• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

茶树FtsH基因家族鉴定及CsFtsH31功能分析

何仕玉 姚新转 刘洋 陈凌霄 吕立堂

何仕玉,姚新转,刘洋,等. 茶树FtsH基因家族鉴定及CsFtsH31功能分析 [J]. 福建农业学报,2023,38(5):583−597 doi: 10.19303/j.issn.1008-0384.2023.05.010
引用本文: 何仕玉,姚新转,刘洋,等. 茶树FtsH基因家族鉴定及CsFtsH31功能分析 [J]. 福建农业学报,2023,38(5):583−597 doi: 10.19303/j.issn.1008-0384.2023.05.010
HE S Y, YAO X Z, LIU Y, et al. Identification of FtsH gene family and functional analysis of CsFtsH31 gene [J]. Fujian Journal of Agricultural Sciences,2023,38(5):583−597 doi: 10.19303/j.issn.1008-0384.2023.05.010
Citation: HE S Y, YAO X Z, LIU Y, et al. Identification of FtsH gene family and functional analysis of CsFtsH31 gene [J]. Fujian Journal of Agricultural Sciences,2023,38(5):583−597 doi: 10.19303/j.issn.1008-0384.2023.05.010

茶树FtsH基因家族鉴定及CsFtsH31功能分析

doi: 10.19303/j.issn.1008-0384.2023.05.010
基金项目: 贵州省科技计划项目(黔科合支撑[2021]一般111)
详细信息
    作者简介:

    何仕玉(1997−),女,硕士研究生,主要从事茶树生物技术研究(E-mail:18786239852@163.com

    通讯作者:

    吕立堂(1977−),男,教授,主要从事茶树资源综合利用及分子生物学研究(E-mail:ltlv@gzu.edu.cn

  • 中图分类号: S571.1

Identification of FtsH gene family and functional analysis of CsFtsH31 gene

  • 摘要:   目的  FtsH基因在植物的抗逆境胁迫中具有重要的作用,揭示茶树FtsH基因在茶树中的功能和表达模式可为茶树耐光氧化和抗高温胁迫改良育种提供理论依据。  方法  通过茶树基因组数据鉴定FtsH基因,对其进行生物信息学分析,筛选出1个对高温敏感的CsFtsH31基因。在烟草中超量表达CsFtsH31基因,通过光氧化和高温处理分析CsFtsH31基因的表达模式。  结果  在茶树基因组中共鉴定到了45个FtsH基因,按照进化关系可将其分成5类,拟南芥和茶树FtsH基因同源性很高。该家族成员分布在茶树不同的染色体上。茶树中 CsFtsH基因在不同组织和不同胁迫条件下存在差异表达,在高温处理后茶树中CsFtsH14、CsFtsH31、CsFtsH34基因随着时间变化呈上升趋势,CsFtsH31对高温尤其敏感;遗传转化CsFtsH31基因获得转CsFtsH31基因烟草,对转CsFtsH31基因烟草进行光氧化和高温胁迫处理,结果发现转基因烟草的叶绿素、可溶性糖含量及超氧化物歧化酶活性均高于野生型,而丙二醛含量低于野生型。  结论  CsFtsH31基因在烟草中表达,提高叶绿素、可溶性糖含量及超氧化物歧化酶活性,降低丙二醛,清除胁迫产生的活性氧,保护膜结构功能,提高烟草的抗光氧化和抗高温胁迫能力。
  • 图  1  茶树 FtsH 基因预测保守蛋白基序

    Figure  1.  Schematic diagram of conserved protein motif predicted by FtsH gene in tea plant

    图  2  茶树和拟南芥FtsH基因家族的系统进化树

    Figure  2.  Phylogenetic tree of FtsH gene family in C. sinensis and A. thaliana

    图  3  茶树FtsH基因在不同组织中表达模式

    Figure  3.  Expression patterns of FtsH gene in different tissues of C. sinensis

    图  4  CsFtsH基因在处理条件下表达模式

    A:茉莉酸甲酯处理;CK、12 h-MeJA、24 h-MeJA、48 h-MeJA分别表示茉莉酸甲酯处理0、12、24、48 h。B:NaCl处理;CK、12 h-NaCl、24 h-NaCl、48 h-NaCl分别表示盐处理0、12、24、48 h; C:冷处理;CK、CA1、CA3分别表示未适应、完全适应、去适应; D:干旱处理;CK、24 h-PEG、48 h-PEG、72 h-PEG分别表示聚乙二醇处理0、24、48、72h。

