• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大赤隐翅虫的线粒体基因组研究及系统发育分析

林兴雨 刘向阳 宋南

林兴雨,刘向阳,宋南. 大赤隐翅虫的线粒体基因组研究及系统发育分析 [J]. 福建农业学报,2023,38(5):607−615 doi: 10.19303/j.issn.1008-0384.2023.05.012
引用本文: 林兴雨,刘向阳,宋南. 大赤隐翅虫的线粒体基因组研究及系统发育分析 [J]. 福建农业学报,2023,38(5):607−615 doi: 10.19303/j.issn.1008-0384.2023.05.012
LIN X Y, LIU X Y, SONG N. Mitochondrial Genome and Phylogenetics of Philonthus spinipes (Sharp, 1874) [J]. Fujian Journal of Agricultural Sciences,2023,38(5):607−615 doi: 10.19303/j.issn.1008-0384.2023.05.012
Citation: LIN X Y, LIU X Y, SONG N. Mitochondrial Genome and Phylogenetics of Philonthus spinipes (Sharp, 1874) [J]. Fujian Journal of Agricultural Sciences,2023,38(5):607−615 doi: 10.19303/j.issn.1008-0384.2023.05.012

大赤隐翅虫的线粒体基因组研究及系统发育分析

doi: 10.19303/j.issn.1008-0384.2023.05.012
基金项目: 国家自然科学基金项目(U1904104)
详细信息
    作者简介:

    林兴雨(1999−),男,硕士研究生,研究方向:昆虫分子系统发育学(E-mail:xingyulin666666@163.com)

    通讯作者:

    宋南(1980−),男,副教授,博士,研究方向:昆虫分子系统发育学(E-mail:songnan@henau.edu.cn)

  • 中图分类号: S435

Mitochondrial Genome and Phylogenetics of Philonthus spinipes (Sharp, 1874)

  • 摘要:   目的  探究大赤隐翅虫Philonthus spinipes(Sharp, 1874)的线粒体基因组结构特征及隐翅虫亚科的系统发育关系。  方法  利用高通量测序技术获得大赤隐翅虫线粒体基因组的全序列。在系统发育分析中,选择隐翅虫亚科的21个物种和毒隐翅虫亚科的8个物种作为内群,并选择2个蚁甲亚科Pselaphinae的物种作为外群,利用最大似然法和贝叶斯法重建隐翅虫亚科的系统发育关系。  结果  大赤隐翅虫的线粒体基因组包含37个基因(13个蛋白质编码基因、22个tRNA基因和2个rRNA基因)和一段非编码控制区。整个线粒体基因组全长为16 219 bp(GenBank登录号:OL998729)。大赤隐翅虫线粒体基因组的13个蛋白质编码基因的起始密码子除nad6nad1利用ATC和TTG开头外,其余蛋白质编码基因都是以ATT、ATA和ATG开头。4个蛋白质编码基因(cox1cox2、cox3nad5)以不完整的终止密码子T或TA结尾,其余9个蛋白质编码基因以完整的终止密码子TAA或TAG结尾。除trnS1因缺少DHU臂而形成一个简单的环,无法形成稳定的三叶草结构外,其余tRNA基因均能形成典型的三叶草结构。rrnL基因的全长为1 275 bp,A+T含量为79.84%。rrnS基因全长为765 bp,A+T含量为76.47%。  结论  两种不同的系统发育分析方法构建的隐翅虫亚科的系统发育关系是基本一致的,均表明隐翅虫亚科为非单系群;毒隐翅虫亚科为单系群;毒隐翅虫亚科嵌套在隐翅虫亚科中。
  • 图  1  大赤隐翅虫线粒体基因组结构

    箭头表示转录方向。

    Figure  1.  Structure of P. spinipes mitochondrial genome

    Arrow indicates direction of transcription.

