Physiological Functions of SecD in Aeromonas hydrophila
-
摘要:
目的 系统研究嗜水气单胞菌Sec分泌系统亚基SecD(Protein-export membrane protein,SecD)的生理功能。 方法 利用pRE112自杀载体,通过同源重组的方法,构建secD基因缺失株(标记为∆secD)。以嗜水气单胞菌野生型菌株为对照组,分别采用绵羊血、牛奶固体培养基测定∆secD 的溶血性和胞外蛋白酶活性;结晶紫染色法结合多功能酶标仪测定生物被膜形成能力;利用全自动生长曲线仪进行细菌酸碱及高渗透压耐受性分析;采用二倍稀释法系统评估细菌抗生素耐药性。 结果 与嗜水气单胞菌野生型菌株相比,发现∆secD生物被膜形成能力降低,溶血性、胞外蛋白酶活性显著增强,碱性和高渗透压环境胁迫的耐受性增强,对盐酸土霉素、四环素、依诺沙星和美罗培南的MIC提高4倍,对环丙沙星和诺氟沙星的MIC提高2倍,而对红霉素和头孢噻肟钠的MIC分别降低了2倍和4倍。 结论 发现Sec分泌系统的亚基SecD参与嗜水气单胞菌毒力因子、抗生素耐药蛋白等的跨膜转运,对以Sec分泌系统的亚单位为靶标开发新一代抗菌药物提供理论依据,对预防和控制嗜水气单胞菌引起疾病的发生和传播可能具有重要的科学意义。 Abstract:Objective Physiological functions of the Sec pathway subunit secD of Aeromonas hydrophila were studied. Method An secD-knockout A.hydrophila was constructed by homologous recombination with pRE112 suicide vector. Effects of the genetic deletion on the physiological phenotypes including hemolytic and extracellular protease activities were determined on sheep’s blood and skim milk agar plates; on the biofilm formation, by crystal violet staining combined with SpectraMax® i3; on the bacterial acid-base and hyperosmolarity tolerance, according to the growth curve; and on the minimal inhibitory concentration (MIC) of antibiotics, using the broth microdilution method. Result Compared to wild-type, the constructed ∆secD A.hydrophila showed no significant differences in growth and tolerance to pH 5, 6, 7, and 8. The activities of hemolytic and extracellular protease, as well as the resistance to high osmotic pressure or pH 9 were enhanced. The biofilm forming ability significantly declined. And the resistance to antibiotics varied, as the MIC increased 4 times on oxytetracycline, tetracycline, enoxacin, or meropenem and two times on ciprofloxacin and norfloxacin, but decreased 2 times on erythromycin and 4 times on cefotaxime. Conclusion The Sec pathway subunit secD was confirmed to be involved in the transport of virulence factors and resistance to antibiotics in A.hydrophila. It could be a key element in studies for developing antimicrobial applications and prevention of disease infected by the pathogen. -
Key words:
- Aeromonas hydrophila /
- secD /
- Sec pathway /
- physiological functions
-
图 2 ΔsecD缺失株的验证
M:5000 Marker;1:以嗜水气单胞菌为模板,P5、P6为引物的扩增产物;2:以敲除菌为模板,P5、P6为引物的扩增产物;3:以嗜水气单胞菌为模板,P7、P8为引物的扩增产物;4:以敲除菌为模板,P7、P8为引物的扩增产物。
Figure 2. Verification of ΔsecD strain
M: 5000 Marker; 1: PCR products by P5 and P6 primers with A.hydrophila template; 2: PCR products by P5 and P6 primers with ΔsecD template; 3: PCR products by P7 and P8 primers with A.hydrophila template; 4: PCR products by P7 and P8 primers with ΔsecD template.
