Identification of FtsH gene family and functional analysis of CsFtsH31 gene
-
摘要:
目的 FtsH基因在植物的抗逆境胁迫中具有重要的作用,揭示茶树FtsH基因在茶树中的功能和表达模式可为茶树耐光氧化和抗高温胁迫改良育种提供理论依据。 方法 通过茶树基因组数据鉴定FtsH基因,对其进行生物信息学分析,筛选出1个对高温敏感的CsFtsH31基因。在烟草中超量表达CsFtsH31基因,通过光氧化和高温处理分析CsFtsH31基因的表达模式。 结果 在茶树基因组中共鉴定到了45个FtsH基因,按照进化关系可将其分成5类,拟南芥和茶树FtsH基因同源性很高。该家族成员分布在茶树不同的染色体上。茶树中 CsFtsH基因在不同组织和不同胁迫条件下存在差异表达,在高温处理后茶树中CsFtsH14、CsFtsH31、CsFtsH34基因随着时间变化呈上升趋势,CsFtsH31对高温尤其敏感;遗传转化CsFtsH31基因获得转CsFtsH31基因烟草,对转CsFtsH31基因烟草进行光氧化和高温胁迫处理,结果发现转基因烟草的叶绿素、可溶性糖含量及超氧化物歧化酶活性均高于野生型,而丙二醛含量低于野生型。 结论 CsFtsH31基因在烟草中表达,提高叶绿素、可溶性糖含量及超氧化物歧化酶活性,降低丙二醛,清除胁迫产生的活性氧,保护膜结构功能,提高烟草的抗光氧化和抗高温胁迫能力。 Abstract:Objective FtsH gene plays an important role in plant stress resistance. Revealing the function and expression pattern of FtsH gene in tea plant can provide a theoretical basis for the improvement of tea plant resistance to photooxidation and high temperature stress. Method The FtsH gene was identified by tea plant genome data, and a CsFtsH31 gene sensitive to high temperature was screened by bioinformatics analysis. The CsFtsH31 gene was overexpressed in tobacco, and the expression patterns of CsFtsH31 gene against photooxidation and high temperature were analyzed. Result A total of 45 FtsH genes were identified in the genome of tea plant, which were divided into five categories according to the evolutionary relationship. The members of this family are distributed on different chromosomes of tea plants. CsFtsH genes in tea plants are differentially expressed in different tissues and stress conditions. After high temperature treatment, CsFtsH14, CsFtsH31 and CsFtsH34 genes in tea plants showed an increasing trend over time, and CsFtsH31 is particularly sensitive to high temperature. The transgenic tobacco with CsFtsH31 gene was obtained by genetic transformation of CsFtsH31 gene. The transgenic tobacco with CsFtsH31 gene was subjected to stress treatment. The results showed that the chlorophyll and soluble sugar content and superoxide dismutase activity of transgenic tobacco were higher than wild type, while malondialdehyde was lower than wild type. Conclusion The CsFtsH31 gene was expressed in tobacco by increasing the content of chlorophyll and soluble sugar, and the activity of superoxide dismutase, reducing the content of malondialdehyde, scavenging the reactive oxygen species produced by stress, protecting the function of membrane structure, and improving the resistance of tobacco to light oxidation and high temperature stress. -
图 4 CsFtsH基因在处理条件下表达模式
A:茉莉酸甲酯处理;CK、12 h-MeJA、24 h-MeJA、48 h-MeJA分别表示茉莉酸甲酯处理0、12、24、48 h。B:NaCl处理;CK、12 h-NaCl、24 h-NaCl、48 h-NaCl分别表示盐处理0、12、24、48 h; C:冷处理;CK、CA1、CA3分别表示未适应、完全适应、去适应; D:干旱处理;CK、24 h-PEG、48 h-PEG、72 h-PEG分别表示聚乙二醇处理0、24、48、72h。
Figure 4. Expression pattern of CsFtsH gene under treatment conditions
A: Methyl jasmonate treatment; CK, 12 h-MeJA, 24 h-MeJA, 48 h-MeJA represent methyl jasmonate treatment for 0, 12, 24, 48 h; B: NaCl treatment ; CK, 12 h-NaCl, 24 h-NaCl, 48 h-NaCl represent salt treatment for 0, 12, 24, 48 h ; C:Cold treatment ; CK, CA1, and CA3 represent unadapted, fully adapted, and deadapted, respectively ; D. Drought treatment; CK, 24 h-PEG, 48 h-PEG and 72 h-PEG represent polyethylene glycol treatment for 0, 24, 48, 72 h, respectively.