    Figure  4.  Expression pattern of CsFtsH gene under treatment conditions

    A: Methyl jasmonate treatment; CK, 12 h-MeJA, 24 h-MeJA, 48 h-MeJA represent methyl jasmonate treatment for 0, 12, 24, 48 h; B: NaCl treatment ; CK, 12 h-NaCl, 24 h-NaCl, 48 h-NaCl represent salt treatment for 0, 12, 24, 48 h ; C:Cold treatment ; CK, CA1, and CA3 represent unadapted, fully adapted, and deadapted, respectively ; D. Drought treatment; CK, 24 h-PEG, 48 h-PEG and 72 h-PEG represent polyethylene glycol treatment for 0, 24, 48, 72 h, respectively.

    图  5  高温处理后茶树CsFtsH基因相对表达量

    不同小写字母表示同一处理时间不同基因之间差异显著(P<0.05)。

    Figure  5.  Relative expression of CsFtsH gene in tea plant after high temperature treatment

    Different lowercase letters indicated significant difference at the same treatment time (P< 0.05).

    图  6  CsFtsH31基因烟草的遗传转化过程

    A:共转化; B:抗性筛选;C:抗性芽生长; D:生根;E:移栽;WT:野生型烟草;1~4:转基因烟草。

    Figure  6.  Genetic transformation process of CsFtsH31 transgenic tobacco

    A: Co-transformation; B: Resistance screening; C: Resistant bud growth; D: Rooting; E: Transplanting; WT: wide type tobacco; 1~4: transgenic tobacco.

    图  7  WT与转基因烟草鉴定结果

    A:烟草GUS组织化学染色鉴定结果;B:烟草的PCR鉴定结果;M: Marker DL1500;WT:野生型植株; TP1~TP13:转基因烟草植株。

    Figure  7.  Identification results of WT and transgenic tobacco

    A: tobacco GUS histochemical staining results; B: PCR identification results of tobacco; M: Marker DL1500; WT : wild-type plants; TP1–TP13: transgenic tobacco plants.

    图  8  CsFtsH31基因烟草株系基因相对表达量

    WT:野生型植株;TP1~TP13:转基因植株。

    Figure  8.  Expression of CsFtsH31 gene in transgenic tobacco lines

    WT: wild-type plants; TP1–TP13: transgenic tobacco plants.

    图  9  转基因烟草和野生型烟草抗光氧化表型

    Figure  9.  Photooxidation resistance phenotype of transgenic tobacco and wild type tobacco

    图  10  光氧化处理下CsFtsH31基因相对表达量

    Figure  10.  The relative expression of CsFtsH31 gene under photooxidation treatment

    图  11  光氧化条件下野生型和转基因烟草物质含量

    不同小写字母表示同一处理时间不同植株之间差异显著(P<0.05)。

    Figure  11.  The substance content of wild-type and transgenic tobacco under photooxidation conditions

    Different lowercase letters indicated significant difference among different plants at the same treatment time (P<0.05).

    图  12  高温处理下转基因烟草和野生型烟草表型

    Figure  12.  Phenotypic characteristicss of transgenic tobacco and wild-type tobacco under high temperature treatment

    图  13  高温条件下CsFtsH31基因相对表达量

    Figure  13.  The relative expression of CsFtsH31 gene under high temperature conditions

    图  14  高温处理野生型和转基因烟草物质含量

    Figure  14.  Substance content of wild-type and transgenic tobacco under high temperature

    表  1  荧光定量PCR引物序列

    Table  1.   Primer sequences for fluorescent quantitative PCR

    基因名称
    Gene name
    引物名称
    Primer name
    序列(5′-3′)
    Sequence (5′-3′)
    CsFtsH7FGATCTGGTGGAAATCCCTTCTT
    RCCCTTTCGTATGCCTTCTCTAC
    CsFtsH14FGAGATCAAGGACGAGAAGAACC
    RGAGTAAGGACCCAAGCCATAAG
    CsFtsH31FCGATGACCGGATAAAGGTGATAG
    RTCTTCAGTGGGATGTGGAAAC
    CsFtsH32FCCTTGGACCCAGCACTTATAC
    RAATCCTCCAAGTCAACCTCATC
    CsFtsH33FTCTGGCGTTCCTTTCCTTTC
    RTCGACCAATCGCGTCTATTTC
    CsFtsH34FCTTTCTGTTGTTGGGCTTCTTC
    ActinRGAGCATCCAACCCACCTATATC
    FCAGACCGTATGAGCAAGGAAAT
    RGTGCTTAGGGATGCAAGGATAG
    下载: 导出CSV

