Effects of Chemical Fertilizer Reduction with Humic Acid Addition on Carbon and Nitrogen Metabolism of Zea mays under Straw-returning Cultivation
-
摘要:
目的 秸秆直接全量还田技术在东北黑土区农业生产中被广泛应用,但关于还田秸秆腐解过程对当季作物的直接影响及其配套技术研究较少。对秸秆与腐植酸互作效应的研究可为完善东北黑土区秸秆还田技术提供参考。 方法 在减少15%化肥常规施用量的基础上,以化肥常量施肥(CF)为对照,设置化肥减量15%增施腐植酸(HA)、化肥减量15%增施秸秆(SR)、化肥减量15%增施腐植酸和秸秆(SRH)处理,研究玉米秸秆还田配施腐植酸对当季玉米植株碳氮代谢的影响,以期明确秸秆还田及腐植酸对化肥减量情况下玉米生长的生理效应。 结果 秸秆还田提高了玉米叶片磷酸烯醇式丙酮酸羧化酶(PEPC)活性,腐植酸提高了玉米叶片1,5-二磷酸核酮糖羧化酶(Rubisco)和PEPC活性,秸秆还田配施腐植酸在PEPC活性上具有互作效应。虽然秸秆还田降低了蔗糖磷酸合成酶(SPS)活性,但腐植酸提高了SPS活性,两者均提高了蔗糖合成酶活性,且两者互作下同步提高了酸性转化酶(AI)和中性转化酶(NI)活性,促进了还原糖(RS)合成,进而提高了总可溶性糖(TSS)含量,加强了淀粉合成。秸秆还田对玉米植株氮代谢无直接影响,腐植酸对氮代谢关键酶活性具有正效应。 结论 秸秆还田配施腐植酸提高了化肥减量条件下玉米叶片光合效率和光合产物的贮存能力,植株氮代谢水平不低于常规施肥对照。 Abstract:Objective Effects on plant metabolism of the widely practiced utilizing spent straws for fertilization in northeastern China corn fields were studied. Method In a field experimentation, application of either the conventional chemical fertilization (CK) or 15% reduction of chemical fertilizer with an addition of humic acid (HA), spent straws (SR), or both HA and SR (SRH) was implemented on a black soil lot of Zea mays. Physiological responses including carbon and nitrogen metabolisms to the treatments of current-season corn plants were monitored. Result The replacement of chemical fertilizer by SR enhanced the phosphoenolpyruvate carboxylase (PEPC) activity, that by HA decreased the 1,5-ribulose bisphosphate carboxylase (Rubisco) and PEPC activities, and that by SRH interacted on PEPC in the corn leaves. Although SR decreased, HA increased the sucrose phosphate synthase (SPS) activity. Both SR and HA (SRH) treatment raised the activities of sucrose synthase (SS), and combined use of HA and HA(SRH) increased the acid invertase (AI), and neutral invertase (NI) promoting the synthesis of reducing sugars that resulted in an increased total soluble sugar (TSS) and starch synthesis. SR had no significant effect, but HA had a positive effect on key enzymes involving the nitrogen metabolism of the plant. Conclusion With a 15% reduction on chemical fertilizer, addition of SRH boosted the photosynthetic efficiency and storage of photosynthetic products of corn leaves without any significant effect on the nitrogen metabolism of the plant. -
图 1 化肥减量时秸秆还田配施腐植酸对碳氮比的影响
不同小写字母表示同一时期不同处理之间差异显著(P<0.05)。图2同。
Figure 1. Effects of straw-returning with HA addition on carbon/nitrogen ratio of plants under chemical fertilizer reduction
Data with different letters indicate significant differences between treatments in same period (P<0.05). Same for Fig.2.
