Effect of Rhizobacteria Containing ACC Deaminase on Growth of Rose Bush
-
摘要:
目的 探明含ACC脱氨酶(1-aminocyclopropane-1-carboxylate deaminase)的不同植物根际促生菌对切花月季白荔枝的促生效果。 方法 以白荔枝为试验材料,在其盆栽过程中施入含ACC脱氨酶的不同PGPR菌株,通过测定其株高、茎粗、分枝数等农艺性状、叶绿素a/b值、叶片保护酶活性及MDA含量、花朵乙烯释放量、光合及叶绿素荧光参数等生理指标,探讨不同菌株对白荔枝生长及生理的影响。 结果 施入含ACC脱氨酶的不同PGPR菌株对白荔枝生长及光合作用产生的影响有所差异,其中菌株F23和F195处理较对照株高增加25.9%和26.0%,且F23处理后茎粗比对照处理增加17.1%,菌株F23和F195处理叶绿素a/b也高于对照。菌株F23显著提高了根际土壤脲酶、磷酸酶和蔗糖酶活性至42.6%、 16.3%和48.8%;且菌株F23对POD以及CAT活性的提高有显著促进作用,分别达到对照的1.78和2.07倍,花朵乙烯释放量比对照减少37.8%。净光合速率经菌株F195和F23处理后显著高于对照,分别达对照的1.40倍和1.16倍。 结论 综合比较认为,菌株F23对切花月季白荔枝的促生效果最好。 Abstract:Objective Effect of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase on the productivity of rose bushes was studied. Method A pot experiment was conducted on White Lichee , a variety of roses commonly used commercially for cut flowers.Rhizobacteria carrying the plant growth promoter, ACC deaminase, were added to the soil, and effects on the agronomic traits, such as plant height, stem girth, and number of branches, as well as the physiological indexes, such as chlorophyll a/b, leaf protective enzyme, MDA content, flower ethylene release, photosynthesis, and chlorophyll fluorescence, of the plants monitored. Result In comparison with control, the incorporation of F23 or F195 PGPR, respectively, resulted in the rose bushes 25.9% and 26.0% taller with higher contents of chlorophyll a and chlorophyll b; F23, 17.1% larger stem girth, significantly greater activities of urease (by 42.6%), phosphatase (by 16.3%), and sucrase (by 48.8%) in rhizosphere soil, and POD (1.78x of control) and CAT (2.07x of control) in leaf. The floral ethylene release of the bushes treated with F23 was 37.0% lower than control, while the net photosynthetic rate of the F195-treated bushes significantly rose to 1.40 times and that of F23-treated bushes 1.16 times of control. Conclusion Overall, F23 appeared to most significantly promote the growth of White Lichee rose bushes among different PGPR tested. -
表 1 含ACC脱氨酶的不同菌株信息
Table 1. Information on PGPR containing ACC deaminase
菌株编号
Strain number属名
GenusACC脱氨酶活性
ACC deaminase activity/(U·mg−1)F195 Pseudomonas sp. 6.6910 F105 Stenotrophomonas sp. 0.9600 F11 Bacillus sp. 1.1342 F23 Arthrobacter sp. 1.0359 L11 Stenotrophomonas sp. 1.0356 L74 Stenotrophomonas sp. 1.0363 Z22 Bacillus sp. 1.0361 表 2 含ACC脱氨酶的不同PGPR菌株对白荔枝主要农艺性状的影响
Table 2. Effects of PGPR on main agronomic characteristics of White Lichee
处理
Treatment株高
Plant height/cm茎粗
Stem diameter/mm分枝数
Branch number花径
Flower diameter/mm花期