图 7 WT与转基因烟草鉴定结果
A:烟草GUS组织化学染色鉴定结果;B:烟草的PCR鉴定结果;M: Marker DL1500;WT:野生型植株; TP1~TP13:转基因烟草植株。
Figure 7. Identification results of WT and transgenic tobacco
A: tobacco GUS histochemical staining results; B: PCR identification results of tobacco; M: Marker DL1500; WT : wild-type plants; TP1–TP13: transgenic tobacco plants.
表 1 荧光定量PCR引物序列
Table 1. Primer sequences for fluorescent quantitative PCR
基因名称
Gene name引物名称
Primer name序列(5′-3′)
Sequence (5′-3′)CsFtsH7 F GATCTGGTGGAAATCCCTTCTT R CCCTTTCGTATGCCTTCTCTAC CsFtsH14 F GAGATCAAGGACGAGAAGAACC R GAGTAAGGACCCAAGCCATAAG CsFtsH31 F CGATGACCGGATAAAGGTGATAG R TCTTCAGTGGGATGTGGAAAC CsFtsH32 F CCTTGGACCCAGCACTTATAC R AATCCTCCAAGTCAACCTCATC CsFtsH33 F TCTGGCGTTCCTTTCCTTTC R TCGACCAATCGCGTCTATTTC CsFtsH34 F CTTTCTGTTGTTGGGCTTCTTC Actin R GAGCATCCAACCCACCTATATC F CAGACCGTATGAGCAAGGAAAT R GTGCTTAGGGATGCAAGGATAG 表 2 茶树FtsH基因家族基因的特征
Table 2. Gene characteristics of FtsH gene family in tea
基因
Gene name染色体号
Chr. No.起始位点
Start site/bp终止位点
End site/bp外显子数
No. of exon氨基酸个数
No. of aa相对分子质量
MW/Da等电点
pI亚细胞定位
Subcellular localizationCsFtsH01 Chr7 65213789 65219324 5 923 74458.18 5.95 叶绿体Chloroplast CsFtsH02 Chr11 8563939 8575357 6 1903 73482.17 5.8 叶绿体Chloroplast CsFtsH03 Chr7 65042017 65048440 8 1071 70228.69 6.83 叶绿体Chloroplast CsFtsH04 Contig94 61525 67949 8 1071 70349.93 6.43 叶绿体Chloroplast CsFtsH05 Chr7 64271114 64274398 7 547 69941.07 5.89 叶绿体Chloroplast CsFtsH06 Chr1 165533920 165545204 6 1881 61562.76 8.87 叶绿体Chloroplast CsFtsH07 Chr4 4915196 4918874 5 613 75160.8 6.22 叶绿体Chloroplast CsFtsH08 Chr4 5085616 5089280 5 611 75160.8 6.22 叶绿体Chloroplast CsFtsH09 Contig614 638742 646402 5 1277 76784.53 6.16 叶绿体Chloroplast CsFtsH10 Chr9 158414219 158419184 5 828 76784.53 6.16 叶绿体Chloroplast CsFtsH11 Chr1 165714763 165716089 5 221 33401.76 8.35 叶绿体Chloroplast CsFtsH12 Chr11 65658737 65665118 8 1064 90462.96 6.67 细胞质Cytoplasm;线粒体Mitochondria CsFtsH13 Chr10 124176692 124190387 8 2283 90339.88 8.35 线粒体Mitochondria;细胞核Nucleus CsFtsH14 Contig1031 102459 114466 8 2001 91207.6 6.49 细胞核Nucleus CsFtsH15 Chr4 143895734 143907523 8 1965 91207.6 6.49 细胞核Nucleus CsFtsH16 Chr14 23913349 23923554 7 1701 76689.48 8.19 线粒体Mitochondria CsFtsH17 Chr1 99001591 99024536 17 3824 86023.11 6.11 细胞质Cytoplasm;细胞核Nucleus CsFtsH18 Contig86 451631 471388 17 3293 86050.19 6.17 叶绿体Chloroplast; CsFtsH19 Chr12 118041782 118052606 7 1804 77336.2 7.28 线粒体Mitochondria CsFtsH20 Chr12 117456893 117466022 7 1522 79049.1 6.35 线粒体Mitochondria;细胞核Nucleus CsFtsH21 Chr4 135148277 135159234 13 1826 90008.46 8.84 细胞核Nucleus CsFtsH22 Chr12 157184785 157193617 15 1472 107804 8.55 细胞质Cytoplasm;线粒体Mitochondria CsFtsH23 Chr11 68555164 68565378 17 1702 87978.33 8.97 叶绿体Chloroplast;线粒体Mitochondria CsFtsH24 Chr7 174884414 174903588 17 3196 97408.82 6.46 