表 1 试验处理的各物料用量及代号
Table 1. Amounts of materials applied and treatment codes
试验处理
Experimental
treatments化肥
Chemical fertilizer/(kg·hm−2)秸秆
Straw/
(kg·hm−2)腐植酸
Humic acid/
(kg·hm−2)尿素
Urea磷酸二铵
Diammonium
phosphate硫酸钾
Potassium
sulphateCF 375 225 150 0 0 HA 320 190 0 0 600 SR 320 190 0 3750 0 SRH 320 190 0 3750 600 表 2 化肥减量时秸秆还田配施腐植酸对玉米碳代谢的影响
Table 2. Effect of straw-returning cultivation with HA addition on carbon metabolism of corn under chemical fertilizer reduction
指标
Indexes处理
Treatments2019年 2020年 拔节期
JS抽雄期
TS拔节期
JS抽雄期
TS1,5二磷酸核酮糖羧化酶活性
Rubisco activity/( U·g−1)CF 182.478±19.869 c 168.553±11.127 b 107.010±7.919 c 82.530±9.306 c HA 333.133±31.305 a 246.361±23.953 a 160.524±13.897 a 214.903±19.634 a SR 187.207±12.636 c 178.220±20.805 b 97.900±10.600 c 146.339±15.249 b SRH 295.363±28.578 b 250.515±21.954 a 128.584±10.431 b 209.210±21.617 a 磷酸烯醇式丙酮酸羧化酶活性
PEPC activity/( U·g−1)CF 179.762±23.198 c 186.567±21.519 d 124.569±10.988 c 238.509±8.438 c HA 231.241±30.347 b 263.827±19.643 c 150.838±14.381 c 285.123±36.233 b SR 267.463±26.890 b 321.121±42.789 b 175.993±16.885 b 315.329±31.267 b SRH 340.904±30.898 a 360.571±18.653 a 202.089±20.991 a 432.205±43.422 a 蔗糖磷酸合成酶活性
SPS activity/( U·g−1)CF 492.938±48.295 c 479.661±60.974 b 458.702±70.678 b 492.480±75.921 a HA 996.230±94.786 a 633.180±78.493 a 734.351±48.045 a 577.201±24.592 a SR 529.382±53.381 bc 444.858±27.624 b 467.885±53.758 b 315.727±36.193 b SRH 622.420±76.004 b 550.510±57.402 ab 482.118±50.025 b 505.940±68.491 a 蔗糖合成酶活性
SS activity/( U·g−1)CF 0.558±0.046 c 0.435±0.017 b 0.384±0.043 c 0.333±0.041 c HA 0.643±0.054 bc 0.439±0.065 b 0.481±0.044 b 0.404±0.055 b SR 0.692±0.072 b 0.493±0.036 b 0.481±0.044 b 0.462±0.023 ab SRH 0.951±0.086 a 0.718±0.105 a 0.577±0.063 a 0.532±0.013 a 酸性转化酶活性
AI activity/( U·g−1)CF 0.188±0.011 c 0.260±0.025 c 0.605±0.030 a 0.415±0.047 b HA 0.257±0.023 b 0.317±0.029 b 0.708±0.070 a 0.484±0.034 a SR 0.242±0.025 b 0.364±0.050 b 0.635±0.068 a 0.497±0.071 a SRH 0.310±0.038 a 0.426±0.049 a 0.680±0.058 a 0.539±0.059 a 中性转化酶活性
NI activity/( U·g−1)CF 0.119±0.016 b 0.201±0.011 c 0.394±0.036 b 0.383±0.039 b HA 0.146±0.016 a 0.231±0.028 c 0.484±0.037 a 0.433±0.056 ab SR 0.145±0.016 a 0.266±0.030 b 0.487±0.046 a 0.421±0.017 ab SRH 0.150±0.011 a 0.329±0.022 a 0.517±0.058 a 0.483±0.055 a 还原糖含量
RS content/(mg·g−1)CF 6.448±0.497 b 10.439±1.021 c 12.707±0.858 b 14.162±2.297 a HA 6.715±0.288 ab 12.571±1.730 b 12.707±1.184 b 15.307±1.125 a SR 6.795±0.345 ab 13.909±0.923 b 14.271±1.479 ab 14.716±1.295 a SRH 7.290±0.600 a 18.290±2.265 a 15.981±0.755 a 17.118±2.281 a 可溶性糖含量