Flower period/dF195 84.52±6.32 a 7.21±1.25 ab 1.33±0.14 a 129.68±11.67 a 15.33±2.08 a F105 81.52±8.48 a 6.99±1.02 ab 1.67±0.63 a 119.06±10.89 a 13.00±1.00 ab F11 87.66±2.46 a 7.59±1.35 ab 1.67±0.63 a 114.49±5.25 a 16.00±1.00 a F23 84.47±6.89 a 8.02±1.53 a 1.42±0.38 a 118.94±2.90 a 15.33±2.08 a L11 89.56±6.49 a 7.45±0.60 ab 1.42±0.14 a 116.95±15.21 a 13.33±2.31 ab L74 84.47±10.25 a 7.16±1.23 ab 1.75±0.25 a 114.71±9.70 a 13.67±1.53 ab Z22 89.12±5.77 a 6.97±0.99 ab 1.75±0.00 a 122.06±5.21 a 11.67±1.16 b Mix 80.85±5.44 a 7.20±1.39 ab 1.58±0.29 a 121.12±4.27 a 13.33±1.53 ab CK 67.10±1.52 b 6.85±1.44 b 2.00±0.25 a 117.42±0.87 a 14.33±0.58 ab 表内数据表示平均值±标准差,同列不同小写字母表示差异显著(P<0.05),3个生物学重复。下同。
Data are mean ± SD; those with different lowercase letters on same column indicate significant differences on biological triplicates (P<0.05). Three biological replicates. Same for below.表 3 含ACC脱氨酶的不同PGPR菌株对白荔枝根际土壤酶活的影响
Table 3. Effect of PGPR on soil enzyme activity in rhizosphere of White Lichee
处理
Treatment脲酶活性
Urease activity/
(mg·g−1·d−1)磷酸酶活性
Phosphatase activity/
(mg·g−1·d−1)蔗糖酶活性
Sucrase activity/
(mg·g−1·d−1)F195 0.355±0.011 a 1.035±0.011 a 22.474±0.820 b F105 0.278±0.030 c 0.764±0.007 e 12.392±1.325 c F11 0.229±0.016 d 0.993±0.008 b 12.458±0.594 c F23 0.338±0.015 ab 1.041±0.007 a 33.475±2.000 a L11 0.295±0.032 c 0.886±0.010 c 11.374±0.802 cd L74 0.308±0.011 bc 0.991±0.011 b 9.863±0.205 d Z22 0.237±0.012 d 0.884±0.001 c 6.809±1.312 e Mix 0.277±0.023 c 0.790±0.005 d 7.006±1.035 e CK 0.237±0.012 d 0.895±0.010 c 7.433±1.133 e 表 4 含ACC脱氨酶的不同PGPR菌株对白荔枝光合特性的影响
Table 4. Effect of PGPR on photosynthesis of White Lichee
处理
Treatment净光合速率
Pn/(μmol·m−2·s−1)气孔导度
Gs/(mol·m−2·s−1)胞间CO2浓度
Ci/(μmol·mol−1)蒸腾速率
Tr/(mmol·m−2·s−1)水分利用效率
Pn/TrF195 9.34±0.45 a 0.278±0.094 a 427±33.78 a 3.19±1.19 a 3.18±1.07 a F105 6.32±0.14 d 0.084±0.034 c 362±21.17 bc 1.90±0.83 a 3.68±1.23 a F11 7.11±0.09 c 0.077±0.023 c 363±6.43 bc 1.77±0.61 a 4.39±1.62 a F23 7.79±0.35 b 0.120±0.020 bc 387±18.25 abc 2.18±0.82 a 3.94±1.57 a L11 6.97±0.28 c 0.093±0.032 c 376±54.60 abc 2.38±1.81 a 4.01±2.17 a L74 7.98±0.16 b 0.181±0.063 b 404±17.62 abc 3.64±1.27 a 2.41±0.96 a Z22 6.84±0.22 c 0.089±0.016 c 353±15.04 c 1.83±0.56 a 3.96±1.06 a Mix 7.81±0.34 b 0.135±0.036 bc 411±25.54 bc 2.24±0.96 a 3.84±1.27 a CK 6.69±0.09 cd 0.106±0.035 bc 389±25.06 abc 1.81±0.58 a 4.02±1.52 a 表 5 含ACC脱氨酶的不同PGPR菌株对白荔枝叶绿素荧光特性的影响
Table 5. Effect of PGPR on chlorophyll fluorescence of White Lichee
处理
Treatment最大光化学效率
Fv/Fm实际光化学效率
ΦPSII光化学淬灭系数
qP非光化学淬灭系数
