 ℃为红肩瓢虫生长发育的适宜温度,本研究结果为红肩瓢虫的大量扩繁和生防应用条件提供了参考,发育起点温度和有效积温的测算也为红肩瓢虫的滞育研究提供了依据。 Abstract:Objective Effect of ambient temperature on the growth and development of Harmonia dimidiata Fabricius was studied to determine the condition to encourage the beetle reproduction for serving as a biocontrol agent in the field. Method H. dimidiata were fed on Ephestia kuehniella Zellerwere eggs and reared under a controlled temperature between 15 ℃ and 32 ℃ in a chamber to monitor the temperature effect on the development and survival of the predator. Threshold temperatures for developmental stages and effective accumulated temperature for growth were estimated by the least square method. Relationship between the chamber temperature and the beetle development was simulated with a linear diurnal equation. Result The optimal egg hatching of H. dimidiata with a greater than 85% hatchability took place between 20 ℃ and 30 ℃. At 20 ℃, the rate of 87.5% for the beetles to reach adulthood was the highest. It was followed by 25 ℃ (82.50%)>30 ℃ (77.50%)>32 ℃ (45.00%)>15 ℃ (35.00%). Either low temperature of 15 ℃ or high of 32 ℃ inhibited the growth of the beetles, but within that range, the development could still be completed with the rate hastened and the time shortened by increasing the ambient temperature. There was no significant difference in the time for entire beetle development in between 20 ℃ and 32 ℃. On the other hand, the duration was extremely significantly prolonged at 15 ℃ as considerable hindrance was imposed on the growth by low temperature. The threshold temperatures for various developmental stages of H. dimidiata were found to be at the highest level for the 2nd instar larvae at 12.74 ℃, the lowest for the pupal stage at 9.24 ℃, and for the egg-hatching at 9.87 ℃. The effective accumulated temperature required for the growth to maturity of a beetle was 324.82 d· ℃. Conclusion Ambient temperature significantly affected the development, growth, and survival of H. dimidiata. Based on the survival rate and development time of H. dimidiate reared on E. kuehniella eggs for feed, 20-30 ℃ was determined to be the temperature range for optimal reproduction. The information obtained on the physiology of the predator would aid in the rearing as a potentially valuable biocontrol agent as well as in studying diapause of H. dimidiata. -
表 1 温度对红肩瓢虫各发育阶段存活的影响
Table 1. Effect of temperature on survival of H. dimidiata at development stages
温度
Temperature/℃不同发育阶段的存活率 Survival rates of different developmental stages/% 卵孵化率
Hatching rate1龄
1st instar2龄
2nd instar3龄
3rd instar4龄
4th instar蛹
Pupa总存活率
Total survival rate15±1 72.29 75.00 83.33 88.00 90.90 70.00 35.00 20±1 85.87 100.00 87.50 100.00 100.00 100.00 87.50 25±1 95.56 97.50 92.31 91.67 100.00 100.00 82.50 30±1 95.06 87.50 97.14 100.00 97.06 93.94 77.50 32±1 61.54 67.50 92.59 96.00 83.33 90.00 45.00 表 2 红肩瓢虫在不同温度下的发育历期
Table 2. Development duration of H. dimidiata under different temperatures
温度
Temperature/ ℃不同发育阶段的发育历期 Developmental duration of different developmental stages/d 卵
Egg1龄
1st instar2龄
2nd instar3龄
3rd instar4龄
4th instar蛹
Pupa总历期