    表  2  茶树FtsH基因家族基因的特征

    Table  2.   Gene characteristics of FtsH gene family in tea

    基因
    Gene name
    染色体号
    Chr. No.
    起始位点
    Start site/bp
    终止位点
    End site/bp
    外显子数
    No. of exon
    氨基酸个数
    No. of aa
    相对分子质量
    MW/Da
    等电点
    pI
    亚细胞定位
    Subcellular localization
    CsFtsH01Chr76521378965219324592374458.185.95叶绿体Chloroplast
    CsFtsH02Chr11856393985753576190373482.175.8叶绿体Chloroplast
    CsFtsH03Chr765042017650484408107170228.696.83叶绿体Chloroplast
    CsFtsH04Contig9461525679498107170349.936.43叶绿体Chloroplast
    CsFtsH05Chr76427111464274398754769941.075.89叶绿体Chloroplast
    CsFtsH06Chr11655339201655452046188161562.768.87叶绿体Chloroplast
    CsFtsH07Chr449151964918874561375160.86.22叶绿体Chloroplast
    CsFtsH08Chr450856165089280561175160.86.22叶绿体Chloroplast
    CsFtsH09Contig6146387426464025127776784.536.16叶绿体Chloroplast
    CsFtsH10Chr9158414219158419184582876784.536.16叶绿体Chloroplast
    CsFtsH11Chr1165714763165716089522133401.768.35叶绿体Chloroplast
    CsFtsH12Chr1165658737656651188106490462.966.67细胞质Cytoplasm;线粒体Mitochondria
    CsFtsH13Chr101241766921241903878228390339.888.35线粒体Mitochondria;细胞核Nucleus
    CsFtsH14Contig10311024591144668200191207.66.49细胞核Nucleus
    CsFtsH15Chr41438957341439075238196591207.66.49细胞核Nucleus
    CsFtsH16Chr1423913349239235547170176689.488.19线粒体Mitochondria
    CsFtsH17Chr1990015919902453617382486023.116.11细胞质Cytoplasm;细胞核Nucleus
    CsFtsH18Contig8645163147138817329386050.196.17叶绿体Chloroplast;
    CsFtsH19Chr121180417821180526067180477336.27.28线粒体Mitochondria
    CsFtsH20Chr121174568931174660227152279049.16.35线粒体Mitochondria;细胞核Nucleus
    CsFtsH21Chr413514827713515923413182690008.468.84细胞核Nucleus
    CsFtsH22Chr121571847851571936171514721078048.55细胞质Cytoplasm;线粒体Mitochondria
    CsFtsH23Chr11685551646856537817170287978.338.97叶绿体Chloroplast;线粒体Mitochondria
    CsFtsH24Chr717488441417490358817319697408.826.46叶绿体Chloroplast;线粒体Mitochondria
    CsFtsH25Chr15200645102007531211180099166.969.36细胞质Cytoplasm
    CsFtsH26Chr112025381912029797618736096694.017.5线粒体Mitochondria
    CsFtsH27Chr523621542387569194236117830.57.32细胞质Cytoplasm;线粒体Mitochondria
    CsFtsH28Chr1526955723269663889177847361.018.89细胞质Cytoplasm;细胞核Nucleus
    CsFtsH29Contig184530254657099211447158.768.95细胞质Cytoplasm;细胞核Nucleus
    CsFtsH30Chr141409690214101142970747200.78.84细胞质Cytoplasm;细胞核Nucleus
    CsFtsH31Chr154795212480128410101247654.976.03细胞质Cytoplasm;细胞核Nucleus
    CsFtsH32Chr6710043117101032610100347429.084.94细胞质Cytoplasm;细胞核Nucleus
    CsFtsH33Contig10451301151365396107147244.845.54细胞质Cytoplasm;细胞核Nucleus
    CsFtsH34Chr1186059724860709446187049573.115.91细胞质Cytoplasm;细胞核Nucleus
    CsFtsH35Chr101097850371097911659102189802.845.13细胞质Cytoplasm;内质网Endoplasmic reticulum
    CsFtsH36Chr4168750629168756424996689762.795.11细胞质Cytoplasm;内质网Endoplasmic reticulum
    CsFtsH37Contig1101130919132805431454161.117.21细胞核Nucleus
    CsFtsH38Chr1370484157704913788120448009.446.7细胞核Nucleus
    CsFtsH39Chr21157597711157722817208556980.026.54细胞质Cytoplasm
    CsFtsH40Chr13950609239507344122208687951.747.86细胞质Cytoplasm;内质网Endoplasmic reticulum
    CsFtsH41Chr7263485062636183720222281034.766.08内质网Endoplasmic reticulum
    CsFtsH42Chr3765374497657387614607169962.596.83叶绿体Chloroplast;细胞核Nucleus
    CsFtsH43Chr71847415721847480198107570558.869.36叶绿体Chloroplast;细胞质Cytoplasm
    CsFtsH44Chr1218713083218714729127457697.369.07叶绿体Chloroplast
    CsFtsH45Chr68032346680324930324453483.539.03叶绿体Chloroplast
    下载: 导出CSV

