LED-stimulated Levodopa Production in Broad Bean Sprouts
-
摘要:
目的 研究不同LED光培养条件对蚕豆芽苗菜功效成分左旋多巴产量的影响。 方法 通过单因素试验和L9(34)正交试验研究不同光强、光照时间和培养时间3个因素对蚕豆芽苗菜生长及其功效物质左旋多巴产量的影响。 结果 弱光促进蚕豆芽苗菜干物质的积累,强光促进蚕豆芽苗菜左旋多巴质量分数的积累,蚕豆芽苗菜高左旋多巴产量的最优培养条件为光强500 lx、光照时间9 h、培养时间6 d,在此培养条件下蚕豆芽苗菜左旋多巴产量为19.62 g·m−2。 结论 通过调节蚕豆芽苗菜的光培养条件可以提高其功效物质左旋多巴的产量,本研究为蚕豆芽苗菜的功效物质成分提取提供参考依据,有利于蚕豆芽苗菜的开发利用。 Abstract:Objective Effect of LED photoculture on yield of levodopa in broad bean sprouts was studied. Method Broad bean sprouts were exposed to LED of varied intensity and cultured for varied time periods in single factor and L9 (34) orthogonal experiments. Levodopa generated in the sprouts under the conditions was determined for process optimization. Result Low LED light enhanced the accumulation of sprout dry matters. However, it was under high intensity the productivity of levodopa in the sprouts was significantly encouraged. The optimum conditions for a maximized levodopa production of 19.62 g·m−2 were found to include 9 h of 500 lx LED exposure in 6 d of cultivation. Conclusion The photoculture of broad bean sprouts under intense LED lights could significantly promote the production of the functional amino acid, levodopa. -
Key words:
- Broad bean sprouts /
- orthogonal test /
- LED light intensity /
- levodopa
-
表 1 因素水平
Table 1. Factors and levels of orthogonal experiment
水平
Level因素 Factor A培养时间
Culture time/dB 光强
Light intensity/lxC 光照时间
Light time/h1 6 250 6 2 7 500 9 3 8 750 12 表 2 蚕豆芽苗菜左旋多巴产量的正交试验结果与分析表
Table 2. Orthogonal test results and analysis on levodopa produced in broad bean sprouts
编号
Number因素 Factor 左旋多巴产量
Levodopa yield/(g·m−2)A培养时间
Culture timeB光强
Light intensityC光照时间
Light time空列
Empty column1 1 1 1 1 16.83 2 1 2 2 2 19.62 3 1 3 3 3 17.56 4 2 1 2 3 19.26 5 2 2 3 1 19.55 6 2 3 1 2 16.87 7 3 1 3 2 18.64 8 3 2 1 3 18.64 9 3 3 2 1 18.06 K1 54.01 54.73 52.34 54.44 K2 55.68 57.81 56.94 55.13 K3 55.34 52.49 55.75 55.46 k1 18.00 18.24 17.45 18.15 k2 18.56 19.27 18.98 18.38 k3 18.45 17.50 18.58 18.49 极差 Range 0.56 1.77 1.53 0.34 因素主次 Factor primary and secondary B>C>A 优水平 Excellent level A2 B2 C2 优组合 Excellent combination B2C2A2 表 3 方差分析
Table 3. Analysis of variance
因素
Factor偏差平方和
Sum of squares of
deviations自由度
Degree of
freedomF值
F value显著性
SignificanceA 0.52 2 2.89 — B 4.75 2 26.37 * C 3.80 2 21.10 * F0.05(2,2)=19,当F>19说明有显著性意义,*P<0.05。
F0.05(2,2)=19, F >19 means significant difference (P<0.05). -
[1] 赵天瑶, 王丽云, 姜宏伟, 等. 豆类种子及其芽苗菜的营养品质、功能性成分及抗氧化性研究 [J]. 食品与发酵工业, 2020, 46(5):83−90.ZHAO T Y, WANG L Y, JIANG H W, et al. Nutritional quality, phenolic profile and antioxidant activity in legumes seeds and their sprouts [J]. Food and Fermentation Industries, 2020, 46(5): 83−90.(in Chinese) [2] 王伟, 康玉凡, 陈亚云, 等. 蚕豆芽苗菜生长、品质及次茬生长的研究 [J]. 中国食物与营养, 2016, 22(1):26−30.WANG W, KANG Y F, CHEN Y Y, et al. Growth, quality and growth of second crop of fava bean sprouts [J]. Food and Nutrition in China, 2016, 22(1): 26−30.