Total duration15±1 7.66±0.05Aa 12.87±0.25Aa 8.56±0.33Aa 10.23±0.33Aa 24.08±0.99Aa 16.25±0.28Aa 76.50±0.91Aa 20±1 4.05±0.02Bb 2.85±0.04Bb 2.90±0.05Bb 3.36±0.11Bb 7.47±0.15Bb 8.51±0.13Bb 29.10±0.23Bb 25±1 2.78±0.04Cc 2.71±0.11Bb 2.07±0.12Cc 2.36±0.11Cc 5.42±0.11Cc 4.95±0.09Cc 20.08±0.19Cc 30±1 1.75±0.04Ee 1.70±0.06Cc 1.18±0.04Dd 1.81±0.06Cc 4.77±0.10Cc 4.66±0.05CDc 15.89±0.11Dd 32±1 2.36±0.06Dd 1.41±0.07Cc 1.36±0.05Dd 2.31±0.21Cc 4.43±0.11Cc 4.06±0.16Dd 15.75±0.36Dd 表中数据为M±SE(平均数±标准误),同列数据后不同大小写字母分别表示在0.01水平和0.05水平差异显著(Tukey法检验)。
Datas are mean±standard error; those with same capital and lowercase letters on the same column indicate significant difference at 0.01 and 0.05 levels, respectively, by Tukey analysis.表 3 红肩瓢虫发育速率与温度的关系模型
Table 3. Mathematic model on relationship between H. dimidiata development rate and temperature
发育阶段
Developmental Stage线性日度模型 Linear diumal model 回归方程
Regression e
quation相关系数r
Correlation
coefficientP F 卵 Egg 0.0219T-0.1883 0.9146 0.0296 15.34 1龄 1st instar 0.0336T-0.4015 0.9710 0.0059 49.56 2龄 2nd instar 0.0406T-0.4854 0.9679 0.0069 44.56 3龄 3rd instar 0.0224T-0.1847 0.9100 0.032 14.45 4龄 4th instar 0.0102T-0.0910 0.9680 0.0068 44.71 蛹 Pupa 0.0106T-0.0915 0.9794 0.0035 70.57 总历期 Total duration 0.0030T-0.0284 0.9864 0.0019 108.45 表 4 红肩瓢虫各虫态发育起点温度和有效积温
Table 4. Threshold temperatures and effective accumulated temperatures for H. dimidiate development at various stages
发育阶段
Developmental
Stage相关系数r
Correlation
coefficient发育起点温度C
Developmental
threshold
temperature/℃有效积温K
Effective accumulated
temperature/
(d·℃)卵 Egg 0.9146 11.18 38.15 1龄 1st instar 0.9710 12.65 28.04 2龄 2nd instar 0.9680 12.74 23.07 3龄 3rd instar 0.9100 11.04 37.03 4龄 4th instar 0.9680 9.86 91.44 蛹 Pupa 0.9794 9.24 90.12 总历期
Total duration0.9864 9.87 324.82 -
[1] 庞雄飞, 毛金龙. 我国瓢虫亚科昆虫名录 [J]. 昆虫天敌, 1980, 2(2):32−39,47.PANG X F, MAO J L. Insect list of Coccinellinae of China [J]. Natural Enemies of Insects, 1980, 2(2): 32−39,47.(in Chinese) [2] 李永刚, 周尚乾, 何可佳. 单季稻田捕食性天敌的群落组成及两种杀虫剂对其多样性的影响 [J]. 湖南农业科学, 2005(4):43−45.LI Y G, ZHOU S Q, HE K J. The community making up of predatory natural enemies and the effects of two insecticides to the community diversity in single-cropping paddy fields [J]. Hunan Agricultural Sciences, 2005(4): 43−45.(in Chinese) [3] 高九思, 杨松芳, 高国锋, 等. 河南省苹果园捕食性天敌昆虫发生种类及捕食对象记述 [J]. 陕西农业科学, 2007, 53(6):73−75.GAO J S, YANG S F, GAO G F, et al. Species and prey of predatory natural enemy insects in apple orchards of Henan Province [J]. Shaanxi Journal of Agricultural Sciences, 2007, 53(6): 73−75.(in Chinese) [4] 梁朝巍. 江西省有机稻米生产基地天敌昆虫资源调查 [J]. 山东农业科学, 2011, 43(9):94−98. doi: 10.3969/j.issn.1001-4942.2011.09.027LIANG C W. Investigation on resources of natural enemies in organic rice fields of Jiangxi Province [J]. Shandong Agricultural Sciences, 2011, 43(9): 94−98.(in Chinese) doi: 10.3969/j.issn.1001-4942.2011.09.027 [5] 太一梅, 傅杨, 杨本立, 等. 昆明地区梨树蚜虫及天敌数量动态研究 [J]. 西南农业学报, 2004, 17(3):337−339.TAI Y M, FU Y, YANG B L, et al. Studies on the quantity dynamic of pear aphides and their natural enemy in Kunming region [J]. Southwest China Journal of Agricultural Sciences, 2004, 17(3): 337−339.(in Chinese) [6] 朱猛蒙, 刘艳, 张蓉, 等. 苜蓿草地害虫-天敌典型相关及生态位分析 [J]. 