Preparation and Function Verification of Recombinant Protein of Chalcone Isomerase Gene from Rhododendron Delavayi
-
摘要:
目的 制备马缨杜鹃(Rhododendron delavayi)查尔酮异构酶(Chalcone isomerase,CHI)基因表达的重组蛋白并验证其活性,为解析查尔酮异构酶功能提供理论依据,为改良植物花色、增加药用成分奠定基础。 方法 根据所获得的马缨杜鹃查尔酮异构酶RdCHI1基因的序列信息设计引物,构建其原核表达载体,优化RdCHI1可溶性重组蛋白最佳诱导表达条件,制备可溶性重组蛋白并检测其活性。 结果 成功构建RdCHI1原核表达载体,RdCHI1重组蛋白可在上清中表达,最佳诱导条件为:15 ℃、36 h,IPTG浓度0.35 mmol·L−1。经镍柱纯化得到质量较好的RdCHI1重组蛋白,通过体外酶活反应确定,与对照组相比,RdCHI1可以更快地催化柚皮素查尔酮(Naringenin chalcone)反应生成柚皮素(Naringenin)。 结论 RdCHI1为I型CHI,可极大提高柚皮素查尔酮生成柚皮素的速率,增加黄酮类物质积累量。 Abstract:Objective Recombinant protein of chalcone isomerase (CHI) gene in Rhododendron delavayi was prepared and its activity was verified. This will provide theoretical basis for analyzing the function of CHI, and also lays a foundation for improving flower color and increasing medicinal ingredientst. Method Primers were designed based on the sequence of RdCHI1, and the prokaryotic expression vector constructed. Conditions to induce the expression of soluble recombinant protein were optimized. Activity of the prepared protein was verified by an in vitro enzymatic assay. Result The successfully constructed RdCHI1 prokaryotic expression vector was expressed in the supernatant under the optimized induction that applied 0.35 mmol·L−1 IPTG at 15 ℃ for 36 h. The nickel column-purified recombinant protein significantly hastened the conversion of naringin chalcone to naringin in an in vitro assay. Conclusion As a type I CHI, RdCHI1 significantly accelerated the convertion from naringin chalcone to naringin and increase the accumulation od flavonoids. -
图 1 酶切位点的引入
M为Marker;A中,1为RdCHI1大量PCR;B中,1为RdCHI1胶回收;C中,1~2为pMD18-T-RdCHI1菌液PCR。D中,1为pMD18-T-RdCHI1质粒,2为pMD18-T-RdCHI1酶切。
Figure 1. Introduction of cleavage sites
M: Marker; A,1: PCR product of RdCHI1. B, 1: Gel recovery of RdCHI1. C, 1 and 2: pMD18-T-RdCHI1 bacterial solution PCR. D, 1: pMD18-T-RdCHI1 plasmid; 2: Products of pMD18-T-RdCHI1 digestion.
图 2 RdCHI1原核表达载体的构建及验证
M为Marker;A中,1为pMD18-T-RdCHI1大量酶切;B中,1为pET32a大量酶切;C中,1~2为pET32a-RdCHI1菌液PCR;D中,1为pET32a-RdCHI1质粒,2为pET32a-RdCHI1酶切产物。
Figure 2. Construction and verification of RdCHI1 prokaryotic expression vector
M: Marker; A, 1: Mass enzyme digestion of pMD18-T-RdCHI1. B, 1: Mass enzyme digestion of pET32a. C, 1 and 2: pET32a-RdCHI1 liquid PCR. D, 1: pET32a-RdCHI1 plasmid; 2: Products of pET32a-RdCHI1 digestion.
