Identification and Expressions of PLT Family of Polygonatum cyrtonema
-
摘要:
目的 PLT(Plethora)属于AP2/ERF型转录因子,在植物生长发育及抗胁迫等过程中发挥重要作用。本文旨在探究多花黄精PLT(Polygonatum cyrtonema Hua PLT,PcPLT)基因在根状茎器官生长发育中及盐胁迫下的调控作用,为深入研究PcPLT基因的功能提供理论依据。 方法 基于多花黄精转录组数据库进行PcPLT基因家族鉴定及生物信息学分析,通过qRT-PCR技术检测其在多花黄精不同组织部位及不同浓度NaCl处理下的相对表达量,利用RT-PCR技术构建PcPLT2-2、PcPLT2-7基因融合表达载体,观察其荧光信号验证亚细胞定位。 结果 共鉴定获得15个PcPLT家族成员,该家族无内含子结构,蛋白编码长度为159~601个氨基酸,均为亲水蛋白;进化树分析显示PcPLT与百合科石刁柏(Asparagus officinalis L.)亲缘关系最近;亚细胞定位预测及验证结果显示PcPLT2-2定位于细胞质、细胞核中,PcPLT2-7定位于细胞核中。qRT-PCR结果显示PcPLT2-3和PcPLT2-7在根状茎中表达最高,PcPLT1-3、PcPLT1-4、PcPLT2-7响应盐胁迫调控。 结论 PcPLT不仅具有组织特异性还能提高抗逆性,提示可能作为器官发育调节因子参与多花黄精根状茎膨大的形态建成,为深入研究PLT调控植物根状茎器官生长发育的生物学功能和多花黄精遗传改良奠定基础。 Abstract:Objective Regulatory functions of Polygonatum cyrtonema Hua PLT (PcPLT) in the growth and development of rhizomes of the plant were investigated. Methods Based on the P. cyrtonema transcriptome database, the identity and bioinformatics of PcPLT family were obtained. Relative expressions in tissues of the plant and that under NaCl stress were detected using the qRT-PCR technique. The fusion expression vectors of PcPLT2-2 and PcPLT2-7 were constructed, and their fluorescence signals examined to determine subcellular localization. Results Fifteen PcPLT family members were identified. They were hydrophilic proteins, absent of intron structure, coded 159-601 amino acids, and evolutionarily closely related to Liliaceae Asparagus officinalis L. The predicted subcellular localization of PcPLT2-2 was in cytoplasm and nucleus, while PcPLT2-7 in nucleus only. PcPLT2-3 and PcPLT2-7 mostly in the rhizomes; and PcPLT1-3, PcPLT1-4, and PcPLT2-7 responsive to salt stress. Conclusion PcPLT were tissue-specific and capable of enhancing the stress resistance of P. cyrtonema. They might act as an organ development regulator associated with the morphogenesis of rhizome expansion. If so, the result obtained in this study would be of value for the in-depth understanding of the biological functions of PLT. -
Key words:
- Polygonatum cyrtonema Hua /
- PLT /
- gene family /
- expression analysis
-
图 5 PcPLT蛋白在洋葱表皮中的亚细胞定位
A:pCAMBIA1302-GFP荧光信号;B:pCAMBIA1302-PcPLT2-2-GFP荧光信号;C:pCAMBIA1302-PcPLT2-7-GFP荧光信号。
Figure 5. Subcellular localization of PcPLT in onion epidermal cells
A: pCAMBIA1302-GFP fluorescence signal; B: pCAMBIA1302-PcPLT2-2-GFP fluorescence signal; C: pCAMBIA1302-PcPLT2-7-GFP fluorescence signal.