    图  2  大赤隐翅虫 22 个 tRNA基因的二级结构

    Figure  2.  Secondary structures of 22 tRNAs genes of P. spinipes

    图  3  大赤隐翅虫12S rRNA基因二级结构预测

    Figure  3.  Predicted secondary structure of 16S rRNA gene of P. spinipes mitogenome

    图  4  大赤隐翅虫12S rRNA基因二级结构预测

    Figure  4.  Predicted secondary structure of 12S rRNA gene of P. spinipes mitogenome

    图  5  基于13个蛋白编码基因的核苷酸序列构建的最大似然树

    Figure  5.  ML tree built based on 13 PCG_nt

    图  6  基于13个蛋白编码基因的核苷酸序列构建的贝叶斯树

    Figure  6.  BI tree built based on 13 PCG_nt

    表  1  大赤隐翅虫线粒体基因组注释

    Table  1.   Annotation of P. spinipes mitochondrial genome

    基因
    Gene
    基因长度
    Gene length/bp
    起始位置
    Start position/bp
    终止位置
    Stop position/bp
    起始密码子
    Start codon
    终止密码子
    Stop codon
    编码链
    Coding strand
    控制区Control region1 52111 521非编码序列Non-coding sequence
    trnI641 5221 585H
    trnQ691 6511 583L
    trnM691 6511 719H
    nad21 0171 7202 736ATTTAAH
    trnW672 7352 801H
    trnC622 8782 817L
    trnY642 9442 881L
    cox11 5402 9374 476ATTTH
    trnL2654 4774 541H
    cox26884 5405 227ATGTH
    trnK715 2285 298H
    trnD665 2985 363H
    atp81565 3645 519ATATAAH
    atp66695 5136 181ATGTAAH
    cox37886 1816 968ATGTAH
    trnG616 9707 030H
    nad33547 0337 386ATTTAGH
    trnA657 3857 449H
    trnR667 4497 514H
    trnN667 5717 636H
    trnS1667 6377 702H
    trnE687 7037 770H
    trnF677 8357 769L
    nad51 7179 5527 836ATTTL
    trnH659 6179 553L
    nad41 33810 9549 617ATGTAAL
    nad4l28811 23510 948ATGTAAL
    trnT6311 23811 300H
    trnP6411 36411 301L
    nad649811 36611 863ATCTAAH
    Cob1 14311 86313 005ATGTAGH
    trnS26613 00413 069H
    nad195114 03713 087TTGTAGL
    trnL16514 10314 039L
    rrnL1 27515 37814 104L
    trnV7315 45415 382L
    rrnS76516 21915 455L
    H:重链;L:轻链;T或TA表示不完全密码子。
    H: Heavy strand; L: light strand; T or TA: incomplete stop codon.
    下载: 导出CSV

    表  2  大赤隐翅虫线粒体基因组13个蛋白质编码基因的相对密码子使用频率

    Table  2.   Relative synonymous codon usage of 13 protein-coding genes of P. spinipes mitochondrial genome