SS content/(mg·g−1)CF 76.805±2.100 b 183.208±19.136 c 147.315±12.109 b 218.915±13.809 b HA 80.668±3.948 b 243.913±25.718 b 177.415±18.147 a 249.490±22.366 ab SR 89.401±5.496 a 302.668±18.060 a 169.865±14.699 a 202.365±25.940 b SRH 90.295±6.562 a 292.733±31.149 a 177.115±17.130 a 270.490±27.253 a 淀粉含量
Starch content/(mg·g−1)CF 4.706±0.289 d 5.351±0.503 d 2.002±0.212 c 4.594±0.405 d HA 5.890±0.595 c 7.170±0.650 c 4.316±0.339 b 5.449±0.409 c SR 11.014±1.217 a 11.692±0.560 a 6.707±0.643 a 8.996±0.773 a SRH 8.863±0.884 b 9.385±0.561 b 4.905±0.440 b 7.984±0.629 b 不同字母表示同一时期不同处理间差异显著(P<0.05)。表4同。
Data with different letters indicate significant differences between treatments in same period (P<0.05). Same for Table 4.表 3 化肥减量时秸秆还田配施腐植酸对玉米碳代谢影响的相关分析
Table 3. Correlation between straw-returning with HA addition and carbon metabolism of corn under chemical fertilizer reduction
指标
Indices1.5-二磷酸核酮
糖羧化酶
Rubisco磷酸烯醇式
丙酮酸
PEPC蔗糖磷酸
合成酶
SPS酸性转
化酶
AI中性转
化酶
NI蔗糖
合成酶
SS还原糖
RS总可溶性
糖
SS淀粉
Starch秸秆还田 SR −0.002 0.555** −0.379** 0.173 0.180 0.489** 0.277* 0.183 0.716** 腐植酸 HA 0.618** 0.336** 0.569** 0.194 0.158 0.361** 0.201 0.161 −0.026 1.5-二磷酸核酮糖羧化酶 Rubisco 1.000 0.445** 0.615** −0.495** −0.541** 0.596** −0.330** −0.126 0.324** 磷酸烯醇式 丙酮酸羧化酶 PEPC 0.445** 1.000 −0.098 −0.178 −0.037 0.342** 0.287* 0.448** 0.668** 蔗糖磷酸合成酶 SPS 0.615** −0.098 1.000 −0.164 −0.286* 0.302* −0.383** −0.320* −0.133 酸性转化酶 AI −0.495** −0.178 −0.164 1.000 0.929** −0.302* 0.639** 0.289* −0.329** 中性转化酶 NI −0.541** −0.037 −0.286* 0.929** 1.000 −0.431** 0.771** 0.462** −0.275* 蔗糖合成酶 SS 0.596** 0.342** 0.302* −0.302* −0.431** 1.000 −0.357** −0.371** 0.457** 还原糖 RS −0.330** 0.287* −0.383** 0.639** 0.771** −0.357** 1.000 0.804** 0.035 总可溶性糖 SS −0.126 0.448** −0.320* 0.289* 0.462** −0.371** 0.804** 1.000 0.263* 淀粉 Starch 0.324** 0.668** −0.133 −0.329** −0.275* 0.457** 0.035 0.263* 1.000 *为P<0.05水平显著性相关,**为P<0.01水平显著性相关。表5同。
* indicates significant difference at P<0.05; ** significant difference at P<0.01. Same for Table 5.表 4 化肥减量时秸秆还田配施腐植酸对玉米氮代谢的影响
Table 4. Effect of straw-returning cultivation with HA addition on nitrogen metabolism of corn under chemical fertilizer reduction
指标
Indices处理
Treatments2019年 2020年 拔节期
JS抽雄期
TS拔节期
JS抽雄期