qN表观光合电子传递效率ETR F195 0.787±0.019 a 0.566±0.029 d 0.293±0.067 a 0.805±0.054 a 3.073±0.416 c F105 0.789±0.028 a 0.692±0.021 ab 0.324±0.056 a 0.726±0.081 a 7.953±2.790 ab F11 0.777±0.017 a 0.618±0.064 cd 0.251±0.052 a 0.782±0.031 a 4.880±1.750 bc F23 0.800±0.021 a 0.709±0.027 ab 0.311±0.024 a 0.812±0.040 a 6.147±1.684 abc L11 0.776±0.015 a 0.667±0.037 bc 0.339±0.022 a 0.783±0.030 a 5.640±0.737 bc L74 0.780±0.019 a 0.659±0.019 bc 0.348±0.061 a 0.797±0.090 a 5.567±1.362 bc Z22 0.780±0.020 a 0.642±0.067 bc 0.304±0.076 a 0.781±0.057 a 3.867±0.167 c Mix 0.808±0.013 a 0.740±0.025 a 0.343±0.046 a 0.788±0.067 a 9.353±2.136 a CK 0.794±0.001 a 0.420±0.024 e 0.330±0.045 a 0.721±0.064 a 7.900±3.251 ab -
[1] 徐雪东, 张超, 秦成, 等. 干旱下接种根际促生细菌对苹果实生苗光合和生理生态特性的影响 [J]. 应用生态学报, 2019, 30(10):3501−3508.XU X D, ZHANG C, QIN C, et al. Effects of PGPR inoculation on photosynthesis and physiological-ecological characteristics of apple seedlings under drought stress [J]. Chinese Journal of Applied Ecology, 2019, 30(10): 3501−3508.(in Chinese) [2] 戚秀秀, 魏畅, 刘晓丹, 等. 根际促生菌应用于基质对水稻幼苗生长的影响 [J]. 土壤, 2020, 52(5):1025−1032.QI X X, WEI C, LIU X D, et al. Effects of plant growth-promoting rhizobacteria added in seedling substrate on rice growth [J]. Soils, 2020, 52(5): 1025−1032.(in Chinese) [3] GLICK B R. Bacteria with ACC deaminase can promote plant growth and help to feed the world [J]. Microbiological Research, 2014, 169(1): 30−39. doi: 10.1016/j.micres.2013.09.009 [4] 赵龙飞, 徐亚军, 常佳丽, 等. 具ACC脱氨酶活性大豆根瘤内生菌的筛选、抗性及促生作用 [J]. 微生物学报, 2016, 56(6):1009−1021.ZHAO L F, XU Y J, CHANG J L, et al. Screening, resistance and growth-promoting effect of endophytic bacteria with ACC deaminase activity isolated from soybean nodules [J]. Acta Microbiologica Sinica, 2016, 56(6): 1009−1021.(in Chinese) [5] 王伟楠, 兰智勇, 喻文丽, 等. 盐穗木根际产ACC脱氨酶耐盐菌株的筛选及鉴定 [J]. 中国土壤与肥料, 2021(2):270−275. doi: 10.11838/sfsc.1673-6257.20057WANG W N, LAN Z Y, YU W L, et al. Screening and identification of salt-tolerant and ACC deaminase-producing strains in Halostachys caspica rhizosphere [J]. Soil and Fertilizer Sciences in China, 2021(2): 270−275.(in Chinese) doi: 10.11838/sfsc.1673-6257.20057 [6] KUMAR A, MALEVA M, BRUNO L B, et al. Synergistic effect of ACC deaminase producing Pseudomonas sp. TR15a and siderophore producing Bacillus aerophilus TR15c for enhanced growth and copper accumulation in Helianthus annuus L [J]. Chemosphere, 2021, 276: 130038. doi: 10.1016/j.chemosphere.2021.130038 [7] SHAHZAD S M, ARIF M S, RIAZ M, et al. PGPR with varied ACC-deaminase activity induced different growth and yield response in maize (Zea mays L. ) under fertilized conditions [J]. European Journal of Soil Biology, 2013, 57: 27−34. doi: 10.1016/j.ejsobi.2013.04.002 [8] 费诗萱, 张敏, 王迎, 等. 