草业学报, 2013, 22(6):159−166.ZHU M M, LIU Y, ZHANG R, et al. Canonical correlations between pests and natural enemies and their niches in alfalfa grasslands [J]. Acta Prataculturae Sinica, 2013, 22(6): 159−166.(in Chinese) [7] 黄翠琴. 福建捕食性瓢虫科昆虫目录 [J]. 福建林业科技, 2016, 43(4):92−96,116.HUANG C Q. The checklist of the family Coccinellidae of predatory in the collection of Fujian [J]. Journal of Fujian Forestry Science and Technology, 2016, 43(4): 92−96,116.(in Chinese) [8] 李国锋, 郑发科, 王慧. 南充市郊瓢虫科昆虫的初步研究 [J]. 西华师范大学学报(自然科学版), 2005, 26(2):145−148.LI G F, ZHENG F K, WANG H. Preliminary study of Coccinellidae in the suburbs of Nanchong city [J]. Journal of Xihua Teachers College (Natural Science), 2005, 26(2): 145−148.(in Chinese) [9] KUZNETSOV V N, HONG P. Employment of Chinese Coccinellids in biological control of aphids in green house [J]. Far Eastern Entomology, 2002, 119: 1−5. [10] 杨永智, 陈伟强, 赵志昆, 等. 云南河口芒果主要病虫害发生规律调查及害虫天敌种类研究 [J]. 热带农业科学, 2015, 35(8):63−68,77.YANG Y Z, CHEN W Q, ZHAO Z K, et al. Occurrence regulation of main mango diseases and insect pests in Hekou, Yunnan and species of natural enemies [J]. Chinese Journal of Tropical Agriculture, 2015, 35(8): 63−68,77.(in Chinese) [11] 张波, 赵鸿杰, 李奕震, 等. 橄榄星室木虱研究进展 [J]. 广东农业科学, 2004, 31(2):29−30.ZHANG B, ZHAO H J, LI Y Z, et al. Research progress of psylla olivaceus [J]. Guangdong Agricultural Science, 2004, 31(2): 29−30.(in Chinese) [12] SHARMA P L, VERMA S C, CHANDEL R S, et al. Functional response of Harmonia dimidiata (Fab. ) to melon aphid, Aphis gossypii Glover under laboratory conditions [J]. Phytoparasitica, 2017, 45: 373−379. doi: 10.1007/s12600-017-0599-5 [13] GILLANI WA, MATIN M A, RAFI M A. Bionomics of tropical coccinellid beetle Harmonia (Leis) dimidiata (F) (Coleoptera: Coccinellidae) under laboratory conditions [J]. Pakistan Journal of Agricultural Research, 2007, 20(1): 79−83. [14] 蒋学建, 邓艳, 黄华艳, 等. 油茶茶蚜天敌及其优势天敌的林间消长规律 [J]. 广西林业科学, 2017, 46(1):76−79. doi: 10.3969/j.issn.1006-1126.2017.01.015JIANG X J, DENG Y, HUANG H Y, et al. The natural enemies and population dynamics of dominant species of Toxoptera aurantii on Camellia oleifera [J]. Guangxi Forestry Science, 2017, 46(1): 76−79.(in Chinese) doi: 10.3969/j.issn.1006-1126.2017.01.015 [15] 殷山山, 钏相仙, 白燕冰, 等. 橡副珠蜡蚧生物学、生态学特性及防治研究现状及展望 [J]. 热带农业科学, 2017, 37(3):41−46.YIN S S, CHUAN X X, BAI Y B, et al. Research status and prospect on biology, ecology and control of Parasaissetia nigra [J]. Chinese Journal of Tropical Agriculture, 2017, 37(3): 41−46.(in Chinese) [16] KHAN J, HAQ E U, REHMAN A. Effect of temperature on the biology of Harmonia dimidiate FAB. (Coleoptera: coccinellidae) reared on Scizaphus graminum (ROND) aphid [J]. Journal of Biodiversity and Environmental Sciences, 2016, 8(2): 1−8. [17] KHAN J, HAQ E U, SALJOKI A U R, et al. Effect of photoperiod on biological attributes of Harmonia dimidiata(Fab) (Coleoptera: Coccinellidae) fed on Schizaphus graminum (Rond. ) (Homoptera: Aphididae) aphid [J]. International Journal of Biosciences, 2018, 12(1): 212−218. [18] YU J Z, LU C T. Suitability of Bactricera dorsalis (Diptera: Tephritidae) egg as food for Harmonia dimidiata (Coleoptera: Coccinellidae) [J]. Plant Protection Bulletin, 2012, 54(4): 91−102. [19] BIRCH L C. A