Anti-TMV Activity of Chemicals in Leaves and Branches of Ailanthus altissima
-
摘要:
目的 对臭椿(Ailanthus altissima)化学成分及其抗烟草花叶病毒(TMV)活性进行研究,为开发新型植物病毒抑制剂提供理论依据。 方法 综合运用硅胶、凝胶、MCI等多种柱层析方法对臭椿枝叶正丁醇提取物化学成分进行分离,利用NMR、MS鉴定其结构;以TMV为供试病毒,采用半叶枯斑法从保护活性、治疗活性、钝化活性等3个方面评估化合物的生物活性。 结果 从臭椿枝叶正丁醇提取物中分离鉴定了17个化合物,根据其理化性质以及波谱数据分别鉴定为:山奈酚(Kaempferol) (1)、(2S)-3-O-Octadeca-9Z,12Z,15Z-trienoylgycery-O-β-D-galactopyranoside (2)、正二十六烷(Hexacosane) (3)、6,9,12-Octadecatrienoic acid (4)、Eichlerianic acid (5)、 Colocasinol A (6)、咖啡酸二十烷酯(Caffeic acid eicosanyl ester) (7)、Acernikol (8)、(-)-Sakuyayesinol (9)、(14S,17S,20S,24R)-20,24,25-trihydroxy-14,17-cylomalabarican-3-one (10)、Pinnata E(11)、morin-3-O-α-rhamnopyranoside(12)、Trans-syringin (13)、姜糖脂A(Gingerglycolipid A) (14)、姜糖脂B(gingerglycolipid B)(15)、benzyl 2-O-β-apiofuranosyl-(1→2)-β-D-glucopyranosyl-2,6-dihydroxy-benzoate (16)、picrorhizoside C (17)。化合物2、14、15为首次从该植物中分离得到。在质量浓度为50 μg·mL-1时,化合物6、8、13、14对TMV的钝化活性较为显著,抑制率均在50%以上,与阳性对照药剂宁南霉素无显著差异,分别为木脂素类化合物、木脂素类化合物、苯丙素类化合物和半乳糖脂类化合物。 结论 从臭椿枝叶中分离得到的17个化合物,均对TMV具有抑制作用,部分半乳糖脂类化合物、木脂素类化合物、苯丙素类化合物对TMV有显著的钝化作用,研究结果丰富了臭椿抗TMV活性物质的范畴,也为今后开发新型植物病毒抑制剂提供了科学依据。 Abstract:Objective Chemical composition and anti-tobacco mosaic virus (TMV) activity of Ailanthus altissima were studied to pave the way for developing an effective viral inhibitor. Methods Substrates in the n-butanol extract of leaves and branches of A.altissima plants were separated using silica gel, Sephadex LH-20, and MCI column chromatography.Chemical structures of the substrates were determined based on NMR and MS data, and anti-TMV activity of the compounds examined using the half-leaf method. Results The 17 compounds isolated from the n-butanol extract were identified to be: (1) kaempferol, (2) (2S)-3-o-octadeca-9Z, 12Z, 15Z-trienoylgycery-O-β-D-galactopyranoside, (3) hexacosane, (4) 6,9,12-octadecatrienoic acid, (5) eichlerianic acid, (6) colocasinol A, (7) caffeic acid eicosanyl ester, (8) acernikol, (9) (-)-Sakuyayesinol (10), (14S,17S, 20S, 24R)-20,24,25-trihydroxy-14,17-cylomalabarican-3-one, (11) 4-(3-butoxy-1-hydroxy-2-methoxypropyl) benzene-1, 2-diol, (12) pinnata, (13) trans-syringin, (14) gingerglycolipid A, (15) gingerglycolipid B, (16) benzyl 2-o-β-apiofuranosyl-(1→2)-β-D-glucopyranosyl-2,6-dihydroxy-benzoate, and (17) picrorhizoside C.Among them, Compounds 2, 14, and 15 were isolated from the plant for the first time.And the lignans, phenylpropanoids, or galactose lipids, such as Compounds 6, 8, 13, and 14 at concentration of 50 μg·mL−1 displayed a TMV inactivation rate greater than 50%, which was similar to that of the positive control, ningnamycin.For Compounds 6, 13, and 14, the rates were even higher than that of ningnamycin. Conclusion All 17 substances isolated from the leaves and branches of A.altissima exhibited varying degrees of inhibitory effect on TMV.The efficacy was more significant as shown by certain Lignans, phenylpropanoids, and galactose lipids. -