叶绿体Chloroplast;线粒体Mitochondria CsFtsH25 Chr15 20064510 20075312 11 1800 99166.96 9.36 细胞质Cytoplasm CsFtsH26 Chr1 120253819 120297976 18 7360 96694.01 7.5 线粒体Mitochondria CsFtsH27 Chr5 2362154 2387569 19 4236 117830.5 7.32 细胞质Cytoplasm;线粒体Mitochondria CsFtsH28 Chr15 26955723 26966388 9 1778 47361.01 8.89 细胞质Cytoplasm;细胞核Nucleus CsFtsH29 Contig18 453025 465709 9 2114 47158.76 8.95 细胞质Cytoplasm;细胞核Nucleus CsFtsH30 Chr14 14096902 14101142 9 707 47200.7 8.84 细胞质Cytoplasm;细胞核Nucleus CsFtsH31 Chr15 4795212 4801284 10 1012 47654.97 6.03 细胞质Cytoplasm;细胞核Nucleus CsFtsH32 Chr6 71004311 71010326 10 1003 47429.08 4.94 细胞质Cytoplasm;细胞核Nucleus CsFtsH33 Contig1045 130115 136539 6 1071 47244.84 5.54 细胞质Cytoplasm;细胞核Nucleus CsFtsH34 Chr11 86059724 86070944 6 1870 49573.11 5.91 细胞质Cytoplasm;细胞核Nucleus CsFtsH35 Chr10 109785037 109791165 9 1021 89802.84 5.13 细胞质Cytoplasm;内质网Endoplasmic reticulum CsFtsH36 Chr4 168750629 168756424 9 966 89762.79 5.11 细胞质Cytoplasm;内质网Endoplasmic reticulum CsFtsH37 Contig1101 130919 132805 4 314 54161.11 7.21 细胞核Nucleus CsFtsH38 Chr13 70484157 70491378 8 1204 48009.44 6.7 细胞核Nucleus CsFtsH39 Chr2 115759771 115772281 7 2085 56980.02 6.54 细胞质Cytoplasm CsFtsH40 Chr13 95060923 95073441 22 2086 87951.74 7.86 细胞质Cytoplasm;内质网Endoplasmic reticulum CsFtsH41 Chr7 26348506 26361837 20 2222 81034.76 6.08 内质网Endoplasmic reticulum CsFtsH42 Chr3 76537449 76573876 14 6071 69962.59 6.83 叶绿体Chloroplast;细胞核Nucleus CsFtsH43 Chr7 184741572 184748019 8 1075 70558.86 9.36 叶绿体Chloroplast;细胞质Cytoplasm CsFtsH44 Chr1 218713083 218714729 1 274 57697.36 9.07 叶绿体Chloroplast CsFtsH45 Chr6 80323466 80324930 3 244 53483.53 9.03 叶绿体Chloroplast 表 3 茶树CsFtsH 基因顺式作用元件
Table 3. Cis-acting elements of CsFtsH gene in tea plant
编号
No.基因名称
Gene name顺式作用元件 Cis-acting elements 光反应元件 环境调控相关元件 基本元件 激素应答相关元件 蛋白代谢调节元件 生长调控元件 L1 L2 E1 E2 E3 A1 H1 H2 H3 H4 P1 G1 G2 CSS0029386.1 CsFtsh01 √ ─ √ √ √ √ √ √ CSS0041542.1 CsFtsh02 √ √ √ √ √ √ √ CSS0004769.1 CsFtsh03 √ √ √ √ √ √ √ CSS0033124.1 CsFtsh04 √ √ √ √ √ √ √ CSS0045434.1 CsFtsh05 √ √ √ √ √ √ √ √ CSS0025086.1 CsFtsh06 √ √ √ CSS0047800.1 CsFtsh07 √ √ √ √ √ √ √ √ √ CSS0022449.1 CsFtsh08 √ √ √ √ √ √ √ √ √ CSS0045969.1 CsFtsh09 √ √ √ √ √ √ √ √ √ √ CSS0013964.1 CsFtsh10 √ √ √ √ √ √ √ √ √ √ CSS0028048.1 CsFtsh11 √ √ √ √ CSS0008560.1 CsFtsh12 √ √ √ √ √ √ CSS0038960.1 CsFtsh13 √ √ √ √ √ √ √ √ √ CSS0020099.1 CsFtsh14 √ √ √ √ √ CSS0033381.1 CsFtsh15 √ √ √ √ √ √ CSS0033670.1 CsFtsh16 √ √ √ √ √ √ CSS0040067.1 CsFtsh17 √ √ √ √ √ √ √ √ √ CSS0014825.1 CsFtsh18 √ √ √ √ √ √ √ √ √ CSS0002059.1 CsFtsh19 √ √ √ √ √ √ CSS0016987.1 CsFtsh20 √ √ √ √ √ √ CSS0008554.1 CsFtsh21 √ √ √ √ √ √ √ CSS0016692.1 CsFtsh22 √ √ √ √ √ √ √ √ √ CSS0046009.1 CsFtsh23 √ √ √ √ √ √ √ CSS0034081.1 CsFtsh24 √ √ √ √ √ CSS0004299.1 CsFtsh25 √ √ √ √ √ √ √ √ √ √ CSS0046503.1 