图 3 BL21-pET32a-RdCHI1重组蛋白诱导表达
M:蛋白分子量Marker;1:BL21(加IPTG诱导);2:pET32a空载体(加IPTG诱导);3:pET32a-RdCHI1(未加IPTG诱导);4:pET32a-RdCHI1全菌(加IPTG诱导)。
Figure 3. Induced expression of recombinant BL21-pET32a-RdCHI1
M: Protein molecular weight marker; 1: BL21 (with IPTG induction); 2: pET32a empty vector (with IPTG induction); 3: pET32a-RdCHI1 (without IPTG induction); 4: pET32a-RdCHI1 whole bacteria (with IPTG induction).
图 4 免疫印迹验证
M:蛋白分子量Marker;1:BL21(加IPTG诱导);2:pET32a空载体(加IPTG诱导);3:pET32a-RdCHI1(未加IPTG诱导);4:pET32a-RdCHI1全菌(加IPTG诱导)。
Figure 4. Function verification of recombinant protein by western blot
M: Protein molecular weight marker; 1: BL21 (with IPTG induction); 2: pET32a empty vector (with IPTG induction); 3: pET32a-RdCHI1 (without IPTG induction); 4: pET32a-RdCHI1 whole bacteria (with IPTG induction).
图 5 15 ℃ 下不同培养时间可溶性重组蛋白的诱导表达
M:蛋白分子量Marker;1:BL21(加IPTG诱导);2:pET32a空载体(加IPTG诱导);3:pET32a-RdCHI1(未加IPTG诱导); 4~8:pET32a-RdCHI1(24、36、48、60、72 h加IPTG诱导)。
Figure 5. Induced expression of soluble recombinant protein at 15 ℃ under varied culture time
M: Protein molecular weight marker; 1: BL21 (with IPTG induction); 2: pET32a empty vector (with IPTG induction); 3: pET32a-RdCHI1 (without IPTG induction); 4~8: pET32a-RdCHI1 (24, 36, 48, 60, 72 h with IPTG induction).
图 6 15 ℃ 下不同IPTG浓度可溶性重组蛋白的诱导表达
M:蛋白分子量Marker;1:pET32a空载体(加IPTG诱导);2:pET32a-RdCHI1菌(未加IPTG诱导);3~8:pET32a-RdCHI1菌(IPTG浓度为0.05、0.15、0.25、0.35、0.50、0.65 mmol·L−1)。
Figure 6. Induced expression of soluble recombinant protein at 15 ℃ under varied IPTG concentrations
M: Protein molecular weight marker; 1: pET32a empty vector (with IPTG induction); 2. pET32a-RdCHI1 (without IPTG induction); 3-8: pET32a-RdCHI1 (IPTG concentrations of 0.05, 0.15, 0.25, 0.35, 0.50, and 0.65 mmol·L−1).
图 7 RdCHI1重组蛋白的梯度洗脱
M:蛋白分子量Marker;A中,1:pET32a-RdCHI1上清蛋白,2:上Ni柱后溶液,3:10 mmol·L−1咪唑洗脱,4:20 mmol·L−1 咪唑洗脱,5~8:50 mmol·L−1咪唑洗脱。B中,1:50 mmol·L−1咪唑洗脱,2~6:100 mmol·L−1咪唑洗脱,7~8:200 mmol·L−1咪唑洗脱。C中,1~3:200 mmol·L−1咪唑洗脱,4~8:500 mmol·L−1咪唑浓度洗脱。
Figure 7. Gradient elution of RdCHI1 recombinant protein
M: Protein molecular weight marker; A. 1: pET32a-RdCHI1 supernatant protein, 2: solution after Ni column, 3: 10 mmol·L−1 imidazole elution, 4: 20 mmol·L−1 imidazole elution, 5–8: 50 mmol·L−1 imidazole elution; B. 1:50 mmol·L−1 imidazole elution, 2–6: 10 mmol·L−1 imidazole elution, 7 and 8: 20 mmol·L−1 imidazole elution; C. 1–3: 200 mmol·L−1 imidazole elution, 4–8: 500 mmol·L−1 imidazole elution.