TS硝酸还原酶活性 NR activity/(U·g−1) CF 10.733±0.298 c 15.112±0.604 ab 10.889±0.353 c 22.785±1.491 c HA 14.883±0.662 a 15.613±1.300 ab 12.833±0.999 b 25.806±1.561 b SR 12.158±0.572 b 14.286±0.961 b 13.381±1.200 b 23.354±1.760 c SRH 14.495±1.076 a 16.549±1.244 a 15.911±1.078 a 29.009±2.233 a 亚硝酸还原酶活性 NiR activity/( U·g−1) CF 7.223±0.397 a 7.855±0.602 ab 5.304±0.427 b 5.617±0.425 ab HA 7.467±0.530 a 8.278±0.555 a 5.294±0.534 b 5.781±0.300 ab SR 6.066±0.489 b 7.178±0.608 bc 5.209±0.388 b 5.352±0.325 b SRH 7.291±0.338 a 8.278±0.647 a 5.937±0.415 a 6.148±0.204 a 谷氨酰胺合成酶活性 GS activity/(U·g−1) CF 4.335±0.296 c 6.066±0.676 ab 5.063±0.343 a 5.223±0.439 ab HA 5.014±0.409 ab 6.946±0.674 a 4.974±0.131 a 5.449±0.405 ab SR 4.503±0.497 bc 5.353±0.626 bc 4.846±0.423 a 4.600±0.251 c SRH 5.153±0.404 a 6.762±0.785 a 5.342±0.454 a 5.665±0.290 a 谷氨酸合成酶活性 GOGAT activity/(U·g−1) CF 201.226±12.436 a 168.848±14.888 b 169.267±9.328 a 223.634±15.222 b HA 209.045±16.757 a 179.706±12.784 b 177.401±16.887 a 226.755±18.983 b SR 157.349±13.598 b 160.202±9.295 b 176.813±13.815 a 180.598±14.901 c SRH 201.724±13.005 a 230.400±19.836 a 184.970±18.398 a 291.460±14.460 a 谷氨酸脱氢酶活性 GDH activity/(U·g−1) CF 154.233±14.485 cd 282.472±25.283 b 122.881±10.086 b 194.298±14.478 c HA 189.421±17.192 ab 327.190±32.580 a 151.293±12.562 a 230.185±15.743 b SR 174.206±13.139 bc 256.136±19.632 b 138.068±7.485 a 197.765±13.886 c SRH 210.899±15.115 a 320.303±12.314 a 146.717±11.322 a 289.820±28.757 a 可溶性蛋白质含量 SP content/(mg·g−1) CF 2.737±0.133 b 5.389±0.166 b 3.533±0.214 a 6.693±0.553 a HA 2.966±0.208 b 5.404±0.242 b 3.690±0.166 a 6.636±0.306 a SR 2.980±0.395 b 5.539±0.220 b 3.585±0.216 a 6.029±0.331 b SRH 3.490±0.250 a 6.082±0.503 a 3.654±0.201 a 7.020±0.319 a 表 5 化肥减量时秸秆还田配施腐植酸对玉米氮代谢影响的相关分析
Table 5. Correlation between straw-returning with HA and nitrogen metabolism of corn under chemical fertilizer reduction
指标
Indices硝酸还原酶
NR亚硝酸还原酶
NiR谷氨酰胺合成酶
GS谷氨酸合成酶
GOGAT谷氨酸脱氢酶
GDH可溶性蛋白质
SP秸秆还田 SR 0.121 −0.056 −0.065 0.048 0.078 0.055 腐植酸 HA 0.259* 0.266* 0.404** 0.450** 0.328** 0.103 硝酸还原酶 NR 1.000 −0.172 0.155 0.653** 0.379** 0.804** 亚硝酸还原酶 NiR −0.172 1.000 0.467** 0.038 0.642** 0.059 谷氨酰胺合成酶 GS 0.155 0.467** 1.000 0.160 0.709** 0.446** 谷氨酸合成酶 GOGAT 0.653** 0.038 0.160 1.000 0.326** 0.465** 谷氨酸脱氢酶 GDH 0.379** 0.642** 0.709** 0.326** 1.000 0.637** 可溶性蛋白质 SP 0.804** 0.059 0.446** 0.465** 0.637** 1.000 -
[1] XIN L J. Chemical fertilizer rate, use efficiency and reduction of cereal crops in China, 1998–2018 [J]. Journal of Geographical Sciences, 2022, 32(1): 65−78. doi: 10.1007/s11442-022-1936-2 [2] 王囡囡, 朱凤莉, 张春峰, 等. 不同秸秆还田方式对白浆土土壤养分及大豆产量的影响 [J]. 中国土壤与肥料, 2016(1):94−97. doi: 10.11838/sfsc.20160116WANG N N, ZHU F L, ZHANG C F, et al. Effect of different returning method of straw to soil on soil chemical property and soybean yield [J]. Soil and Fertilizer Sciences in China, 2016(1): 94−97.(in Chinese) doi: 10.11838/sfsc.20160116 [3] 王宇先, 孙士明, 徐莹莹, 等. 黑龙江省半干旱地区生长季玉米秸秆腐解特征研究 [J]. 