表 1 化合物1~17对TMV的保护作用
Table 1. Anti-TMV effects of 17 compounds
化合物
Compound处理平均
枯斑数
Local lesions of
treatment对照平均
枯斑数
Local lesions of
controlP值
P value抑制率
Inhibition
rate/%1 18.33±5.51 24.00±7.55 0.35 23.42±1.63 g 2 16.33±8.02 24.67±12.01 0.37 34.25±4.71 cd 3 12.33±4.04 14.33±5.03 0.62 13.41±2.34 h 4 13.33±4.04 21.00±7.21 0.18 35.65±4.35 bc 5 17.67±6.51 23.00±7.55 0.41 23.89±3.47 g 6 14.33±7.09 22.00±12.12 0.40 33.14±5.19 cd 7 19.67±4.04 29.00±5.57 0.07 32.30±0.96 de 8 22.00±7.00 29.33±9.87 0.35 24.56±2.16 fg 9 12.67±7.37 17.67±10.02 0.52 28.72±1.21 ef 10 14.67±6.51 24.33±11.06 0.26 39.77±4.36 b 11 15.67±7.02 25.00±11.53 0.30 37.02±1.14 bc 12 27.33±14.74 31.00±15.87 0.78 12.66±2.85 h 13 20.33±5.03 31.00±9.17 0.16 33.80±5.78 cd 14 12.33±4.16 19.00±4.58 0.14 36.02±5.96 bc 15 11.33±5.69 15.67±6.66 0.44 29.69±8.90 de 16 11.00±3.00 15.00±4.00 0.24 26.75±0.48 ef 17 13.00±6.00 18.33±9.50 0.46 27.38±4.97 ef 宁南霉素
(Ningnanmycin)3.67±1.73 8.33±3.79 0.02 55.19±1.30 a 数据为3次重复取平均值;化合物质量浓度为50 μg·mL−1;不同字母表示在5%水平显著,下同。
Data are averages of triplicate; mass concentration at 50 μg·mL−1; data with different letters indicate significance at 5% level.Same for below.表 2 化合物1~17对TMV的治疗作用
Table 2. Anti-TMV effects of 17 compounds on infected tissue
化合物
Compound处理平均
枯斑数
Local lesions of
treatment对照平均
枯斑数
Local lesions of
control
抑制率
Inhibition
rate/%1 17.33±4.73 22.67±5.86 23.74±1.41 f 2 16.67±8.33 31.00±15.13 46.45±0.81 b 3 16.00±6.83 22.25±10.40 27.06±3.33 f 4 13.33±6.81 17.67±8.33 25.39±2.76 f 5 13.33±4.04 17.67±5.13 24.68±1.82 f 6 17.67±6.51 24.00±8.54 26.56±1.50 f 7 23.33±6.35 34.33±10.02 31.70±3.56 ef 8 19.00±3.00 26.67±5.03 28.48±2.40 f 9 14.00±6.56 21.33±10.07 34.24±0.84 de 10 26.33±4.51 41.67±8.62 36.50±2.35 d 11 18.67±3.79 33.33±7.57 43.81±1.26 c 12 16.50±5.26 31.50±10.41 47.11±4.21 b 13 23.00±4.00 28.67±5.69 19.50±4.18 g 14 14.33±8.02 19.00±11.00 24.24±2.88 f 15 26.00±7.55 36.33±10.50 28.38±1.92 f 16 12.67± 5.51 15.33±6.66 17.41±0.76 g 17 10.33± 4.16 14.00±6.25 25.26±3.18 f 宁南霉素
(ningnanmycin)16.00± 2.00 34.33±6.51 53.01±3.05 a 表 3 化合物1-17对TMV的钝化作用
Table 3. TMV inactivation effects of 17 compounds
化合物
Compound处理平均
枯斑数
Local lesions of
treatment对照平均
枯斑数
Local lesions of
controlP值
P
value抑制率
Inhibition
rate/%1 12.33±3.51 27.67±6.43 0.02 55.72±4.61 b 2 21.33±3.79 29.00±6.08 0.13 26.04±2.9 ef 3 14.67±3.51 22.00±7.00 0.18 32.14±5.64 de 4 9.33±4.51 15.00±7.55 0.32 37.45±1.71 cd 5 13.67±7.51 20.67±12.01 0.44 33.23±3.18 de 6 10.33±3.51 28.33±7.51 0.02 64.02±2.79 a 7 22.00±6.25 40.33±9.29 0.04 45.86±3.64 c 8 22.33±5.69 53.00±13.53 0.02 57.87±2.01 ab 9 19.00±2.00 30.00±4.36 0.02 36.33±4.31 cd 10 24.67±8.33 42.00±10.82 0.09 42.03±4.42 c 11 14.67±3.21 26.33±5.51 0.03 44.39±0.92 c 12 26.33±10.02 40.00±16.52 0.28 33.65±3.05 de 13 9.00±1.00 26.00±3.61 0.001 65.18±3.79 a 14 16.33±3.21 45.33±6.81 0.002 63.40±9.21 ab 15 25.67±1.53 31.67±3.06 0.03 18.74±3.61 f 16 27.00±8.19 43.67±15.04 0.16 37.55±3.32 cd 17 20.00±3.61 30.67±5.51 0.04 34.77±2.47 cd 宁南霉素