    表  3  茶树CsFtsH 基因顺式作用元件

    Table  3.   Cis-acting elements of CsFtsH gene in tea plant

    编号
    No.
    基因名称
    Gene name
    顺式作用元件 Cis-acting elements
    光反应元件环境调控相关元件基本元件激素应答相关元件蛋白代谢调节元件生长调控元件
    L1L2E1E2E3A1H1H2H3H4P1G1G2
    CSS0029386.1CsFtsh01
    CSS0041542.1CsFtsh02
    CSS0004769.1CsFtsh03
    CSS0033124.1CsFtsh04
    CSS0045434.1CsFtsh05
    CSS0025086.1CsFtsh06
    CSS0047800.1CsFtsh07
    CSS0022449.1CsFtsh08
    CSS0045969.1CsFtsh09
    CSS0013964.1CsFtsh10
    CSS0028048.1CsFtsh11
    CSS0008560.1CsFtsh12
    CSS0038960.1CsFtsh13
    CSS0020099.1CsFtsh14
    CSS0033381.1CsFtsh15
    CSS0033670.1CsFtsh16
    CSS0040067.1CsFtsh17
    CSS0014825.1CsFtsh18
    CSS0002059.1CsFtsh19
    CSS0016987.1CsFtsh20
    CSS0008554.1CsFtsh21
    CSS0016692.1CsFtsh22
    CSS0046009.1CsFtsh23
    CSS0034081.1CsFtsh24
    CSS0004299.1CsFtsh25
    CSS0046503.1CsFtsh26
    CSS0042976.1CsFtsh27
    CSS0028230.1CsFtsh28
    CSS0027170.1CsFtsh29
    CSS0029520.1CsFtsh30
    CSS0048047.1CsFtsh31
    CSS0018374.1CsFtsh32
    CSS0043566.1CsFtsh33
    CSS0047454.1CsFtsh34
    CSS0008341.1CsFtsh35
    CSS0041444.1CsFtsh36
    CSS0000928.1CsFtsh37
    CSS0009578.1CsFtsh38
    CSS0004467.1CsFtsh39
    CSS0001611.1CsFtsh40
    CSS0027753.2CsFtsh41
    CSS0022555.1CsFtsh42
    CSS0028493.1CsFtsh43
    CSS0014817.1CsFtsh44
    CSS0033189.1CsFtsH45
    "L1、L2表示光反应元件Light、P-box;E1~E3表示环境调控元件TGA-element、MBS、LTR;A1表示基本元件CAAT-box;H1~H4表示激素应答相关元件ABRE、TGA-element、CGTCA-motif、TCA-element;P1表示蛋白代谢调节元件O2-site;G1、G2表示生长调控元件Circadian、CAT-box。
    L1, L2 represent the light reaction element Light and P-box; E1– E3 represent the environmental regulatory element TGA-element, MBS and LTR; A1 represents the basic element CAAT-box; H1–H4 represent ABRE, TGA-element, CGTCA-motif and TCA-element; P1 represents the protein metabolic regulatory element O2-site; G1 and G2 represent the growth regulatory elements Circadian and CAT-box."
    下载: 导出CSV
  • [1] AHAMMED G J, LI X. Hormonal regulation of health-promoting compounds in tea (Camellia sinensis L. ) [J]. Plant Physiology and Biochemistry, 2022, 185: 390−400. doi: 10.1016/j.plaphy.2022.06.021
    [2] OSMOLOVSKAYA N, SHUMILINA J, KIM A, et al. Methodology of drought stress research: Experimental setup and physiological characterization [J]. International Journal of Molecular Sciences, 2018, 19(12): 4089. doi: 10.3390/ijms19124089
    [3] TANG W, THOMPSON W A. OsmiR528 enhances cold stress tolerance by repressing expression of stress response-related transcription factor genes in plant cells [J]. Current Genomics, 2019, 20(2): 100−114. doi: 10.2174/1389202920666190129145439