具有ACC脱氨酶活性的红枣根际促生菌株的分离筛选及其促生效果研究 [J]. 西北林学院学报, 2019, 34(6):140−146. doi: 10.3969/j.issn.1001-7461.2019.06.22FEI S X, ZHANG M, WANG Y, et al. Isolation, screening and promoting effects of plant growth-promoting rhizobacteria (PGPR) containing ACC deaminase from jujube [J]. Journal of Northwest Forestry University, 2019, 34(6): 140−146.(in Chinese) doi: 10.3969/j.issn.1001-7461.2019.06.22 [9] 谭程仁. 切花月季环保生产现状与发展对策研究[D]. 昆明: 云南大学, 2017.TAN C R. Research on the current situation and countermeasures of environmentally friendly production of rose hybrida[D]. Kunming: Yunnan University, 2017. (in Chinese) [10] 赵凤亮, 邹刚华, 单颖, 等. 香蕉园化肥施用现状、面源污染风险及其养分综合管理措施 [J]. 热带作物学报, 2020, 41(11):2346−2352. doi: 10.3969/j.issn.1000-2561.2020.11.028ZHAO F L, ZOU G H, SHAN Y, et al. Current status of chemical fertilizer application in banana plantation, environmental risks and integrated nutrient management practices [J]. Chinese Journal of Tropical Crops, 2020, 41(11): 2346−2352.(in Chinese) doi: 10.3969/j.issn.1000-2561.2020.11.028 [11] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006. [12] 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986. [13] 舒健虹, 刘晓霞, 王子苑, 等. 不同氮磷条件下施加促生菌对多花黑麦草生长的影响 [J]. 中国草地学报, 2021, 43(2):28−36.SHU J H, LIU X X, WANG Z Y, et al. Effects of growth-promoting bacteria on the growth of Lolium multiflorum under different nitrogen and phosphorus conditions [J]. Chinese Journal of Grassland, 2021, 43(2): 28−36.(in Chinese) [14] OLANREWAJU O S, GLICK B R, BABALOLA O O. Mechanisms of action of plant growth promoting bacteria [J]. World Journal of Microbiology and Biotechnology, 2017, 33(11): 197. doi: 10.1007/s11274-017-2364-9 [15] 孙韵雅, 陈佳, 王悦, 等. 根际促生菌促生机理及其增强植物抗逆性研究进展 [J]. 草地学报, 2020, 28(5):1203−1215.SUN Y Y, CHEN J, WANG Y, et al. Advances in growth promotion mechanisms of PGPRs and their effects on improving plant stress tolerance [J]. Acta Agrestia Sinica, 2020, 28(5): 1203−1215.(in Chinese) [16] 贺字典, 闫立英, 石延霞, 等. 产生ACC脱氨酶的PGPR种衣剂对黄瓜细菌性茎软腐病的防治效果 [J]. 中国生物防治学报, 2017, 33(6):817−825.HE Z D, YAN L Y, SHI Y X, et al. Bio-control of PGPR seed coating producing ACC deaminase to cucumber bacterial stem soft rot disease [J]. Chinese Journal of Biological Control, 2017, 33(6): 817−825.(in Chinese) [17] 李美芳, 张平, 李倩, 等. 镉胁迫下两株产铁载体/解磷菌株对黑麦草种子萌发及幼苗积累镉的影响 [J]. 中南林业科技大学学报, 2021, 41(9):179−187.LI M F, ZHANG P, LI Q, et al. Effects of two siderophore producing/phosphorus solubilizing strains on seed germination and cadmium accumulation of Lolium perenne under cadmium stress [J]. Journal of Central South University of Forestry & Technology, 2021, 41(9): 179−187.