(ningnanmycin)5.67±1.53 15.00±1.53 0.07 61.72±1.98 ab -
[1] 叶健. 农作物病毒病害绿色防控技术创新 [J]. 科技促进发展, 2019(4):362−368.YE J. Innovation of green prevention and control technology for crop virus diseases [J]. Science& Technology for Development, 2019(4): 362−368.(in Chinese) [2] 耿召良, 商胜华, 陈兴江, 等. 植物源抗烟草花叶病毒天然产物研究进展 [J]. 中国烟草科学, 2011, 32(1):84−91. doi: 10.3969/j.issn.1007-5119.2011.01.019GENG Z L, SHANG S H, CHEN X J, et al. Advance in natural products from plants with anti-TMV activity [J]. Chinese Tobacco Science, 2011, 32(1): 84−91.(in Chinese) doi: 10.3969/j.issn.1007-5119.2011.01.019 [3] TAN Q W, NI J C, SHI J T, et al. Two novel quassinoid glycosides with antiviral activity from the Samara of Ailanthus altissima [J]. Molecules (Basel, Switzerland), 2020, 25(23): 5679. doi: 10.3390/molecules25235679 [4] 晏英, 陈洁, 唐攀, 等. 复叶地黄连化学成分及其抗烟草花叶病毒活性研究 [J]. 中草药, 2021, 52(12):3493−3500. doi: 10.7501/j.issn.0253-2670.2021.12.004YAN Y, CHEN J, TANG P, et al. Chemical constituents from Munronia henryi and their anti-TMV activity [J]. Chinese Traditional and Herbal Drugs, 2021, 52(12): 3493−3500.(in Chinese) doi: 10.7501/j.issn.0253-2670.2021.12.004 [5] CHEN L W, LIU Y X, SONG H J, et al. Expanding indole diversity: Direct 1-step synthesis of 1, 2-fused indoles and spiroindolines from 2-halo anilines for fast SAR antiviral elucidation against tobacco mosaic virus (TMV) [J]. Molecular Diversity, 2017, 21(1): 61−68. doi: 10.1007/s11030-016-9697-4 [6] 李孟芝. 烟草内源性抗烟草花叶病毒(TMV)活性成分研究[D]. 武汉: 湖北中医药大学, 2017.LI M Z. Study on the Anti-TMV Active Componets of Endogenous Tobacco Speciality: Chinese Traditional Pharmacy[D]. Wuhan: Hubei University of Chinese Medicine, 2017. (in Chinese) [7] NI J C, SHI J T, TAN Q W, et al. Two new compounds from the fruit of Ailanthus altissima [J]. Natural Product Research, 2019, 33(1): 101−107. doi: 10.1080/14786419.2018.1437434 [8] 张蔓蔓, 郑聪慧, 刘春鹏, 等. 臭椿的研究进展与展望 [J]. 河北林业科技, 2021(2):49−53. doi: 10.16449/j.cnki.issn1002-3356.2021.02.011ZHANG M M, ZHENG C H, LIU C P, et al. Progress and prospect of the research on Ailanthus altissima [J]. The Journal of Hebei Forestry Science and Technology, 2021(2): 49−53.(in Chinese) doi: 10.16449/j.cnki.issn1002-3356.2021.02.011 [9] 沈建国, 张正坤, 吴祖建, 等. 臭椿抗烟草花叶病毒活性物质的提取及其初步分离 [J]. 中国生物防治, 2007(4):348−352.SHEN J G, ZHANG Z K, WU Z J, et al. Extraction and preliminary isolation of antiviral substances from Ailanthus altissima against TMV [J]. Chinese Journal of Biological Control, 2007(4): 348−352.(in Chinese) [10] 谭庆伟. 臭椿抗烟草花叶病毒活性物质的分离与结构鉴定[D]. 