黑龙江农业科学, 2020(9):46−48. doi: 10.11942/j.issn1002-2767.2020.09.0046WANG Y X, SUN S M, XU Y Y, et al. Study on decomposition characteristics of maize straw in semi-arid region of Heilongjiang Province during growing season [J]. Heilongjiang Agricultural Sciences, 2020(9): 46−48.(in Chinese) doi: 10.11942/j.issn1002-2767.2020.09.0046 [4] 张水勤, 袁亮, 林治安, 等. 腐植酸促进植物生长的机理研究进展[J]. 植物营养与肥料学报, 2017, 23(4): 1065-1076.ZHANG S Q, YUAN L, LIN Z A, et al. Advances in humic acid for promoting plant growth and its mechanism[J]. Plant Nutrition and Fertilizer Science, 2017, 23(4)4: 1065-1076. (in Chinese) [5] SHAHBAZ M, KUMAR A, KUZYAKOV Y, et al. Priming effects induced by glucose and decaying plant residues on SOM decomposition: A three-source 13C/14C partitioning study [J]. Soil Biology and Biochemistry, 2018, 121: 138−146. doi: 10.1016/j.soilbio.2018.03.004 [6] 韦安培, 丁文超, 胡恒宇, 等. 耕作方式及秸秆还田对土壤性质、微生物碳源代谢及小麦产量的影响 [J]. 干旱地区农业研究, 2019, 37(6):145−152. doi: 10.7606/j.issn.1000-7601.2019.06.21WEI A P, DING W C, HU H Y, et al. Effects of tillage methods and straw return on soil properties, metabolism of microbial carbon source and wheat yield [J]. Agricultural Research in the Arid Areas, 2019, 37(6): 145−152.(in Chinese) doi: 10.7606/j.issn.1000-7601.2019.06.21 [7] 孔雨, 刘格彤, 张颖, 等. 秸秆还田对麦田碳氮代谢生理特性的影响 [J]. 焦作大学学报, 2013, 27(3):82−83. doi: 10.3969/j.issn.1008-7257.2013.03.028KONG Y, LIU G T, ZHANG Y, et al. Effects of straw returning on physiological characteristics of carbon and nitrogen metabolism in wheat field [J]. Journal of Jiaozuo University, 2013, 27(3): 82−83.(in Chinese) doi: 10.3969/j.issn.1008-7257.2013.03.028 [8] 王娟, 张丽君, 姚槐应. 添加秸秆和黑炭对水稻土碳氮转化及土壤微生物代谢图谱的影响 [J]. 中国水稻科学, 2013, 27(1):97−104. doi: 10.3969/j.issn.1001-7216.2013.01.014WANG J, ZHANG L J, YAO H Y. Effects of straw and black carbon addition on C-N transformation and microbial metabolism profile in paddy soil [J]. Chinese Journal of Rice Science, 2013, 27(1): 97−104.(in Chinese) doi: 10.3969/j.issn.1001-7216.2013.01.014 [9] 宋蒙亚, 李忠佩, 刘明, 等. 不同有机物料组合对土壤养分和生化性状的影响 [J]. 中国农业科学, 2013, 46(17):3594−3603. doi: 10.3864/j.issn.0578-1752.2013.17.008SONG M Y, LI Z P, LIU M, et al. Effects of mixtures of different organic materials on soil nutrient content and soil biochemical characteristics [J]. Scientia Agricultura Sinica, 2013, 46(17): 3594−3603.(in Chinese) doi: 10.3864/j.issn.0578-1752.2013.17.008 [10] 李雪利, 叶协锋, 顾建国, 等. 土壤C/N比对烤烟碳氮代谢关键酶活性和烟叶品质影响的研究 [J]. 中国烟草学报, 2011, 17(3):32−36. doi: 10.3969/j.issn.1004-5708.2011.03.007LI X L, YE X F, GU J G, et al. Effect of soil C/N ratio on activity of key enzymes involved in carbon and nitrogen metabolism and quality of flue-cured tobacco leaves [J]. Acta Tabacaria Sinica, 2011, 17(3): 32−36.