表 1 secD基因敲除引物序列
Table 1. Primers for secD knockout
编号
No.寡核苷酸序列(5′-3′)
Oligonucleotide sequence (5′-3′)描述
DiscriptionP1 catgaattcccgggagagctcGGGACGCGATCGAGCAGG 左臂上游引物 P2 aacatgtctcttccGCTGTGCTCCTCGGGAGATT 左臂下游引物 P3 cacagcGGAAGAGACATGTTTCAGATTCTACATT 右臂上游引物 P4 cgatcccaagcttcttctagaGGCCAGACGCCATTCGAA 右臂下游引物 P5 GTGTTAAATCGCTATCCGCTGTGGA 目的基因上游引物 P6 TTAGATCGGCAGCTTGTCGAGG 目的基因下游引物 P7 CGATTGCTACACCTGCAAGAACTACA 左臂外侧验证上游引物 P8 GATGTACTCGGTATCCCCCTTGC 右臂外侧验证下游引物 表 2 ΔsecD抗生素耐药性检测结果
Table 2. Antibiotic resistance of A.hydrophila and ΔsecD strain
分类
Category名称
Name最低抑菌质量浓度
MIC/(μg·mL−1)分类
Category名称
Name最低抑菌质量浓度
MIC/(μg·mL−1)野生株
A.hydrophila缺失株
ΔsecD野生株
A.hydrophila缺失株
ΔsecD四环素类
Tetracyclines盐酸土霉素
Oxytetracycline
hydrochloride2.5 10 氨基糖苷类
Aminoglycosides链霉素
Streptomycin20 20 四环素
Tetracycline2.5 10 硫酸新霉素
Neomycin sulfate6.25 6.25 盐酸金霉素
Chlortetracycline
hydrochloride20 20 卡那霉素
Kanamycin12.5 12.5 多西霉素
Doxycycline10 10 硫酸安普霉素
Apramycin Sulfate25 25 强力霉素
Doxycycline10 10 庆大霉素
Gentamicin1.25 1.25 大环内酯类
Macrolides红霉素
Erythromycin32 16 硫酸巴龙霉素
Paromomycin sulfate10 10 罗红霉素
Roxithromycin32 32 妥布霉素
Tobramycin1.25 1.25 阿奇霉
Azithromycin0.5 0.5 壮观霉素
Spectinomycin32 32 那他霉素
Natamycin10 10 阿米卡星
Amikacin12.8 12.8 乙酰螺旋霉素
Acetylspiramycin512 512 利福霉素类
Rifamycins利福平
Rifampicin6.4 6.4 奎诺酮类
Quinolones恩诺沙星
Enrofloxacin0.125 0.125 头孢菌素类
Cephalosporins头孢美唑钠
Cefmetazole8 8 依诺沙星
Enoxacin0.0125 0.0500 头孢米诺
Cefminox64 64 培氟沙星
Pefloxacin0.125 0.125 头孢唑啉钠
Cefazolin256 256 环丙沙星
Ciprofloxacin0.00625 0.01250 头孢噻肟钠
Cefotaxime1.2500 0.3125 巴洛沙星
Balofloxacin0.625 0.625 头孢他啶
Ceftazidime128 128 萘啶酸
Nalidixic acid0.5 0.5 头孢曲松钠
Ceftriaxone0.25 0.25 左氧氟沙星
Levofloxacin0.015625 0.015625 多肽类
Polypeptides硫酸粘菌素
Colistin5 5 氧氟沙星
Ofloxacin0.025 0.025 硫酸多粘菌素
B Polymyxin B6.25 6.25 诺氟沙星
Norfloxacin0.02 0.04 碳青霉烯类
Carbapenems美罗培南
Meropenem0.0625 0.2500 莫西沙星
Moxifloxacin0.0625 0.0625 亚胺培南
Imipenem128 128 -
[1] 霍诗天, 焦厚琪, 李清, 等. 克氏原螯虾嗜水气单胞菌噬菌体的分离鉴定和应用 [J]. 水生生物学报, 2021, 45(2):366−375.HUO S T, JIAO H Q, LI Q, et al. Isolation, identification and preliminary application of Aeromonas hydrophila phage from Procambarus clarkii [J]. Acta Hydrobiologica Sinica, 2021, 45(2): 366−375.(in Chinese) [2] 戴瑜来, 戴杨鑫, 马恒甲, 等. 气单胞菌对水生动物的危害及噬菌体防控研究进展 [J]. 水产养殖, 2019, 40(2):48−50.DAI Y L, DAI Y X, MA H J, et al. Research progress on harm of Aeromonas to aquatic animals and phage control [J]. Journal of Aquaculture, 2019, 40(2): 48−50.(in Chinese) [3] RAMSAMY Y, AMOAKO D G, ABIA A L K, et al. First genome sequence of Aeromonas hydrophilia novel sequence type 658 strain isolated from livestock in South Africa [J]. Journal of Global Antimicrobial Resistance, 2021, 24: 175−177. doi: 10.1016/j.jgar.2020.12.021 [4] 杜雪晴, 古河祥, 萨家祺, 等. 马来穿山甲源嗜水气单胞菌亚种的分离鉴定及生物学特性分析 [J]. 