图 8 目的蛋白的纯化与浓缩
M:蛋白分子量Marker;1:pET32a空载体菌(加IPTG诱导); 2:pET32a-RdCHI1菌(未加IPTG诱导);3:pET32a-RdCHI1菌(加IPTG诱导);4:RdCHI1纯化蛋白。
Figure 8. Purification and concentration of target protein
M: Protein molecular weight marker; 1: pET32a empty carrier bacteria (with IPTG induction); 2: pET32a-RdCHI1 (without IPTG induction); 3: pET32a-RdCHI1 (with IPTG induction); 4: RdCHI1 purified protein.
表 1 马缨杜鹃原核表达载体构建所用引物
Table 1. Primers used in constructing prokaryotic expression vector of R. delavayi
引物名称 Primer name 引物序列(5′-3′)
Primer sequence(5′-3′)RdCHI1(F) CGGAATTCATGTCTTCACCACTGGCG RdCHI1(R) CCCAAGCTTTTATGTCTCCTTGAATAA -
[1] 付婷. 不同龄级马缨杜鹃空间分布特征及其主要影响因子[D]. 贵阳: 贵州大学, 2022.FU T. Spatial distribution characteristics and main influencing factors of Rhododendron macranthoides in different age classes[D]. Guiyang: Guizhou University, 2022. (in Chinese) [2] 章绍尧, 丁炳扬. 浙江植物志-总论[M]. 杭州: 浙江科学技术出版社, 1993: 261. [3] 卜晓莉, 姬慧娟, 马青林, 等. 生物炭-泥炭复合基质对马缨杜鹃生长和生理的影响 [J]. 植物资源与环境学报, 2021, 30(5):58−68.BU X L, JI H J, MA Q L, et al. Effects of biochar-peat composite substrates on growth and physiology of Rhododendron delavayi [J]. Journal of Plant Resources and Environment, 2021, 30(5): 58−68.(in Chinese) [4] 王浩琪, 秦坤蓉, 祝浩翔, 等. 高山杜鹃低山引种适应性及外源抗热剂对高温胁迫的影响 [J]. 西南大学学报(自然科学版), 2022, 44(4):36−44. doi: 10.13718/j.cnki.xdzk.2022.04.005WANG H Q, QIN K R, ZHU H X, et al. Effect of exogenous heat-resistant agent on heat resistance of Rhododendron under high temperature stress [J]. Journal of Southwest University (Natural Science Edition), 2022, 44(4): 36−44.(in Chinese) doi: 10.13718/j.cnki.xdzk.2022.04.005 [5] 孙威, 张艳, 王聿晗, 等. 马缨杜鹃Rd3GT1的克隆及对矮牵牛花色形成的影响 [J]. 生物技术通报, 2022, 38(9):198−206.SUN W, ZHANG Y, WANG Y H, et al. Cloning of Rd3GT1 in Rhododendron delavayi and its effect on flower color formation of Petunia hybrida [J]. Biotechnology Bulletin, 2022, 38(9): 198−206.(in Chinese) [6] 徐僡. 类黄酮3-O-糖基转移酶调控马缨杜鹃花色呈色的机制研究[D]. 贵阳: 贵州师范大学, 2021.XU H. The mechanism study on flavonoid 3-O-glycosyltransferase regulating the formation of flower color of Rhododendron delavayi[D]. Guiyang: Guizhou Normal University, 2021. (in Chinese) [7] 武绍龙, 唐明, 张习敏, 等. 基于LC-MS/MS分析马缨杜鹃花代谢物的变化 [J]. 广西植物, 2022, 42(7):1170−1180.WU S L, TANG M, ZHANG X M, et al. Analysis of metabolites change from flowering to withering of Rhododendron delavayi based on LC-MS/MS [J]. Guihaia, 2022, 42(7): 1170−1180.(in Chinese) [8] 曾爱, 李齐激, 杨艳, 等. 马缨杜鹃叶的化学成分及其抗菌活性研究 [J]. 中药材, 2023, 46(1):79−83.ZENG A, LI Q J, YANG Y, et al. Study on chemical constituents and antibacterial activity of Rhododendron delavayi leaves [J]. Journal of Chinese Medicinal Materials, 2023, 46(1): 79−83.