    密码子
    Codon
    次数
    Count
    RSCU密码子
    Codon
    次数
    Count
    RSCU密码子
    Codon
    次数
    Count
    RSCU密码子
    Codon
    次数
    Count
    RSCU
    UUU(F)2801.53UCU(S)721.58UAU(Y)1731.54UGU(C)511.17
    UUC(F)850.47UCC(S)420.92UAC(Y)520.46UGC(C)360.83
    UUA(L)1852.44UCA(S)731.6UAA(*)1271.23UGA(W)601.3
    UUG(L)610.8UCG(S)220.48UAG(*)800.77UGG(W)320.7
    CUU(L)781.03CCU(P)571.78CAU(H)591.53CGU(R)121.2
    CUC(L)380.5CCC(P)341.06CAC(H)180.47CGC(R)40.4
    CUA(L)530.7CCA(P)300.94CAA(Q)511.38CGA(R)161.6
    CUG(L)400.53CCG(P)70.22CAG(Q)230.62CGG(R)80.8
    AUU(I)2401.57ACU(T)541.64AAU(N)1591.55AGU(S)360.79
    AUC(I)650.43ACC(T)331AAC(N)460.45AGC(S)270.59
    AUA(M)1221.37ACA(T)391.18AAA(K)991.49AGA(S)461.01
    AUG(M)560.63ACG(T)60.18AAG(K)340.51AGG(S)471.03
    GUU(V)351.46GCU(A)171.58GAU(D)601.48GGU(G)170.78
    GUC(V)150.63GCC(A)111.02GAC(D)210.52GGC(G)130.6
    GUA(V)261.08GCA(A)121.12GAA(E)561.24GGA(G)331.52
    GUG(V)200.83GCG(A)30.28GAG(E)340.76GGG(G)241.1
    RSCU:相对密码子使用频率; *终止密码子。
    RSCU: Relative synonymous codon usage; *: stop codon.
    下载: 导出CSV
  • [1] THAYER M K. Morphology and Systematics (Archostemata, Adephaga, Myxophaga, Polyphaga partim)[M]. Berlin: Walter de Gruyter, 2016: 394-442.
    [2] CAI C Y, WANG Y L, LIANG L, et al. Congruence of morphological and molecular phylogenies of the rove beetle subfamily Staphylininae (Coleoptera: Staphylinidae) [J]. Scientific Reports, 2019, 9(1): 1−11. doi: 10.1038/s41598-018-37186-2
    [3] KASULE F K. The larvae of Paederinae and Staphylininae (Coleoptera: Staphylinidae) with keys to the known British Genera [J]. Transactions of the Royal Entomological Society of London, 2009, 122(2): 49−80. doi: 10.1111/j.1365-2311.1970.tb00527.x
    [4] NEWTON A F, THAYER M K. In American Beetles (Archostemata, Myxophaga, Adephaga, Polyphaga: Staphyliniformia)[M]. London: CRC Press, 2000: 272–418.
    [5] GREBENNIKOV V V, NEWTON A F. Good-bye Scydmaenidae, or why the ant-like stone beetles should become megadiverse Staphylinidae sensu latissimo (Coleoptera) [J]. European Journal of Entomology, 2009, 106(2): 275−301. doi: 10.14411/eje.2009.035
    [6] NEWTON A F, THAYER M K, CHICAGO N N H M. Current classification and family-group names in Staphyliniformia (Coleoptera)[M]. Chicago: Field Museum of Natural History, 1992.
    [7] SOLODOVNIKOV A Y, NEWTON A F. Phylogenetic placement of Arrowinini trib. n. within the subfamily Staphylininae (Coleoptera: Staphylinidae), with revision of the relict South African genusArrowinusand description of its larva [J]. Systematic Entomology, 2005, 30(3): 398−441. doi: 10.1111/j.1365-3113.2004.00283.x
    [8] MCKENNA D D, WILD A L, KANDA K, et al. The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution [J]. Systematic Entomology, 2015, 40(4): 835−880. doi: 10.1111/syen.12132
    [9] CHATZIMANOLIS S, COHEN I M, SCHOMANN A, et al. Molecular phylogeny of the mega-diverse rove beetle tribe Staphylinini (Insecta, Coleoptera, Staphylinidae) [J]. Zoologica Scripta, 2010, 39(5): 436−449. doi: 10.1111/j.1463-6409.2010.00438.x
    [10] MCKENNA D D, FARRELL B D, CATERINO M S, et al. Phylogeny and evolution of Staphyliniformia and Scarabaeiformia: Forest litter as a stepping stone for diversification of nonphytophagous beetles [J]. Systematic Entomology, 2015, 40(1): 35−60. doi: 10.1111/syen.12093
    [11] BRUNKE A J, CHATZIMANOLIS S, SCHILLHAMMER H, et al. Early evolution of the hyperdiverse rove beetle tribe Staphylinini (Coleoptera: Staphylinidae: Staphylininae) and a revision of its higher classification [J]. Cladistics, 2016, 32(4): 427−451. doi: 10.1111/cla.12139
    [12] SCHOMANN A M, SOLODOVNIKOV A. Phylogenetic placement of the austral rove beetle genus Hyperomma triggers changes in classification of Paederinae (Coleoptera: Staphylinidae) [J]. Zoologica Scripta, 2017, 46(3): 336−347. doi: 10.1111/zsc.12209
    [13] CAMERON S L. Insect mitochondrial genomics: Implications for evolution and phylogeny [J]. Annual Review of Entomology, 2014, 59: 95−117. doi: 10.1146/annurev-ento-011613-162007
    [14] BOORE J L. Animal mitochondrial genomes [J]. Nucleic Acids Research, 1999, 27(8): 1767−1780. doi: 10.1093/nar/27.8.1767
    [15] SONG N, ZHANG H, LI H, et al. All 37 mitochondrial genes of aphid Aphis craccivora obtained from transcriptome sequencing: Implications for the evolution of aphids [J]. PLoS One, 2016, 11(6): e0157857. doi: 10.1371/journal.pone.0157857
    [16] JIN J J, YU W B, YANG J B, et al. GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes [J]. Genome Biology, 2020, 21(1): 241. doi: 10.1186/s13059-020-02154-5
    [17] BERNT M, DONATH A, JÜHLING F, et al. MITOS: Improved de novo metazoan mitochondrial genome annotation [J]. Molecular Phylogenetics and Evolution, 2013, 69(2): 313−319. doi: 10.1016/j.ympev.2012.08.023
    [18] KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets [J]. Molecular Biology and Evolution, 2016, 33(7): 1870−1874. doi: 10.1093/molbev/msw054
    [19] KATOH K, STANDLEY D M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability [J]. Molecular Biology and Evolution, 2013, 30(4): 772−780. doi: 10.1093/molbev/mst010
    [20] ABASCAL F, ZARDOYA R, TELFORD M J. TranslatorX: Multiple alignment of nucleotide sequences guided by amino acid translations [J]. Nucleic Acids Research, 2010, 38(S2): W7−13. doi: 10.1093/nar/gkq291
    [21] CAPELLA-GUTIÉRREZ S, SILLA-MARTÍNEZ J M, GABALDÓN T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses [J]. Bioinformatics, 2009, 25(15): 1972−1973. doi: 10.1093/bioinformatics/btp348
    [22] KÜCK P, LONGO G C. FASconCAT-G: Extensive functions for multiple sequence alignment preparations concerning phylogenetic studies [J]. Frontiers in Zoology, 2014, 11(1): 1−8. doi: 10.1186/1742-9994-11-1
    [23] NGUYEN L T, SCHMIDT H A, VON HAESELER A, et al. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies [J]. Molecular Biology and Evolution, 2015, 32(1): 268−274. doi: 10.1093/molbev/msu300
    [24] LARTILLOT N, LEPAGE T, BLANQUART S. PhyloBayes 3: A Bayesian software package for phylogenetic reconstruction and molecular dating [J]. Bioinformatics, 2009, 25(17): 2286−2288. doi: 10.1093/bioinformatics/btp368
    [25] GREINER S, LEHWARK P, BOCK R. OrganellarGenomeDRAW (OGDRAW) version 1.3. 1: Expanded toolkit for the graphical visualization of organellar genomes [J]. Nucleic Acids Research, 2019, 47(W1): W59−64. doi: 10.1093/nar/gkz238
    [26] BAE J S, KIM I, SOHN H D, et al. The mitochondrial genome of the firefly, Pyrocoelia rufa: Complete DNA sequence, genome organization, and phylogenetic analysis with other insects [J]. Molecular Phylogenetics and Evolution, 2004, 32(3): 978−985. doi: 10.1016/j.ympev.2004.03.009
    [27] 林爱丽, 李欣欣, 赵新成, 等. 黑毛皮蠹线粒体基因组分析及皮蠹科系统发育分析 [J]. 昆虫学报, 2018, 61(4):477−487. doi: 10.16380/j.kcxb.2018.04.010