福州: 福建农林大学, 2007.TAN Q W. Isolation and structure elucidation of anti-viral constitutents aganist TMV from Ailanthus altissima[D]. Fuzhou: Fujian Agriculture and Forestry University, 2007. (in Chinese) [11] TAN Q W, NI J C, ZHENG L P, et al. Anti-tobacco mosaic virus quassinoids from Ailanthus altissima (Mill. ) Swingle [J]. Journal of Agricultural and Food Chemistry, 2018, 66(28): 7347−7357. doi: 10.1021/acs.jafc.8b01280 [12] 倪建成. 臭椿果实化学成分及其抗TMV活性[D]. 福州: 福建农林大学, 2018.NI J C. Chemicai components from the fruit of Ailanthus altissima(Mill. ) Swingle and their anti-TMV activity[D]. Fuzhou: Fujian Agricultural University, 2018. (in Chinese) [13] 邹正彪, 祁进康, 王德艳, 等. 臭椿种子乙酸乙酯提取物抗烟草花叶病毒活性研究 [J]. 重庆师范大学学报(自然科学版), 2018, 35(5):115−119,F0002.ZOU Z B, QI J K, WANG D Y, et al. Study on anti-TMV activity of ethyl acetate extracts from seed of Ailanthus altissima [J]. Journal of Chongqing Normal University (Natural Science), 2018, 35(5): 115−119,F0002.(in Chinese) [14] GOODING G V, HEBERT T. A simple technique for purification of tobacco mosaic virus in large quantities [J]. Phytopathology, 1967, 57(11): 1285−1290. [15] 左安建, 宗同铠, 谭亚婷, 等. 27种植物提取物抗烟草花叶病毒活性分析 [J]. 西南林业大学学报, 2020, 40(5):93−99.ZUO A J, ZONG T K, TAN Y T, et al. Study on anti-tobacco mosaic virus activity of 27 plant extracts [J]. Journal of Southwest Forestry University (Natural Sciences), 2020, 40(5): 93−99.(in Chinese) [16] 张嫩玲, 叶道坤, 田璧榕, 等. 天胡荽的化学成分研究 [J]. 贵州医科大学学报, 2017, 42(10):1145−1148.ZHANG N L, YE D K, TIAN B R, et al. Chemical constituents of Hydrocotyle sibthorpioides [J]. Journal of Guizhou Medical University, 2017, 42(10): 1145−1148.(in Chinese) [17] VAN KIEM P, VAN MINH C, NHIEM N X, et al. Inhibitory effect on TNF-α-induced IL-8 secretion in HT-29 cell line by glyceroglycolipids from the leaves of Ficus microcarpa [J]. Archives of Pharmacal Research, 2012, 35(12): 2135−2142. doi: 10.1007/s12272-012-1210-8 [18] 叶凤梅, 谢阳国, 朱燕, 等. 贡山八角枝叶化学成分研究(英文) [J]. 天然产物研究与开发, 2015, 27(4):604−608,625. doi: 10.16333/j.1001-6880.2015.04.009YE F M, XIE Y G, ZHU Y, et al. Chemical constituents of branches and leaves of Illicium wardii A. C. Smith [J]. Natural Product Research and Development, 2015, 27(4): 604−608,625.(in Chinese) doi: 10.16333/j.1001-6880.2015.04.009 [19] HAMBERG M. Metabolism of 6, 9, 12-octadecatrienoic acid in the red Alga Lithothamnion corallioides: Mechanism of formation of a conjugated tetraene fatty acid [J]. Biochemical and Biophysical Research Communications, 1992, 188(3): 1220−1227. doi: 10.1016/0006-291X(92)91361-S [20] POEHLAND B L, CARTÉ B K, FRANCIS T A, et al. In vitro antiviral activity of dammar resin triterpenoids [J]. Journal of Natural Products, 1987, 50(4): 706−713. doi: 10.1021/np50052a022 [21] KIM K H, MOON E, KIM S Y, et al. Lignans from the Tuber-barks of Colocasia antiquorum var. esculenta and their antimelanogenic activity [J]. Journal of Agricultural and Food Chemistry, 2010, 58(8): 4779−4785. doi: 10.1021/jf100323q [22] 黄圣卓, 王琪, 刘玉清, 等. 