(in Chinese) [9] SHIMADA N, AOKI T, SATO S, et al. A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legume-specific 5-deoxy(iso)flavonoids in Lotus japonicus [J]. Plant Physiology, 2003, 131(3): 941−951. doi: 10.1104/pp.004820 [10] 李琳玲, 程华, 许锋, 等. 植物查尔酮异构酶研究进展 [J]. 生物技术通讯, 2008, 19(6):935−937. doi: 10.3969/j.issn.1009-0002.2008.06.042LI L L, CHENG H, XU F, et al. Progress of Chalcone isomerase in plants [J]. Letters in Biotechnology, 2008, 19(6): 935−937.(in Chinese) doi: 10.3969/j.issn.1009-0002.2008.06.042 [11] BOLAND M J, WONG E. Purification and kinetic properties of Chalcone-flavanone isomerase from Soya bean [J]. European Journal of Biochemistry, 1975, 50(2): 383−389. doi: 10.1111/j.1432-1033.1975.tb09814.x [12] WANG Y, LI J, XIA R X. Expression of chalcone synthase and chalcone isomerase genes and accumulation of corresponding flavonoids during fruit maturation of Guoqing No. 4 satsuma mandarin (Citrus unshiu Marcow) [J]. Scientia Horticulturae, 2010, 125(2): 110−116. doi: 10.1016/j.scienta.2010.02.001 [13] 张凯敏, 耿贵工, 乔枫. 枸杞果实发育期酶活性、基因表达与类黄酮积累的相关性分析[J/OL]. 分子植物育种, 1-13[2023-03-08]. http://kns.cnki.net/kcms/detail/46.1068.S.20230221.1521.006.html.ZHANG K M, GENG G G, QIAO F. Correlation analysis of enzyme activity, gene expression and flavonoid accumulation during fruit development of Lycium chinense[J/OL]. Molecular Plant Breeding, 1-13[2023-03-08]. http://kns.cnki.net/kcms/detail/46.1068.S.20230221.1521.006.html. [14] 侯伶俐, 杨雄榜, 董雪妮, 等. 逆境胁迫对苦荞花期总黄酮含量及关键酶基因表达的影响 [J]. 核农学报, 2016, 30(1):184−192.HOU L L, YANG X B, DONG X N, et al. Effect of environmental stresses on the contents of total flavonoids and corresponding gene expression in Fagopyrum tataricum during florescence [J]. Journal of Nuclear Agricultural Sciences, 2016, 30(1): 184−192.(in Chinese) [15] 史敏莉, 唐锐敏, 张毅, 等. 甘薯lncRNA TCONS_00074371及其靶基因CHI的克隆及生物信息学分析 [J]. 山西农业科学, 2022, 50(12):1599−1607. doi: 10.3969/j.issn.1002-2481.2022.12.02SHI M L, TANG R M, ZHANG Y, et al. Cloning of lncRNA TCONS_00074371 and its target gene CHI and bioinformatics analysis of CHI in sweet potato [J]. Journal of Shanxi Agricultural Sciences, 2022, 50(12): 1599−1607.(in Chinese) doi: 10.3969/j.issn.1002-2481.2022.12.02 [16] LI F X, JIN Z P, ZHAO D X, et al. Overexpression of the Saussurea medusa chalcone isomerase gene in S. involucrata hairy root cultures enhances their biosynthesis of apigenin [J]. Phytochemistry, 2006, 67(6): 553−560. doi: 10.1016/j.phytochem.2005.12.004 [17] KEYKHA F, BAGHERI A, MOSHTAGHI N, et al. RNAi-induced silencing in floral tissues of Petunia hybrida by agroinfiltration: A rapid assay for chalcone isomerase gene function analysis [J]. Cellular and Molecular Biology, 2016, 62(10): 26−31. [18] 张苛苛, 孙术富, 谭宇萍, 等. 