(in Chinese) [3] CAO N N, FAN J X, YANG Z X, et al. Increasing antioxidant potentials of mung bean sprouts [J]. Current Topics in Nutraceutical Research, 2018, 18(1): 75−82. doi: 10.37290/ctnr2641-452X.18:75-82 [4] KIM Y H, HWANG Y H, LEE H S. Analysis of isoflavones for 66 varieties of sprout beans and bean sprouts [J]. Korean Journal of Food Science and Technology, 2003, 35(4): 568−575. [5] GUO X B, LI T, TANG K X, et al. Effect of germination on phytochemical profiles and antioxidant activity of mung bean sprouts (Vigna radiata) [J]. Journal of Agricultural and Food Chemistry, 2012, 60(44): 11050−11055. doi: 10.1021/jf304443u [6] TANG W Z, LEI X T, LIU X Q, et al. Nutritional improvement of bean sprouts by using chitooligosaccharide as an elicitor in germination of soybean (Glycine max L. ) [J]. Applied Sciences, 2021, 11(16): 7695. doi: 10.3390/app11167695 [7] LI L, LIU B, Zheng X. Bioactive ingredients in adzuki bean sprouts [J]. Journal of Medicinal Plant Research, 2011, 5(24): 5894−5898. [8] LIU C, GUO Y H, CHENG Y L, et al. An investigation on the production and stability of chickpea bean sprout beverage [J]. Journal of Food Processing and Preservation, 2019, 43(10): e14143. [9] SHI H L, NAM P K, MA Y F. Comprehensive profiling of isoflavones, phytosterols, tocopherols, minerals, crude protein, lipid, and sugar during soybean (Glycine max) germination [J]. Journal of Agricultural and Food Chemistry, 2010, 58(8): 4970−4976. doi: 10.1021/jf100335j [10] 王玉彦, 党选民, 李添发, 等. 几种芽苗菜不同生长期主要营养成分变化 [J]. 营养学报, 2003, 25(2):167−168.WANG Y Y, DANG X M, LI T F, et al. Variation of main nutritional components in a few seeding vegetables in different period [J]. Acta Nutrimenta Sinica, 2003, 25(2): 167−168.(in Chinese) [11] 冯玉珠, 刘晶芝, 闫峰. 芽苗类蔬菜的种类和食用价值 [J]. 安徽农业科学, 2007, 35(18):5418,5421.FENG Y Z, LIU J Z, YAN F. Species and edible value of sprout vegetables [J]. Journal of Anhui Agricultural Sciences, 2007, 35(18): 5418,5421.(in Chinese) [12] 付猛. 特色蔬菜芽苗菜高效栽培技术 [J]. 上海蔬菜, 2013(2):25−26.FU M. Efficient cultivation techniques of characteristic vegetable sprouts [J]. Shanghai Vegetables, 2013(2): 25−26.(in Chinese) [13] HUANG X, CAI W, Xu B. Kinetic changes of nutrients and antioxidant capacities of germinated soybean (Glycine max L. ) and mung bean (Vigna radiata L. ) with germination time [J]. Food Chemistry, 2014, 143: 268−276. doi: 10.1016/j.foodchem.2013.07.080 [14] 王莘, 王艳梅, 闵卫红, 等. 大豆萌发期功能性营养成分测定与分析 [J]. 中国粮油学报, 2003, 18(4):30−32.WANG X, WANG Y M, MIN W H, et al. Analysis and determination of functional nutrition composition in soybean during sprouting period [J]. Chinese Cereals and Oils Association, 2003, 18(4): 30−32.(in Chinese) [15] BOLIGŁOWA E, GLEŃ-KAROLCZYK K, GOSPODAREK J. Effect of intensity of broad bean protection with biopreparations against fungal diseases [J]. Journal of Research and Applications in Agricultural Engineering, 2016, 51(3): 39−42. [16] OKUMURA K, HOSOYA T, KAWARAZAKI K, et al. Antioxidant activity of phenolic compounds from fava bean sprouts [J]. Journal of Food Science, 2016, 81(6): C1394−C1398. doi: 10.1111/1750-3841.13330 [17] 曹奕鸯, 郑开斌, 李爱萍, 等. 蚕豆芽苗菜左旋多巴(L-Dopa)含量变化的研究 [J]. 福建农业学报, 2012, 27(9):994−998.CAO Y Y, ZHENG K B, LI A P, et al. L-dopa content in broad bean sprouts [J]. Fujian Journal of Agricultural Sciences, 2012, 27(9): 994−998.(in Chinese) [18] 王乔, 孟凡刚. 左旋多巴诱导的帕金森病异动症基础研究现状与展望 [J]. 中华实验外科杂志, 2020, 37(9):1587−1593.WANG Q, MENG F G. Current situation and prospect of basic studies on levodopa-induced dyskinesia in Parkinson’s disease [J]. Chinese Journal of Experimental Surgery, 2020, 37(9): 1587−1593.(in Chinese) [19] 曹奕鸯. 蚕豆左旋多巴(L-DOPA)含量的研究[D]. 