contribution to the ecology of Calandra oryzae L. and Rhizopertha dominica Fab. (Coleoptera) instored wheat [J]. SouthAustralia, 1945, 69: 140−149,6. [20] VUCIC-PESTIC O, EHNES R B, RALL B C, et al. Warming up the system: Higher predator feeding rates but lower energetic efficiencies [J]. Global Change Biology, 2011, 17(3): 1301−1310. doi: 10.1111/j.1365-2486.2010.02329.x [21] LEMOINE N P, BURKEPILE D E. Temperature-induced mismatches between consumption and metabolism reduce consumer fitness [J]. Ecology, 2012, 93(11): 2483−2489. doi: 10.1890/12-0375.1 [22] KHAN J V, EHSAN-UL-HAQ, SALJOKI A, et al. Effect of temperature on biological attributes and predatory potential of Harmonia dimidiata (Fab. ) (Coleoptera: Coccinellidae) fed on Rhopalosiphum padi aphid [J]. Journal of Entomology and Zoology Studies, 2016, 4(5): 1016−1022. [23] YU J Z, CHI H, CHEN B H. Comparison of the life tables and predation rates of Harmonia dimidiata (F. ) (Coleoptera: Coccinellidae) Fed On Aphis Gossypii Glover (Hemiptera: Aphididae) at different temperatures [J]. Biological Control, 2013, 64(1): 1−9. doi: 10.1016/j.biocontrol.2012.10.002 [24] HAMASAKI K, MATSUI M. Development and reproduction of an aphidophagous coccinellid, Propylea japonica (Thunberg) (Coleoptera: Coccinellidae), Reared On An Alternative Diet, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) eggs [J]. Applied Entomology and Zoology, 2006, 41(2): 233−237. doi: 10.1303/aez.2006.233 [25] ST-ONGE M, CORMIER D, TODOROVA S, et al. Conservation of Ephestia kuehniella eggs as hosts for Trichogramma ostriniae [J]. Journal of Applied Entomology, 2016, 140(3): 218−222. doi: 10.1111/jen.12227 [26] DELISLE J F, BRODEUR J, SHIPP L. Evaluation of various types of supplemental food for two species of predatory mites, Amblyseius swirskii and Neoseiulus cucumeris (Acari: Phytoseiidae) [J]. Experimental and Applied Acarology, 2015, 65(4): 483−494. doi: 10.1007/s10493-014-9862-3 [27] 丁岩钦. 昆虫数学生态学[M]. 北京: 科学出版社, 1994. [28] 丁岩钦. 昆虫种群数学生态学原理与应用[M]. 北京: 科学出版社, 1980. [29] 张孝羲. 昆虫生态及预测预报[M]. 3版. 北京: 中国农业出版社, 2002. [30] 陈瑜, 马春森. 气候变暖对昆虫影响研究进展 [J]. 生态学报, 2010, 30(8):2159−2172.CHEN Y, MA C S. Effect of global warming on insect: A literature review [J]. Acta Ecologica Sinica, 2010, 30(8): 2159−2172.(in Chinese) [31] 杜文梅, 张俊杰, 齐颖慧, 等. 温度对六斑异瓢虫生长发育的影响 [J]. 北京林业大学学报, 2017, 39(1):94−98.DU W M, ZHANG J J, QI Y H, et al. Effects of temperature on the growth and development in Aiolocaria hexaspilota (Coleoptera: Coccinellinae) [J]. Journal of Beijing Forestry University, 2017, 39(1): 94−98.(in Chinese) [32] 耿召良, 吴伟坚, 马华博, 等. 温度对拟小食螨瓢虫发育和繁殖的影响 [J]. 环境昆虫学报, 2016, 38(2):280−285.GENG Z L, WU W J, MA H B, et al. Effects of temperature on the development and fecundity of Stethorus(Allosstethorus) Parapauperculus(Coleoptera: Coccinellidae) [J]. Journal of Environmental Entomology, 2016, 38(2): 280−285.(in Chinese) [33] 杨果润, 赵冬梅, 梁建锋, 等. 温度对沙巴拟刀角瓢虫生长发育和繁殖的影响 [J]. 应用昆虫学报, 2022, 59(2):386−391.YANG G R, ZHAO D M, LIANG J F, et al. Effects of temperature on the development and reproduction of Serangiella sababensis Sasaji(Coleoptera: Coccinellidae) [J]. Chinese Journal of Applied Entomology, 2022, 59(2): 386−391.(in Chinese)