表 1 引物序列
Table 1. Sequences of primers used
引物名称
Primer name引物序列
Primer sequence (5′-3′)退火温度Tm/℃ 用途 Usage PLT2-2-Q-F
PLT2-2-Q-RCGTCATCTTATCGTGGAGTTAC
CATCTTTCCGCCTTGTTACT55 qRT-PCR引物 PLT2-7-Q-F
PLT2-7-Q-RTCAAGTGTAATGGGAGGGA
AGAGAATAGCGGCAATGTTG55 qRT-PCR引物 β-tubulin-Q-F
β-tubulin-Q-RTTGTCGAAAATGCTGACGAG
CAAGCTTCCGGAGATCAGAG60 内参基因引物 PLT2-2-GFP-F
PLT2-2-GFP-RCATGCCATGGATGAAGAAGTTTGCGGTGCC
GGACTAGTTAACTCAAGTTTGCAGGGTT60 载体构建、亚细胞定位 PLT2-7-GFP-F
PLT2-7-GFP-RCATGCCATGGATGGGGAACTTGACCAAG
GGACTAGTGCTCCTGGGGTAGAAATAGG64 载体构建、亚细胞定位 PLT1-3-Q-F
PLT1-3-Q-RTACCTCCTCCACCACTTCTC
TCTTCAAATCAGAGTCCGC60 qRT-PCR引物 PLT1-4-Q-F
PLT1-4-Q-RATGGTGAGTGCTTGGCTT
TGCCTCCCTTTCCTTGTT50 qRT-PCR引物 表 2 多花黄精PLT 家族成员信息
Table 2. Information on PcPLT family members
基因名称
Gene name基因ID
Gene ID注释到
拟南芥成员
Annotated
Arabidopsis氨基酸数量
Amino
acids/aa分子量
Molecular
weight/Da等电点
pI脂肪系数
Aliphatic
index二级结构
Secondary structure/%亚细胞定位
Subcellular
localizationα-螺旋
Alpha
helixβ-转角
Beta
turn延伸链
Extended
strand无规卷曲
Random
coilPcPLT1-1 >Cluster-11683.110576.p1 AtPLT1 317 35195.85 8.96 54.64 32.18 5.36 10.73 51.74 细胞核 PcPLT1-2 >Cluster-11683.110575.p1 AtPLT1 469 51308.34 6.47 53.41 25.59 5.33 12.15 56.93 细胞核 PcPLT1-3 >Cluster-11683.173509.p1 AtPLT1 468 51236.27 6.47 52.88 25.21 5.13 12.61 57.05 细胞核 PcPLT1-4 >Cluster-11683.233671.p1 AtPLT1 421 47120.43 7.71 58.24 24.47 7.84 13.78 53.92 细胞质、细胞核 PcPLT2-1 >Cluster-11683.222146.p1 AtPLT2 601 66506.19 6.51 59.63 18.47 3.99 12.48 65.06 细胞质、细胞核 PcPLT2-2 >Cluster-11683.100274.p1 AtPLT2 277 30714.02 7.25 61.66 34.30 7.22 15.52 42.96 细胞质、细胞核 PcPLT2-3 >Cluster-11683.77849.p1 AtPLT2 180 20995.90 9.64 70.94 33.89 7.78 26.11 32.22 细胞核 PcPLT2-4 >Cluster-11683.163200.p1 AtPLT2 159 17827.93 6.48 67.61 42.77 5.66 16.35 35.22 细胞核 PcPLT2-5 >Cluster-11683.105355.p1 AtPLT2 312 34191.20 6.94 73.91 26.92 6.73 13.14 53.21 细胞质、细胞核 PcPLT2-6 >Cluster-11683.151415.p2 AtPLT2 199 22672.77 9.11 74.02 39.70 7.54 22.61 30.15 细胞核 PcPLT2-7 >Cluster-11683.204809.p1 AtPLT2 332 36898.44 9.11 61.84 25.00 5.12 12.65 57.23 细胞核 PcPLT2-8 >Cluster-11683.147730.p1 AtPLT2 395 44135.24 9.07 63.01 27.59 6.84 15.95 49.62 细胞质、细胞核 PcPLT2-9 >Cluster-11683.151416.p1 AtPLT2 391 43773.69 8.89 59.64 24.55 7.42 13.81 54.22 细胞质、细胞核 PcPLT2-10 >Cluster-11683.133871.p1 AtPLT2 380 42322.23 9.27 61.89 24.47 7.37 13.68 54.47 细胞质、细胞核 PcPLT2-11 >Cluster-11683.182808.p2 AtPLT2 184 20988.80 9.26 69.46 39.67 7.07 18.48 34.78 细胞核 -