橙黄瑞香中苯丙素类成分研究 [J]. 中草药, 2016, 47(22):3970−3974.HUANG S Z, WANG Q, LIU Y Q, et al. Phenylpropanoids from Daphne aurantiaca [J]. Acupuncture Research, 2016, 47(22): 3970−3974.(in Chinese) [23] MORIKAWA T, TAO J, UEDA K, et al. Medicinal foodstuffs. XXXI. Structures of new aromatic constituents and inhibitors of degranulation in RBL-2H3 cells from a Japanese folk medicine, the stem bark of Acer nikoense [J]. Chemical & Pharmaceutical Bulletin, 2003, 51(1): 62−67. [24] YOSHINARI K, SHIMAZAKI N, SASHIDA Y, et al. Flavanone xyloside and lignans from Prunus jamasakura bark [J]. Phytochemistry, 1990, 29(5): 1675−1678. doi: 10.1016/0031-9422(90)80144-6 [25] ACHANTA P S, GATTU R K, BELVOTAGI A R V, et al. New malabaricane triterpenes from the oleoresin of Ailanthus malabarica [J]. Fitoterapia, 2015, 100: 166−173. doi: 10.1016/j.fitote.2014.11.022 [26] GUO J H, WANG W M, LIU J F, et al. Five New Compounds from Arenga pinnata (Wurmb. ) Merr. Fruits [J]. Heterocycles, 2021, 102(12): 2331. doi: 10.3987/COM-21-14531 [27] YEN C T, HSIEH P W, HWANG T L, et al. Flavonol glycosides from Muehlenbeckia platyclada and their anti-inflammatory activity [J]. Chemical & Pharmaceutical Bulletin, 2009, 57(3): 280−282. [28] 潘红玫, 陈斌, 李甫, 等. 迭鞘石斛的化学成分(Ⅱ) [J]. 应用与环境生物学报, 2013, 19(6):952−955. doi: 10.3724/SP.J.1145.2013.00952PAN H M, CHEN B, LI F, et al. Chemical Constituents from the Stems of Chemical Constituents from the Stems of Dendrobium denneanum Dendrobium denneanum(Ⅱ) [J]. Chinese Journal of Applied and Environmental Biology, 2013, 19(6): 952−955.(in Chinese) doi: 10.3724/SP.J.1145.2013.00952 [29] 贾栩超, 杨丹, 谢海辉. 甜杨桃鲜果的化学成分研究 [J]. 热带亚热带植物学报, 2017, 25(3):309−314.JIA X C, YANG D, XIE H H. Chemical constituents from fresh sweet star fruit [J]. Journal of Tropical and Subtropical Botany, 2017, 25(3): 309−314.(in Chinese) [30] AHMED F, SADHU S K, ISHIBASHI M. Search for bioactive natural products from medicinal plants of Bangladesh [J]. Journal of Natural Medicines, 2010, 64(4): 393−401. doi: 10.1007/s11418-010-0424-7 [31] ZHANG Y J, DEWITT D L, MURUGESAN S, et al. Novel lipid-peroxidation- and cyclooxygenase-inhibitory tannins from Picrorhiza kurroa seeds [J]. Chemistry & Biodiversity, 2004, 1(3): 426−441. [32] 赵慧琳. 瑞香狼毒根抗烟草花叶病毒(TMV)活性研究及作用机理初探[D]. 太谷: 山西农业大学, 2017.ZHAO H L. Study on anti-TMV activity and the action mechanism of stellera chamejasme L. Root[D]. Taigu: Shanxi Agricultural University, 2017. (in Chinese) [33] 林中正. 植物源抗烟草花叶病毒活性物质的筛选和作用机理初探[D]. 长沙: 湖南农业大学, 2012.LIN Z Z. Study on screening and acting mechanism of anti-tobacco mosaic virus botanical extract[D]. Changsha: Hunan Agricultural University, 2012. (in Chinese)