福州: 福建农林大学, 2010.CAO Y Y. Study on L-DOPA content of Vicia faba L. [D]. Fuzhou: Fujian Agriculture and Forestry University, 2010. (in Chinese) [20] 苌淑敏, 陈茗, 赵天瑶, 等. 浸种与光照时间对蚕豆芽苗菜生长与品质的影响 [J]. 中国农业大学学报, 2019, 24(10):1−9.CHANG S M, CHEN M, ZHAO T Y, et al. Effect of soaking and illumination time on the growth and quality of fava bean sprouts [J]. Journal of China Agricultural University, 2019, 24(10): 1−9.(in Chinese) [21] 刘一静, 张驰松, 涂彩虹, 等. 光质对蚕豆芽苗菜生长及营养品质的影响 [J]. 食品与营养科学., 2018, 7(4):357−362. doi: 10.12677/HJFNS.2018.74044LIU Y J, ZHANG C S, TU C H, et al. Effects of light quality on the growth and nutrition quality of faba bean sprouts [J]. Hans Journal of Food and Nutrition Science, 2018, 7(4): 357−362.(in Chinese) doi: 10.12677/HJFNS.2018.74044 [22] 班甜甜, 李晓慧, 马超. 不同光质对豌豆芽苗菜生长和品质的影响 [J]. 北方园艺, 2019(13):77−82.BAN T T, LI X H, MA C. Effect of light quality on the growth and quality of Pisum sativum Linn. sprouts [J]. Northern Horticulture, 2019(13): 77−82.(in Chinese) [23] 李慧敏, 陆晓民. 不同光质对大叶蚕豆芽苗菜品质的影响 [J]. 安徽农学通报, 2013, 19(10):26,89.LI H M, LU X M. Effects of light quality on the quality of broad bean(Vicia faba linn.) sprouts [J]. Anhui Agricultural Science Bulletin, 2013, 19(10): 26,89.(in Chinese) [24] 刘国顺, 杨兴有, 位辉琴, 等. 光照强度对烤烟漂浮育苗成苗素质的影响 [J]. 烟草科技, 2006, 39(8):51−54.LIU G S, YANG X Y, WEI H Q, et al. Effects of light intensity on quality of tobacco seedlings in floating system [J]. Tobacco Science & Technology, 2006, 39(8): 51−54.(in Chinese) [25] 骆郴, 刘彤, 魏鹏, 等. 不同光照条件下新疆小拟南芥(Arabidopsis pumila)的表型可塑性研究 [J]. 石河子大学学报(自然科学版), 2004, 22(2):149−153.LUO C, LIU T, WEI P, et al. A study on phenotypic plasticity of Arabidopsis pumila in Xinjiang in different light conditions [J]. Journal of Shihezi University (Natural Science), 2004, 22(2): 149−153.(in Chinese) [26] KUREPIN L V, WALTON L J, HAYWARD A, et al. Interactions between plant hormones and light quality signaling in regulating the shoot growth ofArabidopsis thalianaseedlings [J]. Botany, 2012, 90(3): 237−246. doi: 10.1139/b11-108 [27] 杨伟波, 付登强, 李艳, 等. 不同光强下义安油茶幼苗生长和叶绿素荧光特性分析 [J]. 热带作物学报, 2012, 33(4):651−654.YANG W B, FU D Q, LI Y, et al. Growth and chlorophyll fluorescence of Camellia oleifera var. ’nhge an’ seedlings under different light intensity [J]. Chinese Journal of Tropical Crops, 2012, 33(4): 651−654.(in Chinese) [28] 张毅华, 张晓燕, 崔瑾. 光强对黑豆芽苗菜生长和营养品质的影响 [J]. 中国蔬菜, 2013(16):49−54.ZHANG Y H, ZHANG X Y, CUI J. Effects of light intensity on growth and nutritional quality of black soybean sprouts [J]. China Vegetables, 2013(16): 49−54.(in Chinese) [29] 薛晴, 陈斌, 杨小梅, 等. 不同光强下4种鸭跖草科植物的生物量分配、水分生理及光响应特征 [J]. 草业学报, 2022, 31(1):69−80.XUE Q, CHEN B, YANG X M, et al. Biomass allocation, water use characteristics, and photosynthetic light response of four Commelinaceae plants under different light intensities [J]. Acta Prataculturae Sinica, 2022, 31(1): 69−80.(in Chinese) [30] 马超. 光环境调控对绿瓣型大豆芽苗菜生长和品质的影响[D]. 南京: 南京农业大学, 2012MA C. Effects of light environment control on the growth and quality of green soybean sprouts[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese) [31] PREETHI, SHETTY,. Effects of UV treatment on the proline-linked pentose phosphate pathway for phenolics and L-DOPA synthesis in dark germinated Vicia faba [J]. Process Biochemistry, 2002, 37(11): 1285−1295. doi: 10.1016/S0032-9592(02)00013-4