(in Chinese) doi: 10.3969/j.issn.1004-5708.2011.03.007 [11] CRUZ J L, MOSQUIM P R, PELACANI C R, et al. Carbon partitioning and assimilation as affected by nitrogen deficiency in cassava [J]. Photosynthetica, 2003, 41(2): 201−207. doi: 10.1023/B:PHOT.0000011952.77340.53 [12] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006. [13] 任娇, 于寒, 吴春胜, 等. 不同秸秆还田方式下玉米叶片光合、荧光特性及水分利用率的比较 [J]. 分子植物育种, 2017, 15(12):5241−5247. doi: 10.13271/j.mpb.015.005241REN J, YU H, WU C S, et al. Comparison of photosynthesis, fluorescence characteristics and water use efficiency of maize leaves under different straw returning methods [J]. Molecular Plant Breeding, 2017, 15(12): 5241−5247.(in Chinese) doi: 10.13271/j.mpb.015.005241 [14] 李英浩, 刘景辉, 赵宝平, 等. 干旱胁迫下腐植酸对燕麦叶片非结构性碳水化合物代谢的影响 [J]. 西北植物学报, 2020, 40(12):2101−2107. doi: 10.7606/j.issn.1000-4025.2020.12.2101LI Y H, LIU J H, ZHAO B P, et al. Effects of humic acid on metabolism of non-structural carbohydrates in oat leaves under drought stress [J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(12): 2101−2107.(in Chinese) doi: 10.7606/j.issn.1000-4025.2020.12.2101 [15] BATLLE-AGUILAR J, BROVELLI A, PORPORATO A, et al. Modelling soil carbon and nitrogen cycles during land use change. A review [J]. Agronomy for Sustainable Development, 2011, 31(2): 251−274. doi: 10.1051/agro/2010007 [16] 庄振东, 李絮花. 腐植酸氮肥对玉米产量、氮肥利用及氮肥损失的影响 [J]. 植物营养与肥料学报, 2016, 22(5):1232−1239.ZHUANG Z D, LI X H. Effects of humic acid nitrogen fertilization on corn yield, nitrogen utilization and nitrogen loss [J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(5): 1232−1239.(in Chinese) [17] 谷端银, 王秀峰, 高俊杰, 等. 纯化腐植酸对氮胁迫下黄瓜幼苗生长和氮代谢的影响 [J]. 应用生态学报, 2018, 29(8):2575−2582. doi: 10.13287/j.1001-9332.201808.029GU D Y, WANG X F, GAO J J, et al. Effects of purified humic acid on the growth and nitrogen metabolism of cucumber seedlings under nitrogen stress [J]. Chinese Journal of Applied Ecology, 2018, 29(8): 2575−2582.(in Chinese) doi: 10.13287/j.1001-9332.201808.029 [18] LIU J, ZHONG Y, JIA X Y, et al. Wheat straw decomposition patterns and control factors under nitrogen fertilization [J]. Journal of Soil Science and Plant Nutrition, 2021, 21(4): 3110−3121. doi: 10.1007/s42729-021-00592-z [19] NARDI S, PIZZEGHELLO D, GESSA C, et al. A low molecular weight humic fraction on nitrate uptake and protein synthesis in maize seedlings [J]. Soil Biology and Biochemistry, 2000, 32(3): 415−419. doi: 10.1016/S0038-0717(99)00168-6 [20] 裴丽珍, 陈远学, 张雯雯, 等. 