CsFtsh26 √ √ √ √ √ √ CSS0042976.1 CsFtsh27 √ √ √ √ √ CSS0028230.1 CsFtsh28 √ √ √ √ CSS0027170.1 CsFtsh29 √ √ √ CSS0029520.1 CsFtsh30 √ √ √ CSS0048047.1 CsFtsh31 √ √ √ √ √ √ CSS0018374.1 CsFtsh32 √ √ √ √ √ √ CSS0043566.1 CsFtsh33 √ √ √ √ √ √ √ √ CSS0047454.1 CsFtsh34 √ √ √ √ √ CSS0008341.1 CsFtsh35 √ √ √ √ √ CSS0041444.1 CsFtsh36 √ √ √ √ √ √ √ √ CSS0000928.1 CsFtsh37 √ √ √ √ √ √ CSS0009578.1 CsFtsh38 √ √ √ √ √ √ CSS0004467.1 CsFtsh39 √ √ √ √ √ √ √ √ CSS0001611.1 CsFtsh40 √ √ √ √ √ √ √ CSS0027753.2 CsFtsh41 √ √ √ √ √ CSS0022555.1 CsFtsh42 √ √ √ √ √ CSS0028493.1 CsFtsh43 √ √ √ √ √ √ √ CSS0014817.1 CsFtsh44 √ √ √ √ √ √ CSS0033189.1 CsFtsH45 √ √ √ √ "L1、L2表示光反应元件Light、P-box;E1~E3表示环境调控元件TGA-element、MBS、LTR;A1表示基本元件CAAT-box;H1~H4表示激素应答相关元件ABRE、TGA-element、CGTCA-motif、TCA-element;P1表示蛋白代谢调节元件O2-site;G1、G2表示生长调控元件Circadian、CAT-box。
L1, L2 represent the light reaction element Light and P-box; E1– E3 represent the environmental regulatory element TGA-element, MBS and LTR; A1 represents the basic element CAAT-box; H1–H4 represent ABRE, TGA-element, CGTCA-motif and TCA-element; P1 represents the protein metabolic regulatory element O2-site; G1 and G2 represent the growth regulatory elements Circadian and CAT-box." -
[1] AHAMMED G J, LI X. Hormonal regulation of health-promoting compounds in tea (Camellia sinensis L. ) [J]. Plant Physiology and Biochemistry, 2022, 185: 390−400. doi: 10.1016/j.plaphy.2022.06.021 [2] OSMOLOVSKAYA N, SHUMILINA J, KIM A, et al. Methodology of drought stress research: Experimental setup and physiological characterization [J]. International Journal of Molecular Sciences, 2018, 19(12): 4089. doi: 10.3390/ijms19124089 [3] TANG W, THOMPSON W A. OsmiR528 enhances cold stress tolerance by repressing expression of stress response-related transcription factor genes in plant cells [J]. Current Genomics, 2019, 20(2): 100−114. doi: 10.2174/1389202920666190129145439 [4] ITO K, AKIYAMA Y. Cellular functions, mechanism of action, and regulation of FtsH protease [J]. Annual Review of Microbiology, 2005, 59: 211−231. doi: 10.1146/annurev.micro.59.030804.121316 [5] AKIYAMA Y, EHRMANN M, KIHARA A, et al. Polypeptide binding of Escherichia coli FtsH (HflB) [J]. Molecular Microbiology, 1998, 28(4): 803−812. [6] OGURA T, WILKINSON A J. AAA+ superfamily ATPases: Common structure: Diverse function [J]. Genes to Cells:Devoted to Molecular & Cellular Mechanisms, 2001, 6(7): 575−597. [7] KATO Y, SAKAMOTO W. FtsH protease in the thylakoid membrane: Physiological functions and the regulation of protease activity [J]. Frontiers in Plant Science, 2018, 9: 855. doi: 10.3389/fpls.2018.00855 [8] NEUWALD A F, ARAVIND L, SPOUGE J L, et al. AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes [J]. Genome Research, 1999, 9(1): 27−43. doi: 