中国动物检疫, 2021, 38(4):124−131.DU X Q, GU H X, SA J Q, et al. Isolation and identification of Aeromonas dhakensis derived from Manis javanica and analysis on its biological characteristics [J]. China Animal Health Inspection, 2021, 38(4): 124−131.(in Chinese) [5] STRATEV D, ODEYEMI O A. Antimicrobial resistance of Aeromonas hydrophila isolated from different food sources: A mini-review [J]. Journal of Infection and Public Health, 2016, 9(5): 535−544. doi: 10.1016/j.jiph.2015.10.006 [6] LEE S W, WENDY W. Antibiotic and heavy metal resistance of Aeromonas hydrophila and Edwardsiella tarda isolated from red hybrid tilapia (Oreochromis spp. ) coinfected with motile Aeromonas septicemia and edwardsiellosis [J]. Veterinary World, 2017, 10(7): 803−807. doi: 10.14202/vetworld.2017.803-807 [7] 张洋, 贾凯翔, 张秀文, 等. 噬菌体PZL-Ah1的生物学特性及其治疗嗜水气单胞菌感染的效果评价 [J]. 中国预防兽医学报, 2021, 43(6):602−608.ZHANG Y, JIA K X, ZHANG X W, et al. Biological characteristics of bacteriophage PZL-Ah1 and evaluation of its efficacy in the treatment of Aeromonas hydrophila infection [J]. Chinese Journal of Preventive Veterinary Medicine, 2021, 43(6): 602−608.(in Chinese) [8] SMETS D, LOOS M S, KARAMANOU S, et al. Protein transport across the bacterial plasma membrane by the sec pathway [J]. The Protein Journal, 2019, 38(3): 262−273. doi: 10.1007/s10930-019-09841-8 [9] Nickerson C A, SCHURR M J. Molecular paradigms of infectious disease: a bacterial perspective (Emerging infectious diseases of the 21st century)[M]. New York: Springer, 2006. [10] JIN J S, HSIEH Y H, CHAUDHARY A S, et al. SecA inhibitors as potential antimicrobial agents: Differential actions on SecA-only and SecA-SecYEG protein-conducting channels [J]. FEMS Microbiology Letters, 2018, 365(15): fny145. doi: 10.1093/femsle/fny145 [11] RAO C V S, DE WAELHEYNS E, ECONOMOU A, et al. Antibiotic targeting of the bacterial secretory pathway [J]. Biochimica et Biophysica Acta, 2014, 1843(8): 1762−1783. doi: 10.1016/j.bbamcr.2014.02.004 [12] CHAUDHARY A S, CHEN W X, JIN J S, et al. SecA: A potential antimicrobial target [J]. Future Medicinal Chemistry, 2015, 7(8): 989−1007. doi: 10.4155/fmc.15.42 [13] GARDEL C, JOHNSON K, JACQ A, et al. The secD locus of E. coli codes for two membrane proteins required for protein export [J]. The EMBO Journal, 1990, 9(12): 4205−4206. doi: 10.1002/j.1460-2075.1990.tb07645.x [14] GUO L N, HUANG L X, SU Y Q, et al. secA, secD, secF, yajC, and yidC contribute to the adhesion regulation of Vibrio alginolyticus [J]. MicrobiologyOpen, 2018, 7(2): e00551. doi: 10.1002/mbo3.551 [15] CRANE J M, RANDALL L L. The sec system: Protein export in Escherichia coli[J]. EcoSal Plus, 2017, 7(2): 10.1128/ecosalplus. ESP-10.1128/ecosalplus0002-2017. [16] PRADEL N, DELMAS J, WU L F, et al. Sec- and Tat-dependent translocation of beta-lactamases across