有机物料还田对夏玉米穗位叶光合性能及氮代谢的影响 [J]. 作物学报, 2022, 48(8):2115−2124.PEI L Z, CHEN Y X, ZHANG W W, et al. Effects of organic material returned on photosynthetic performance and nitro-Gen metabolism of ear leaf in summer maize [J]. Acta Agronomica Sinica, 2022, 48(8): 2115−2124.(in Chinese) [21] 袁天佑, 王俊忠, 冀建华, 等. 施用腐植酸对夏玉米产量、氮素吸收及氮肥利用率的影响 [J]. 核农学报, 2017, 31(4):794−802. doi: 10.11869/j.issn.100-8551.2017.04.0794YUAN T Y, WANG J Z, JI J H, et al. Effects of application humic acid on yield, nitrogen absorption and nitrogen use efficiency of summer maize [J]. Journal of Nuclear Agricultural Sciences, 2017, 31(4): 794−802.(in Chinese) doi: 10.11869/j.issn.100-8551.2017.04.0794 [22] 朱祖祥. 从绿肥的起爆效应探讨它的肥效机制及其在施用上的若干问题 [J]. 浙江农业科学, 1963, 4(3):104−109. doi: 10.16178/j.issn.0528-9017.1963.03.002ZHU Z X. Discussing the fertilizer effect mechanism of green manure and its application problems [J]. Journal of Zhejiang Agricultural Sciences, 1963, 4(3): 104−109.(in Chinese) doi: 10.16178/j.issn.0528-9017.1963.03.002 [23] WILD B, LI J, PIHLBLAD J, et al. Decoupling of priming and microbial N mining during a short-term soil incubation [J]. Soil Biology and Biochemistry, 2019, 129: 71−79. doi: 10.1016/j.soilbio.2018.11.014 [24] MAZZILLI S R, KEMANIAN A R, ERNST O R, et al. Priming of soil organic carbon decomposition induced by corn compared to soybean crops [J]. Soil Biology and Biochemistry, 2014, 75: 273−281. doi: 10.1016/j.soilbio.2014.04.005 [25] MOORHEAD D L, SINSABAUGH R L. A theoretical model of litter decay and microbial interaction [J]. Ecological Monographs, 2006, 76(2): 151−174. doi: 10.1890/0012-9615(2006)076[0151:ATMOLD]2.0.CO;2 [26] DONG L H, CÓRDOVA-KREYLOS A L, YANG J S, et al. Humic acids buffer the effects of urea on soil ammonia oxidizers and potential nitrification [J]. Soil Biology and Biochemistry, 2009, 41(8): 1612−1621. doi: 10.1016/j.soilbio.2009.04.023 [27] REEZA A A, AHMED O H, MAJID N M N A, et al. Reducing ammonia loss from urea by mixing with humic and fulvic acids isolated from coal [J]. American Journal of Environmental Sciences, 2009, 5(3): 420−426. doi: 10.3844/ajessp.2009.420.426 [28] GARCÍA A C, BERBARA R L L, FARÍAS L P, et al. Humic acids of vermicompost as an ecological pathway to increase resistance of rice seedlings to water stress [J]. African Journal of Biotechnology, 2012, 11(13): 3125−3134. [29] CANELLAS L P, PICCOLO A, DOBBSS L B, et al. Chemical composition and bioactivity properties of size-fractions separated from a vermicompost humic acid [J]. Chemosphere, 2010, 78(4): 457−466. doi: 10.1016/j.chemosphere.2009.10.018