(in Chinese) [18] OTEINO N, LALLY R D, KIWANUKA S, et al. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates [J]. Frontiers in Microbiology, 2015, 6: 745. [19] 孙海, 张淋淋, 金桥, 等. 基于非靶向代谢组学分析假单胞菌P1解磷作用 [J]. 西北农业学报, 2019, 28(9):1452−1459.SUN H, ZHANG L L, JIN Q, et al. Elucidating phosphorus dissolving action of Pseudomonas P1 by non-targeted metabolomics [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(9): 1452−1459.(in Chinese) [20] DEL CARMEN OROZCO-MOSQUEDA M, GLICK B R, SANTOYO G. ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops [J]. Microbiological Research, 2020, 235: 126439. doi: 10.1016/j.micres.2020.126439 [21] JIN K M, LI H B, LI X Q, et al. Rhizosphere bacteria containing ACC deaminase decrease root ethylene emission and improve maize root growth with localized nutrient supply [J]. Food and Energy Security, 2021, 10(2): 275−284. doi: 10.1002/fes3.278 [22] GUPTA A, RAI S, BANO A, et al. ACC deaminase produced by PGPR mitigates the adverse effect of osmotic and salinity stresses in Pisum sativum through modulating the antioxidants activities [J]. Plants, 2022, 11(24): 3419. doi: 10.3390/plants11243419 [23] 谢显秋, 张瑞楠, 韦江璐, 黄毓燕, 陈炯宇, 李杨瑞, 邢永秀. 4株甘蔗固氮菌株活化土壤养分及影响土壤酶活的分析[J/OL]. 分子植物育种: 1-27[2023-05-19]. http://kns.cnki.net/kcms/detail/46.1068.S.20210607.1338.008.html.XIE X Q, ZHANG R N, WEI J L, HUANG Y Y, CHEN J Y, LI Y R, XING Y X. Analysis of four nitrogen fixing sugarcane strains activating soil nutrients and affecting soil enzymes[J/OL]. Molecular Plant Breeding: 1-27[2023-05-19]. http://kns.cnki.net/kcms/detail/46.1068.S.20210607.1338.008.html. [24] 王梦园, 杜延全, 朱建强. 复合促生菌对小麦苗期生长和土壤酶活的影响 [J]. 中国农业科技导报, 2019, 21(10):98−106.WANG M Y, DU Y Q, ZHU J Q. Influences compound probiotics on wheat growth in the seedling stage and soil enzyme activity [J]. Journal of Agricultural Science and Technology, 2019, 21(10): 98−106.(in Chinese) [25] 赵雨萌, 缪佩佩, 王旭东, 等. 解淀粉芽胞杆菌TR2对草莓土壤酶活性的影响与防病促生作用 [J]. 中国生物防治学报, 2022, 38(2):495−501.ZHAO Y M, MIAO P P, WANG X D, et al. Influences of Bacillus amyloliquefaciens TR2 on soil enzyme activities and its effects on disease control and growth promotion in strawberry [J]. Chinese Journal of Biological Control, 2022, 38(2): 495−501.(in Chinese) [26] 曾文芳, 李亚姝, 崔晓宁, 等. 施氮对紫花苜蓿光合作用及抗蓟马的影响 [J]. 草原与草坪, 2021, 41(1):61−66,75. doi: 10.13817/j.cnki.cyycp.2021.01.009ZENG W F, LI Y S, CUI X N, et al. Effect of nitrogen application on photosynthetic characteristics and resistance of alfalfa to thrips [J]. Grassland and Turf, 2021, 41(1): 61−66,75.