    LIN A L, LI X X, ZHAO X C, et al. Analysis of the mitochondrial genome of Attagenus unicolor japonicus (Coleoptera: Dermestidae) and a phylogenetic analysis of Dermestidae [J]. Acta Entomologica Sinica, 2018, 61(4): 477−487.(in Chinese) doi: 10.16380/j.kcxb.2018.04.010
    [28] SONG N, ZHANG H, ZHAO T. Insights into the phylogeny of Hemiptera from increased mitogenomic taxon sampling [J]. Molecular Phylogenetics and Evolution, 2019, 137: 236−249. doi: 10.1016/j.ympev.2019.05.009
    [29] SONG N, ZHAI Q, ZHANG Y L. Higher-level phylogenetic relationships of rove beetles (Coleoptera, Staphylinidae) inferred from mitochondrial genome sequences [J]. Mitochondrial DNA Part A, 2021, 32(3): 98−105. doi: 10.1080/24701394.2021.1882444
    [30] 林兴雨, 翟卿, 宋南, 等. 锯谷盗线粒体基因组及扁甲总科系统发育分析 [J]. 河南农业大学学报, 2023, 57(1):109−117. doi: 10.3969/j.issn.1000-2340.2023.1.hennannydxxb202301012

    LIN X Y, ZHAI Q, SONG N, et al. The mitochondrial genome of Oryzaephilus surinamensis and a phylogenetic analysis of cucujoidea [J]. Journal of Henan Agricultural University, 2023, 57(1): 109−117.(in Chinese) doi: 10.3969/j.issn.1000-2340.2023.1.hennannydxxb202301012
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  344
  • HTML全文浏览量:  137
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-27
  • 修回日期:  2023-03-17
  • 网络出版日期:  2023-07-06
  • 刊出日期:  2023-05-28

目录

    /

    返回文章
    返回