10.1101/gr.9.1.27 [9] LYSENKO E, OGURA T, CUTTING S M. Characterization of the ftsH gene of Bacillus subtilis[J]. Microbiology, 1997, 143 ( Pt 3): 971-978. [10] NILSSON D, LAURIDSEN A A, TOMOYASU T, et al. A Lactococcus lactis gene encodes a membrane protein with putative ATPase activity that is homologous to the essential Escherichia coli ftsH gene product [J]. Microbiology, 1994, 140(10): 2601−2610. doi: 10.1099/00221287-140-10-2601 [11] MISHRA L S, MIELKE K, WAGNER R, et al. Reduced expression of the proteolytically inactive FtsH members has impacts on the Darwinian fitness of Arabidopsis thaliana [J]. Journal of Experimental Botany, 2019, 70(7): 2173−2184. doi: 10.1093/jxb/erz004 [12] PU T, MO Z J, SU L, et al. Genome-wide identification and expression analysis of the ftsH protein family and its response to abiotic stress in Nicotiana tabacum L [J]. BMC Genomics, 2022, 23(1): 503. doi: 10.1186/s12864-022-08719-x [13] 李媛, 蒋慧君, 刘军, 等. 小麦TaFTSH6基因特征及干旱和热胁迫下的表达分析 [J]. 分子植物育种, 2022, 20(11):3595−3604.LI Y, JIANG H J, LIU J, et al. Characteristics of TaFTSH6 gene and expression analysis under dry and heat stress in wheat [J]. Molecular Plant Breeding, 2022, 20(11): 3595−3604.(in Chinese) [14] 金勋, 杨柳, 潘红丽, 等. 大豆GmFtsH2基因的克隆及表达分析 [J]. 黑龙江农业科学, 2022(1):6−13,19.JIN X, YANG L, PAN H L, et al. Cloning and expression analysis of GmFtsH2 genes in soybean [J]. Heilongjiang Agricultural Sciences, 2022(1): 6−13,19.(in Chinese) [15] 孙爱清. 番茄热诱导型ftsH基因的分子克隆、表达特性及生理功能[D]. 济南: 山东师范大学, 2006.SUN A Q. Molecular cloning, expression characteriazation and physiological functions of a heat-inducible ftsH gene from tomato[D]. Jinan: Shandong Normal University, 2006. (in Chinese) [16] COX G A, MAHAFFEY C L, NYSTUEN A, et al. The mouse fidgetin gene defines a new role for AAA family proteins in mammalian development [J]. Nature Genetics, 2000, 26(2): 198−202. doi: 10.1038/79923 [17] SAKAMOTO W, ZALTSMAN A, ADAM Z, et al. Coordinated regulation and complex formation of yellow variegated1 and yellow variegated2, chloroplastic ftsh metalloproteases involved in the repair cycle of photosystem II in Arabidopsis thylakoid membranes [J]. The Plant Cell, 2003, 15(12): 2843−2855. doi: 10.1105/tpc.017319 [18] FU W H, CUI Z, GUO J A, et al. Immunophilin CYN28 is required for accumulation of photosystem II and thylakoid FtsH protease in Chlamydomonas [J]. Plant Physiology, 2023, 191(2): 1002−1016. doi: 10.1093/plphys/kiac524 [19] JAYASEKERA M M K, FOLTIN S K, OLSON E R, et al. Escherichia coli requires the protease activity of FtsH for growth [J]. Archives of Biochemistry and Biophysics, 2000, 380(1): 103−107. doi: 10.1006/abbi.2000.1903 [20] ARNOLD I, LANGER T. Membrane protein degradation by AAA proteases in mitochondria [J]. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2002, 1592(1): 89−96. doi: 10.1016/S0167-4889(02)00267-7 [21] AKIYAMA Y, SHIRAI Y, ITO K. Involvement of FtsH in protein assembly into and through the membrane. II. Dominant mutations affecting FtsH functions [J]. Journal of Biological Chemistry, 1994, 269(7): 5225−5229. doi: 10.1016/S0021-9258(17)37678-0 [22] KAMATA T, HIRAMOTO H, MORITA N, et al. Quality control of Photosystem II: An FtsH protease plays an essential role in the turnover of the reaction center D1 protein in Synechocystis PCC 6803 under heat stress as well as light stress conditions [J]. Photochemical & Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology, 2005, 4(12): 983−990. [23] DEUERLING E, MOGK A, RICHTER C, et al. The ftsH gene of Bacillus subtilis is involved in major cellular processes such as sporulation, stress adaptation and secretion [J]. Molecular Microbiology, 1997, 23(5): 921−933. doi: 10.1046/j.1365-2958.1997.2721636.x [24] CHEN J P, BURKE J J, VELTEN J, et al. FtsH11 protease plays a critical role in Arabidopsis thermotolerance [J]. The Plant Journal, 2006, 48(1): 73−84. doi: 10.1111/j.1365-313X.2006.02855.x [25] IVASHUTA S, IMAI R, UCHIYAMA K, et al. Changes in chloroplast FtsH-like gene during cold acclimation in alfalfa (Medicago sativa) [J]. Journal of Plant Physiology, 2002, 159(1): 85−90. doi: 10.1078/0176-1617-00661 [26] SILVA P, THOMPSON E, BAILEY S, et al. FtsH is involved in the early stages of repair of photosystem II in Synechocystis sp PCC 6803[W [J]. The Plant Cell, 2003, 15(9): 2152−2164. doi: 10.1105/tpc.012609 [27] LIU X Y, YU F, RODERMEL S. Arabidopsis chloroplast FtsH, var2 and suppressors of var2 leaf variegation: A review [J]. Journal of Integrative Plant Biology, 2010, 52(8): 750−761. doi: 10.1111/j.1744-7909.2010.00980.x [28] SAKAMOTO W, TAMURA T, HANBA-TOMITA Y, et al. The VAR1 locus of Arabidopsis encodes a chloroplastic FtsH and is responsible for leaf variegation in the mutant alleles [J]. Genes to Cells, 2002, 7(8): 769−780. doi: 10.1046/j.1365-2443.2002.00558.x [29] ZHANG Q, CAI M C, YU X M, et al. Transcriptome dynamics of Camellia sinensis in response to continuous salinity and drought stress [J]. Tree Genetics & Genomes, 2017, 13(4): 78. [30] WU Z J, WANG W L, ZHUANG J. TCP family genes control leaf development and its responses to hormonal stimuli in tea plant[Camellia sinensis (L. ) O. Kuntze [J]. Plant Growth Regulation, 2017, 83(1): 43−53. doi: 10.1007/s10725-017-0282-3 [31] WANG X C, ZHAO Q Y, MA C L, et al. Global transcriptome profiles of Camellia sinensis during cold acclimation [J]. BMC Genomics, 2013, 14(1): 415. doi: 10.1186/1471-2164-14-415 [32] SLACK J L, BI W, LIVAK K J, et al. Pre-clinical validation of a novel, highly sensitive assay to detect PML-RARalpha mRNA using real-time