    [4] ITO K, AKIYAMA Y. Cellular functions, mechanism of action, and regulation of FtsH protease [J]. Annual Review of Microbiology, 2005, 59: 211−231. doi: 10.1146/annurev.micro.59.030804.121316
    [5] AKIYAMA Y, EHRMANN M, KIHARA A, et al. Polypeptide binding of Escherichia coli FtsH (HflB) [J]. Molecular Microbiology, 1998, 28(4): 803−812.
    [6] OGURA T, WILKINSON A J. AAA+ superfamily ATPases: Common structure: Diverse function [J]. Genes to Cells:Devoted to Molecular & Cellular Mechanisms, 2001, 6(7): 575−597.
    [7] KATO Y, SAKAMOTO W. FtsH protease in the thylakoid membrane: Physiological functions and the regulation of protease activity [J]. Frontiers in Plant Science, 2018, 9: 855. doi: 10.3389/fpls.2018.00855
    [8] NEUWALD A F, ARAVIND L, SPOUGE J L, et al. AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes [J]. Genome Research, 1999, 9(1): 27−43. doi: 10.1101/gr.9.1.27
    [9] LYSENKO E, OGURA T, CUTTING S M. Characterization of the ftsH gene of Bacillus subtilis[J]. Microbiology, 1997, 143 ( Pt 3): 971-978.
    [10] NILSSON D, LAURIDSEN A A, TOMOYASU T, et al. A Lactococcus lactis gene encodes a membrane protein with putative ATPase activity that is homologous to the essential Escherichia coli ftsH gene product [J]. Microbiology, 1994, 140(10): 2601−2610. doi: 10.1099/00221287-140-10-2601
    [11] MISHRA L S, MIELKE K, WAGNER R, et al. Reduced expression of the proteolytically inactive FtsH members has impacts on the Darwinian fitness of Arabidopsis thaliana [J]. Journal of Experimental Botany, 2019, 70(7): 2173−2184. doi: 10.1093/jxb/erz004
    [12] PU T, MO Z J, SU L, et al. Genome-wide identification and expression analysis of the ftsH protein family and its response to abiotic stress in Nicotiana tabacum L [J]. BMC Genomics, 2022, 23(1): 503. doi: 10.1186/s12864-022-08719-x
    [13] 李媛, 蒋慧君, 刘军, 等. 小麦TaFTSH6基因特征及干旱和热胁迫下的表达分析 [J]. 分子植物育种, 2022, 20(11):3595−3604.

    LI Y, JIANG H J, LIU J, et al. Characteristics of TaFTSH6 gene and expression analysis under dry and heat stress in wheat [J]. Molecular Plant Breeding, 2022, 20(11): 3595−3604.(in Chinese)
    [14] 金勋, 杨柳, 潘红丽, 等. 大豆GmFtsH2基因的克隆及表达分析 [J]. 黑龙江农业科学, 2022(1):6−13,19.

    JIN X, YANG L, PAN H L, et al. Cloning and expression analysis of GmFtsH2 genes in soybean [J]. Heilongjiang Agricultural Sciences, 2022(1): 6−13,19.(in Chinese)
    [15] 孙爱清. 番茄热诱导型ftsH基因的分子克隆、表达特性及生理功能[D]. 济南: 山东师范大学, 2006.