[1] 国家药典委员会. 中华人民共和国药典: 二部 (2020年版)[M]. 北京: 中国医药科技出版社, 2020. [2] 张娇, 王元忠, 杨维泽, 等. 黄精属植物化学成分及药理活性研究进展 [J]. 中国中药杂志, 2019, 44(10):1989−2008.ZHANG J, WANG Y Z, YANG W Z, et al. Research progress in chemical constituents in plants of Polygonatum a their pharmacological effects [J]. China Journal of Chinese Materia Medica, 2019, 44(10): 1989−2008.(in Chinese) [3] TANG C, YU Y M, QI Q L, et al. Steroidal saponins from the rhizome of Polygonatum sibiricum [J]. Journal of Asian Natural Products Research, 2019, 21(3): 197−206. doi: 10.1080/10286020.2018.1478-815 [4] 单春苗, 王晨凯, 施圆圆, 等. 多花黄精甾体皂苷生物合成途径分析及关键酶基因研究 [J]. 中国中药杂志, 2020, 45(12):2847−2857.SHAN C M, WANG C K, SHI Y Y, et al. Identification of key enzyme genes involved in biosynthesis of steroidal saponins and analysis of biosynthesis pathway in Polygonatum cyrtonema [J]. China Journal of Chinese Materia Medica, 2020, 45(12): 2847−2857.(in Chinese) [5] 童龙, 张磊, 高勇军, 等. 不同遮阴处理对多花黄精生理生长的影响 [J]. 西南林业大学学报(自然科学), 2020, 40(3):68−75.TONG L, ZHANG L, GAO Y J, et al. Growth and physiological characteristics of Polygonatum cyrtonema under different shading treatments [J]. Journal of Southwest Forestry University (Natural Sciences), 2020, 40(3): 68−75.(in Chinese) [6] 刘剑东, 幸菲菲, 彭思静, 等. 多花黄精丛生芽的诱导与增殖条件 [J]. 植物生理学报, 2020, 56(6):1277−1285.LIU J D, XING F F, PENG S J, et al. The conditions for induction and proliferation on cluster buds of Polygonatum cyrtonema [J]. Plant Physiology Journal, 2020, 56(6): 1277−1285.(in Chinese) [7] MAO H D, YU L J, HAN R, et al. ZmNAC55, a maize stress-responsive NAC transcription factor, confers drought resistance in transgenic Arabidopsis [J]. Plant Physiology and Biochemistry, 2016, 105: 55−66. doi: 10.1016/j.plaphy.2016.04.018 [8] AIDA M, BEIS D, HEIDSTRA R, et al. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche [J]. Cell, 2004, 119(1): 109−120. doi: 10.1016/j.cell.2004.09.018 [9] 宋婷婷, 梁楠松, 吕义品, 等. 水曲柳FmPLT基因家族的鉴定及表达分析 [J]. 北京林业大学学报, 2022, 44(2):11−21.SONG T T, LIANG N S, LÜ Y P, et al. Identification and expression analysis of FmPLT gene family of Fraxinus mandschurica [J]. Journal of Beijing Forestry University, 2022, 44(2): 11−21.(in Chinese) [10] GALINHA C, HOFHUIS H, LUIJTEN M, et al. PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development [J]. Nature, 2007, 449(7165): 1053−1057. doi: 10.1038/nature06206 [11] LJUNG K, HULL A K, CELENZA J, et al. Sites and regulation of auxin biosynthesis in Arabidopsis roots [J]. The Plant Cell, 2005, 17(4): 1090−1104. doi: 10.1105/tpc.104.029272 [12] BLILOU I, XU J, WILDWATER M, et al. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots [J]. Nature, 2005, 433(7021): 39−44. doi: 10.1038/nature03184 [13] BENKOVÁ E, MICHNIEWICZ M, SAUER M, et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation [J]. Cell, 2003, 115(5): 591−602. doi: 10.1016/S0092-8674(03)00924-3 [14] FRIML J, WIŚNIEWSKA J, BENKOVÁ E, et al. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis [J]. Nature, 2002, 415(6873): 806−809. doi: 10.1038/415806a [15] 张倩倩, 郑童, 予茜, 等. 生长素与植物根尖干细胞巢的维持 [J]. 植物学报, 2018, 53(1):126−138.ZHANG Q Q, ZHENG T, YU A Y, et al. Auxin and the maintenance of root stem cell niches in plants [J]. Chinese Bulletin of Botany, 2018, 53(1): 126−138.(in Chinese) [16] GRIENEISEN V A, XU J, MARÉE A F M, et al. Auxin transport is sufficient to generate a maximum and gradient guiding root growth [J]. Nature, 2007, 449(7165): 1008−1013. doi: 10.1038/nature06215 [17] MATSUZAKI Y, OGAWA-OHNISHI M, MORI A, et al. Secreted peptide signals required for maintenance of root stem cell niche in Arabidopsis [J]. Science, 2010, 329(5995): 1065−1067. doi: 10.1126/science.1191132 [18] DU Y J, SCHERES B. PLETHORA transcription factors orchestrate de novo organ patterning during Arabidopsis lateral root outgrowth [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(44): 11709−11714. doi: 10.1073/pnas.1714410114 [19] KAREEM A, DURGAPRASAD K, SUGIMOTO K, et al. PLETHORA genes control regeneration by a two-step mechanism [J]. Current Biology, 2015, 25(8): 1017−1030. doi: 10.1016/j.cub.2015.02.022 [20] 丁一巍, 詹亚光, 张佳薇, 等. 水曲柳2个PLT转录因子基因的克隆及表达分析 [J]. 植物研究, 2019, 39(1):139−147.DING Y W, ZHAN Y G, ZHANG J W, et al. Cloning and expression analysis of two PLT transcription factors genes in Fraxinus mandshurica [J]. Bulletin of Botanical Research, 2019, 39(1): 139−147.(in Chinese) [21] 张松, 黄波, 夏学峰, 等. 蛋白质亚细胞定位的生物信息学研究 [J]. 生物化学与生物物理进展, 2007, 34(6):573−579.ZHANG S, HUANG B, XIA X F, et al. Bioinformatics research in subcellular localization of protein [J]. Progress in Biochemistry and Biophysics, 2007, 34(6): 573−579.(in Chinese) [22] NOLE-WILSON S, TRANBY T L, KRIZEK B A. AINTEGUMENTA-like (AIL) genes are expressed in young tissues and may specify meristematic or division-competent states [J]. Plant Molecular Biology, 2005, 57(5): 613−628. doi: 10.1007/s11103-005-0955-6 [23] SANTUARI L, SANCHEZ-PEREZ G F, LUIJTEN M, et al. The PLETHORA gene regulatory network guides growth and cell differentiation in Arabidopsis roots [J]. The Plant Cell, 2016, 28(12): 2937−2951. doi: 10.1105/tpc.16.00656 [24] PINON V, PRASAD K, GRIGG S P, et al. Local auxin biosynthesis regulation by PLETHORA transcription factors controls phyllotaxis in Arabidopsis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(3): 1107−1112. doi: 10.1073/pnas.1213497110 [25] MITTLER R, BLUMWALD E. The roles of ROS and ABA in systemic acquired acclimation [J]. The Plant Cell, 2015, 27(1): 64−70. doi: 10.1105/tpc.114.133090