菘蓝查尔酮异构酶基因的克隆与体外酶活鉴定 [J]. 中国中药杂志, 2023, 48(6):1510−1517. doi: 10.19540/j.cnki.cjcmm.20221208.102ZHANG K K, SUN S F, TAN Y P, et al. Cloning and catalytic analysis of Isatis indigotica chalcone isomerase in vitro [J]. China Journal of Chinese Materia Medica, 2023, 48(6): 1510−1517.(in Chinese) doi: 10.19540/j.cnki.cjcmm.20221208.102 [19] 丁宁, 海燕, 王晓晖, 等. 白木香查尔酮异构酶基因的克隆鉴定与表达分析 [J]. 药学学报, 2021, 56(2):630−638.DING N, HAI Y, WANG X H, et al. Cloning and expression analysis of chalcone isomerase from Aquilaria sinensis [J]. Acta Pharmaceutica Sinica, 2021, 56(2): 630−638.(in Chinese) [20] 张甜, 程林, 杨林林, 等. 春季黄芩质量形成与生态因子和关键酶基因表达的关系 [J]. 吉林农业大学学报, 2022, 44(5):557−566.ZHANG T, CHENG L, YANG L L, et al. Relationship between quality formation of Scutellaria baicalensis in spring and expression of ecological factors and key enzyme genes [J]. Journal of Jilin Agricultural University, 2022, 44(5): 557−566.(in Chinese) [21] CHENG H, LI L L, CHENG S Y, et al. Molecular cloning and function assay of a chalcone isomerase gene (GbCHI) from Ginkgo biloba [J]. Plant Cell Reports, 2011, 30(1): 49−62. doi: 10.1007/s00299-010-0943-4 [22] 张琪, 程林, 韩梅, 等. 水分调控对蒙古黄芪毛蕊异黄酮葡萄糖苷生物合成的影响 [J]. 中国中药杂志, 2021, 46(13):3311−3318. doi: 10.19540/j.cnki.cjcmm.20210323.101ZHANG Q, CHENG L, HAN M, et al. Effects of water regulation on biosynthesis of calycosin-7-O-β-D-glucoside in Astragalus membranaceus var. mongholicus [J]. China Journal of Chinese Materia Medica, 2021, 46(13): 3311−3318.(in Chinese) doi: 10.19540/j.cnki.cjcmm.20210323.101 [23] 段艳婷, 李学强, 耿杰, 等. ‘优选1号’欧李果叶涩味物质变化 [J]. 北方园艺, 2020(24):8−15.DUAN Y T, LI X Q, GENG J, et al. Changes of astringent substance in fruits and leaves of ‘outstanding No. 1’ Cerasus humilis [J]. Northern Horticulture, 2020(24): 8−15.(in Chinese) [24] KIMURA Y, AOKI T, AYABE S I. Chalcone isomerase isozymes with different substrate specificities towards 6’-hydroxy- and 6’-deoxychalcones in cultured cells of Glycyrrhiza echinata, a leguminous plant producing 5-deoxyflavonoids [J]. Plant and Cell Physiology, 2001, 42(10): 1169−1173. doi: 10.1093/pcp/pce130 [25] 孙威, 孙世宇, 陈一然, 等. 马缨杜鹃查尔酮异构酶基因RdCHI1的克隆与功能解析 [J]. 园艺学报, 2022, 49(11):2407−2418.SUN W, SUN S Y, CHEN Y R, et al. Cloning and function analysis of Chalcone isomerase gene RdCHI1 in Rhododendron delavayi [J]. Acta Horticulturae Sinica, 2022, 49(11): 2407−2418.(in Chinese) [26] 张磊, 唐永凯, 李红霞, 等. 促进原核表达蛋白可溶性的研究进展 [J]. 中国生物工程杂志, 2021, 41(S1):138−149.ZHANG L, TANG Y K, LI H X, et al. Advances in promoting solubility of prokaryotic expressed proteins [J]. China Biotechnology, 2021, 41(S1): 138−149.(in Chinese) [27] 陈德鑫, 李雯雯, 李思斌, 等. 烟草NteIF2α的原核表达、纯化及多克隆抗体制备和应用 [J]. 