    SUN A Q. Molecular cloning, expression characteriazation and physiological functions of a heat-inducible ftsH gene from tomato[D]. Jinan: Shandong Normal University, 2006. (in Chinese)
    [16] COX G A, MAHAFFEY C L, NYSTUEN A, et al. The mouse fidgetin gene defines a new role for AAA family proteins in mammalian development [J]. Nature Genetics, 2000, 26(2): 198−202. doi: 10.1038/79923
    [17] SAKAMOTO W, ZALTSMAN A, ADAM Z, et al. Coordinated regulation and complex formation of yellow variegated1 and yellow variegated2, chloroplastic ftsh metalloproteases involved in the repair cycle of photosystem II in Arabidopsis thylakoid membranes [J]. The Plant Cell, 2003, 15(12): 2843−2855. doi: 10.1105/tpc.017319
    [18] FU W H, CUI Z, GUO J A, et al. Immunophilin CYN28 is required for accumulation of photosystem II and thylakoid FtsH protease in Chlamydomonas [J]. Plant Physiology, 2023, 191(2): 1002−1016. doi: 10.1093/plphys/kiac524
    [19] JAYASEKERA M M K, FOLTIN S K, OLSON E R, et al. Escherichia coli requires the protease activity of FtsH for growth [J]. Archives of Biochemistry and Biophysics, 2000, 380(1): 103−107. doi: 10.1006/abbi.2000.1903
    [20] ARNOLD I, LANGER T. Membrane protein degradation by AAA proteases in mitochondria [J]. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2002, 1592(1): 89−96. doi: 10.1016/S0167-4889(02)00267-7
    [21] AKIYAMA Y, SHIRAI Y, ITO K. Involvement of FtsH in protein assembly into and through the membrane. II. Dominant mutations affecting FtsH functions [J]. Journal of Biological Chemistry, 1994, 269(7): 5225−5229. doi: 10.1016/S0021-9258(17)37678-0
    [22] KAMATA T, HIRAMOTO H, MORITA N, et al. Quality control of Photosystem II: An FtsH protease plays an essential role in the turnover of the reaction center D1 protein in Synechocystis PCC 6803 under heat stress as well as light stress conditions [J]. Photochemical & Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology, 2005, 4(12): 983−990.
    [23] DEUERLING E, MOGK A, RICHTER C, et al. The ftsH gene of Bacillus subtilis is involved in major cellular processes such as sporulation, stress adaptation and secretion [J]. Molecular Microbiology, 1997, 23(5): 921−933. doi: 10.1046/j.1365-2958.1997.2721636.x
    [24] CHEN J P, BURKE J J, VELTEN J, et al. FtsH11 protease plays a critical role in Arabidopsis thermotolerance [J]. The Plant Journal, 2006, 48(1): 73−84. doi: 10.1111/j.1365-313X.2006.02855.x
    [25] IVASHUTA S, IMAI R, UCHIYAMA K, et al. Changes in chloroplast FtsH-like gene during cold acclimation in alfalfa (Medicago sativa) [J]. Journal of Plant Physiology, 2002, 159(1): 85−90. doi: 10.1078/0176-1617-00661
    [26] SILVA P, THOMPSON E, BAILEY S, et al. FtsH is involved in the early stages of repair of photosystem II in Synechocystis sp PCC 6803[W [J]. The Plant Cell, 2003, 15(9): 2152−2164. doi: 10.1105/tpc.012609
    [27] LIU X Y, YU F, RODERMEL S. Arabidopsis chloroplast FtsH, var2 and suppressors of var2 leaf variegation: A review [J]. Journal of Integrative Plant Biology, 2010, 52(8): 750−761. doi: 10.1111/j.1744-7909.2010.00980.x
    [28] SAKAMOTO W, TAMURA T, HANBA-TOMITA Y, et al. The VAR1 locus of Arabidopsis encodes a chloroplastic FtsH and is responsible for leaf variegation in the mutant alleles [J]. Genes to Cells, 2002, 7(8): 769−780. doi: 10.1046/j.1365-2443.2002.00558.x
    [29] ZHANG Q, CAI M C, YU X M, et al. Transcriptome dynamics of Camellia sinensis in response to continuous salinity and drought stress [J]. Tree Genetics & Genomes, 2017, 13(4): 78.