the Escherichia coli inner membrane [J]. Antimicrobial Agents and Chemotherapy, 2009, 53(1): 242−248. doi: 10.1128/AAC.00642-08 [17] FU Y Y, ZHANG L S, WANG G B, et al. The LysR-type transcriptional regulator YeeY plays important roles in the regulatory of furazolidone resistance in Aeromonas hydrophila [J]. Frontiers in Microbiology, 2020, 11: 577376. doi: 10.3389/fmicb.2020.577376 [18] FU Y Y, CAI Q L, WANG Y Q, et al. Four LysR-type transcriptional regulator family proteins (LTTRs) involved in antibiotic resistance in Aeromonas hydrophila [J]. World Journal of Microbiology and Biotechnology, 2019, 35(8): 127. doi: 10.1007/s11274-019-2700-3 [19] 李碗芯, 赵怡扬, 林玲, 等. 嗜水气单胞菌中转录因子AHA_1581对细菌生理功能调控机制的研究 [J]. 微生物学报, 2021, 61(11):3594−3606.LI W X, ZHAO Y Y, LIN L, et al. Study on the transcription factor AHA_1581 in Aeromonas hydrophila on the regulation mechanism of bacterial physiological functions [J]. Acta Microbiologica Sinica, 2021, 61(11): 3594−3606.(in Chinese) [20] HERNÁNDEZ-MORALES A, MARTÍNEZ-PENICHE R A, ARVIZU-GÓMEZ J L, et al. Production of a mixture of fengycins with surfactant and antifungal activities by Bacillus sp. MA04, a versatile PGPR [J]. Indian Journal of Microbiology, 2018, 58(2): 208−213. doi: 10.1007/s12088-018-0711-7 [21] VIJAYARAGHAVAN P, VINCENT S G P. A simple method for the detection of protease activity on agar plates using bomochresolgreen dye [J]. Journal of Biochemical Technology, 2013, 4(3): 628−630. [22] OGAKI M, FURUICHI Y, KURODA K, et al. Importance of co-cultivation medium pH for successful Agrobacterium-mediated transformation of Lilium × formolongi [J]. Plant Cell Reports, 2008, 27(4): 699−705. doi: 10.1007/s00299-007-0481-x [23] AHMED H, MOHAMED M, REZK M, et al. Aeromonas hydrophila in fish and humans; prevalence, virulotyping and antimicrobial resistance [J]. Slovenian Veterinary Research, 2018, 55: 112−113. [24] INNES G K, RANDAD P R, KORINEK A, et al. External societal costs of antimicrobial resistance in humans attributable to antimicrobial use in livestock [J]. Annual Review of Public Health, 2020, 41: 141−157. doi: 10.1146/annurev-publhealth-040218-043954 [25] CHATZI K E, SARDIS M F, KARAMANOU S, et al. Breaking on through to the other side: Protein export through the bacterial Sec system [J]. The Biochemical Journal, 2013, 449(1): 25−37. doi: 10.1042/BJ20121227 [26] QUIBLIER C, SEIDL K, ROSCHITZKI B, et al. Secretome analysis defines the major role of SecDF in Staphylococcus aureus virulence [J]. PLoS One, 2013, 8(5): e63513. doi: 10.1371/journal.pone.0063513 [27] YAN S M, WU G. Evolutionary evidence on suitability of SecD as a target for development of antibacterial agents against Staphylococcus aureus [J]. Ecology and Evolution, 2016, 6(5): 1393−1410. doi: 10.1002/ece3.1951