农业生物技术学报, 2017, 25(1):50−57.CHEN D X, LI W W, LI S B, et al. Prokaryotic expression, purification of NteIF2α and preparation and application of polyclonal antibody in Nicotiana tabacum [J]. Journal of Agricultural Biotechnology, 2017, 25(1): 50−57.(in Chinese) [28] 胡可. 花青素苷合成途径中结构基因的表达对菊花和瓜叶菊花色的影响[D]. 北京: 北京林业大学, 2010.HU K. Expression of genes on anthocyanin biosythesis pathway control flower coloration in Chrysanthemum and Cineraria[D]. Beijing: Beijing Forestry University, 2010. (in Chinese) [29] WILLEMSE C M, STANDER M A, DE VILLIERS A. Hydrophilic interaction chromatographic analysis of anthocyanins [J]. Journal of Chromatography A, 2013, 1319: 127−140. doi: 10.1016/j.chroma.2013.10.045 [30] WILLEMSE C M, STANDER M A, TREDOUX A G J, et al. Comprehensive two-dimensional liquid chromatographic analysis of anthocyanins [J]. Journal of Chromatography A, 2014, 1359: 189−201. doi: 10.1016/j.chroma.2014.07.044 [31] 朱秀红, 杨金橘, 温道远, 等. 彩叶杨树叶片中花色素苷的光保护作用 [J]. 西南农业学报, 2020, 33(5):958−965. doi: 10.16213/j.cnki.scjas.2020.5.010ZHU X H, YANG J J, WEN D Y, et al. Photoprotective effects of anthocyanins in leaves of color-leaved poplar [J]. Southwest China Journal of Agricultural Sciences, 2020, 33(5): 958−965.(in Chinese) doi: 10.16213/j.cnki.scjas.2020.5.010 [32] MASEK A. Flavonoids as natural stabilizers and color indicators of ageing for polymeric materials [J]. Polymers, 2015, 7(6): 1125−1144. doi: 10.3390/polym7061125 [33] DIXON R A, ACHNINE L, KOTA P, et al. The phenylpropanoid pathway and plant defence-a genomics perspective [J]. Molecular Plant Pathology, 2002, 3(5): 371−390. doi: 10.1046/j.1364-3703.2002.00131.x [34] 黄兰林, 梅馨月, 李详, 等. UV-B辐射对稻瘟病菌侵染阶段四个致病相关基因表达的影响 [J]. 农业环境科学学报, 2019, 38(3):494−501.HUANG L L, MEI X Y, LI X, et al. Effects of UV-B radiation on the expression of four pathogenic genes in the infection stage of Magnaporthe grisea [J]. Journal of Agro-Environment Science, 2019, 38(3): 494−501.(in Chinese) [35] CONKLIN P L, WILLIAMS E H, LAST R L. Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant [J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(18): 9970−9974. doi: 10.1073/pnas.93.18.9970 [36] YAMASAKI H, UEFUJI H, SAKIHAMA Y. Bleaching of the red anthocyanin induced by superoxide radical [J]. Archives of Biochemistry and Biophysics, 1996, 332(1): 183−186. doi: 10.1006/abbi.1996.0331 [37] ZHENG Q H, TAN W J, FENG X L, et al. Protective effect of flavonoids from mulberry leaf on AAPH-induced oxidative damage in sheep erythrocytes[J]. Molecules, 2022, 27(21): 7625. [38] 李玲, 闫旭宇. 野葛花黄酮和花青素的提取及抗氧化性研究 [J]. 食品研究与开发, 2018, 39(20):23−28. doi: 10.3969/j.issn.1005-6521.2018.20.005LI L, YAN X Y. Extraction and antioxidant activity of flavonoids and anthocyanins from Flos puerariae [J]. Food Research and Development, 2018, 39(20): 23−28.