reverse-transcription polymerase chain reaction [J]. The Journal of Molecular Diagnostics:JMD, 2001, 3(4): 141−149. doi: 10.1016/S1525-1578(10)60665-4 [33] KOLODZIEJCZAK M, KOLACZKOWSKA A, SZCZESNY B, et al. A higher plant mitochondrial homologue of the yeast m-AAA protease [J]. Journal of Biological Chemistry, 2002, 277(46): 43792−43798. doi: 10.1074/jbc.M203831200 [34] YU F, PARK S, RODERMEL S R. Functional redundancy of AtFtsH metalloproteases in thylakoid membrane complexes [J]. Plant Physiology, 2005, 138(4): 1957−1966. doi: 10.1104/pp.105.061234 [35] ZHANG J D, SUN A Q. Genome-wide comparative analysis of the metalloprotease ftsH gene families between Arabidopsis thaliana and rice [J]. Chinese Journal of Biotechnology, 2009, 25(9): 1402−1408. [36] KATO Y, SAKAMOTO W. Phosphorylation of the chloroplastic metalloprotease FtsH in Arabidopsis characterized by Phos-tag SDS-PAGE [J]. Frontiers in Plant Science, 2019, 10: 1080. doi: 10.3389/fpls.2019.01080 [37] WU W J, ELSHEERY N, WEI Q, et al. Defective etioplasts observed in variegation mutants may reveal the light-independent regulation of white/yellow sectors of Arabidopsis leaves [J]. Journal of Integrative Plant Biology, 2011, 53(11): 846−857. doi: 10.1111/j.1744-7909.2011.01079.x [38] WU Q F, HAN T T, YANG L, et al. The essential roles of OsFtsH2 in developing the chloroplast of rice [J]. BMC Plant Biology, 2021, 21(1): 445. doi: 10.1186/s12870-021-03222-z [39] TIAN Y N, ZHONG R H, WEI J B, et al. Arabidopsis CHLOROPHYLLASE 1 protects young leaves from long-term photodamage by facilitating FtsH-mediated D1 degradation in photosystem II repair [J]. Molecular Plant, 2021, 14(7): 1149−1167. doi: 10.1016/j.molp.2021.04.006 [40] MALNOË A, WANG F, GIRARD-BASCOU J, et al. Thylakoid FtsH protease contributes to photosystem II and Cytochrome b6f Remodeling in Chlamydomonas reinhardtii under stress conditions [J]. The Plant Cell, 2014, 26(1): 373−390. doi: 10.1105/tpc.113.120113 [41] PIECHOTA J, KOLODZIEJCZAK M, JUSZCZAK I, et al. Identification and characterization of high molecular weight complexes formed by matrix AAA proteases and prohibitins in mitochondria of Arabidopsis thaliana [J]. Journal of Biological Chemistry, 2010, 285(17): 12512−12521. doi: 10.1074/jbc.M109.063644 [42] WANG X, DINLER B S, VIGNJEVIC M, et al. Physiological and proteome studies of responses to heat stress during grain filling in contrasting wheat cultivars [J]. Plant Science, 2015, 230: 33−50. doi: 10.1016/j.plantsci.2014.10.009 [43] 张盛春, 李清明, 阳成伟. 拟南芥金属蛋白酶FtSH4通过生长素与活性氧调控叶片衰老 [J]. 植物学报, 2017, 52(4):453−464.ZHANG S C, LI Q M, YANG C W. Arabidopsis metalloprotease FtSH4 regulates leaf senescence through auxin and reactive oxygen species [J]. Chinese Bulletin of Botany, 2017, 52(4): 453−464.(in Chinese)