    [30] WU Z J, WANG W L, ZHUANG J. TCP family genes control leaf development and its responses to hormonal stimuli in tea plant[Camellia sinensis (L. ) O. Kuntze [J]. Plant Growth Regulation, 2017, 83(1): 43−53. doi: 10.1007/s10725-017-0282-3
    [31] WANG X C, ZHAO Q Y, MA C L, et al. Global transcriptome profiles of Camellia sinensis during cold acclimation [J]. BMC Genomics, 2013, 14(1): 415. doi: 10.1186/1471-2164-14-415
    [32] SLACK J L, BI W, LIVAK K J, et al. Pre-clinical validation of a novel, highly sensitive assay to detect PML-RARalpha mRNA using real-time reverse-transcription polymerase chain reaction [J]. The Journal of Molecular Diagnostics:JMD, 2001, 3(4): 141−149. doi: 10.1016/S1525-1578(10)60665-4
    [33] KOLODZIEJCZAK M, KOLACZKOWSKA A, SZCZESNY B, et al. A higher plant mitochondrial homologue of the yeast m-AAA protease [J]. Journal of Biological Chemistry, 2002, 277(46): 43792−43798. doi: 10.1074/jbc.M203831200
    [34] YU F, PARK S, RODERMEL S R. Functional redundancy of AtFtsH metalloproteases in thylakoid membrane complexes [J]. Plant Physiology, 2005, 138(4): 1957−1966. doi: 10.1104/pp.105.061234
    [35] ZHANG J D, SUN A Q. Genome-wide comparative analysis of the metalloprotease ftsH gene families between Arabidopsis thaliana and rice [J]. Chinese Journal of Biotechnology, 2009, 25(9): 1402−1408.
    [36] KATO Y, SAKAMOTO W. Phosphorylation of the chloroplastic metalloprotease FtsH in Arabidopsis characterized by Phos-tag SDS-PAGE [J]. Frontiers in Plant Science, 2019, 10: 1080. doi: 10.3389/fpls.2019.01080
    [37] WU W J, ELSHEERY N, WEI Q, et al. Defective etioplasts observed in variegation mutants may reveal the light-independent regulation of white/yellow sectors of Arabidopsis leaves [J]. Journal of Integrative Plant Biology, 2011, 53(11): 846−857. doi: 10.1111/j.1744-7909.2011.01079.x
    [38] WU Q F, HAN T T, YANG L, et al. The essential roles of OsFtsH2 in developing the chloroplast of rice [J]. BMC Plant Biology, 2021, 21(1): 445. doi: 10.1186/s12870-021-03222-z
    [39] TIAN Y N, ZHONG R H, WEI J B, et al. Arabidopsis CHLOROPHYLLASE 1 protects young leaves from long-term photodamage by facilitating FtsH-mediated D1 degradation in photosystem II repair [J]. Molecular Plant, 2021, 14(7): 1149−1167. doi: 10.1016/j.molp.2021.04.006
    [40] MALNOË A, WANG F, GIRARD-BASCOU J, et al. Thylakoid FtsH protease contributes to photosystem II and Cytochrome b6f Remodeling in Chlamydomonas reinhardtii under stress conditions [J]. The Plant Cell, 2014, 26(1): 373−390. doi: 10.1105/tpc.113.120113
    [41] PIECHOTA J, KOLODZIEJCZAK M, JUSZCZAK I, et al. Identification and characterization of high molecular weight complexes formed by matrix AAA proteases and prohibitins in mitochondria of Arabidopsis thaliana [J]. Journal of Biological Chemistry, 2010, 285(17): 12512−12521. doi: 10.1074/jbc.M109.063644
    [42] WANG X, DINLER B S, VIGNJEVIC M, et al. Physiological and proteome studies of responses to heat stress during grain filling in contrasting wheat cultivars [J]. Plant Science, 2015, 230: 33−50. doi: 10.1016/j.plantsci.2014.10.009
    [43] 张盛春, 李清明, 阳成伟. 拟南芥金属蛋白酶FtSH4通过生长素与活性氧调控叶片衰老 [J]. 植物学报, 2017, 52(4):453−464.

    ZHANG S C, LI Q M, YANG C W. Arabidopsis metalloprotease FtSH4 regulates leaf senescence through auxin and reactive oxygen species [J]. Chinese Bulletin of Botany, 2017, 52(4): 453−464.(in Chinese)
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  589
  • HTML全文浏览量:  160
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-15
  • 修回日期:  2023-03-14
  • 网络出版日期:  2023-06-02
  • 刊出日期:  2023-05-28

目录

    /

    返回文章
    返回