(in Chinese) doi: 10.3969/j.issn.1005-6521.2018.20.005 [39] VENDRAME S, KLIMIS-ZACAS D. Potential factors influencing the effects of anthocyanins on blood pressure regulation in humans: A review [J]. Nutrients, 2019, 11(6): 1431. doi: 10.3390/nu11061431 [40] KENT K, CHARLTON K, ROODENRYS S, et al. Consumption of anthocyanin-rich cherry juice for 12 weeks improves memory and cognition in older adults with mild-to-moderate dementia [J]. European Journal of Nutrition, 2017, 56(1): 333−341. doi: 10.1007/s00394-015-1083-y [41] YAN F J, DAI G H, ZHENG X D. Mulberry anthocyanin extract ameliorates insulin resistance by regulating PI3K/AKT pathway in HepG2 cells and db/db mice [J]. The Journal of Nutritional Biochemistry, 2016, 36: 68−80. doi: 10.1016/j.jnutbio.2016.07.004 [42] NAKANO H, WU S S, SAKAO K, et al. Bilberry anthocyanins ameliorate NAFLD by improving dyslipidemia and gut microbiome dysbiosis [J]. Nutrients, 2020, 12(11): 3252. doi: 10.3390/nu12113252 [43] LI L, LI J, XU H, et al. The protective effect of anthocyanins extracted from Aronia melanocarpa berry in renal ischemia-reperfusion injury in mice [J]. Mediators of Inflammation, 2021, 2021: 7372893. [44] 申欢, 林建, 李欲轲, 等. 日本蛇根草CHI基因原核表达载体的构建及重组蛋白的纯化 [J]. 贵州师范大学学报(自然科学版), 2018, 36(4):36−39. doi: 10.16614/j.gznuj.zrb.2018.04.007SHEN H, LIN J, LI Y K, et al. Prokaryotic expression vector construction and recombinant proteins purification of CHI gene from Ophiorrhiza japonica [J]. Journal of Guizhou Normal University (Natural Sciences), 2018, 36(4): 36−39.(in Chinese) doi: 10.16614/j.gznuj.zrb.2018.04.007 [45] 周军, 姚泉洪, 彭日荷, 等. 巨峰葡萄查尔酮异构酶基因克隆及表达分析 [J]. 西北植物学报, 2009, 29(9):1723−1729. doi: 10.3321/j.issn:1000-4025.2009.09.001ZHOU J, YAO Q H, PENG R H, et al. Cloning and expression analysis of CHI of kyoho grape by semi-quantity RT-PCR [J]. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(9): 1723−1729.(in Chinese) doi: 10.3321/j.issn:1000-4025.2009.09.001 [46] WINKEL-SHIRLEY B. Biosynthesis of flavonoids and effects of stress [J]. Current Opinion in Plant Biology, 2002, 5(3): 218−223. doi: 10.1016/S1369-5266(02)00256-X [47] SASLOWSKY D, WINKEL-SHIRLEY B. Localization of flavonoid enzymes in Arabidopsis roots [J]. The Plant Journal, 2001, 27(1): 37−48. doi: 10.1046/j.1365-313x.2001.01073.x [48] 吴彦庆, 赵大球, 王静, 等. 芍药查尔酮异构酶基因(CHI)克隆、密码子偏好性分析以及蛋白结构功能预测 [J]. 华北农学报, 2016, 31(2):71−80.WU Y Q, ZHAO D Q, WANG J, et al. Cloning, Codon usage bias and protein structure and function prediction of CHI gene in Paeonia lactiflora [J]. Acta Agriculturae Boreali-Sinica, 2016, 31(2): 71−80.(in Chinese)