(in Chinese) doi: 10.13817/j.cnki.cyycp.2021.01.009 [27] 袁宗胜, 刘芳, 黄秋良, 等. 内生细菌对芳樟光合特性和几种酶活性的作用 [J]. 基因组学与应用生物学, 2019, 38(8):3559−3565.YUAN Z S, LIU F, HUANG Q L, et al. The effect of entophytic bacteria on the photosynthetic characteristics and several enzyme activities of Cinnamomum camphora [J]. Genomics and Applied Biology, 2019, 38(8): 3559−3565.(in Chinese) [28] WONG S C, COWAN I R, FARQUHAR G D. Stomatal conductance correlates with photosynthetic capacity [J]. Nature, 1979, 282(5737): 424−426. doi: 10.1038/282424a0 [29] 钱申, 王志侠, 陈慧妹, 等. 不同微生境中水光温变化对毛尖紫萼藓叶绿素荧光特性的影响 [J]. 生态学报, 2021, 41(4):1482−1491.QIAN S, WANG Z X, CHEN H M, et al. Effects of water-light-temperature changes in different microhabitats on chlorophyll fluorescence characteristics of Grimmia pilifera [J]. Acta Ecologica Sinica, 2021, 41(4): 1482−1491.(in Chinese) [30] 吕德国, 于翠, 秦嗣军, 等. 本溪山樱根部解磷细菌的定殖规律及其对植株生长发育的影响 [J]. 中国农业科学, 2008, 41(2):508−515. doi: 10.3864/j.issn.0578-1752.2008.02.026LÜ D G, YU C, QIN S J, et al. Colonization regulation pattern of phosphobacteria and its effect on the growth and development of Cerasus sachalinensis [J]. Scientia Agricultura Sinica, 2008, 41(2): 508−515.(in Chinese) doi: 10.3864/j.issn.0578-1752.2008.02.026 [31] 秦嗣军, 张硕, 周文杰, 等. 根际促生细菌对东北山樱幼苗光合特性及生长的影响 [J]. 果树学报, 2014, 31(S1):98−102.QIN S J, ZHANG S, ZHOU W J, et al. Effect of plant growth promoting rhizobacteria on photosynthesis and growth of Cerasus sachalinensis seedlings [J]. Journal of Fruit Science, 2014, 31(S1): 98−102.(in Chinese) [32] PARÁDI I, BRATEK Z, LÁNG F. Influence of arbuscular mycorrhiza and phosphorus supply on polyamine content, growth and photosynthesis of Plantago lanceolata [J]. Biologia Plantarum, 2003, 46(4): 563−569. doi: 10.1023/A:1024819729317 [33] 汪敦飞, 郑新宇, 肖清铁, 等. 铜绿假单胞菌对镉胁迫苗期水稻根系活力及叶片生理特性的影响 [J]. 应用生态学报, 2019, 30(8):2767−2774. doi: 10.13287/j.1001-9332.201908.037WANG D F, ZHENG X Y, XIAO Q T, et al. Effects of Pseudomonas aeruginosa on root activity and leaf physiological characteristics in rice (Oryza sativa L. ) seedling under cadmium stress [J]. Chinese Journal of Applied Ecology, 2019, 30(8): 2767−2774.(in Chinese) doi: 10.13287/j.1001-9332.201908.037 [34] FERREIRA C M H, SOARES H M V M, SOARES E V. Promising bacterial Genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects [J]. Science of the Total Environment, 2019, 682: 779−799. doi: 10.1016/j.scitotenv.2019.04.225 [35] 林斌, 黄菊青, 官雪芳, 等. 解淀粉芽孢杆菌液体肥在茶叶上的应用研究 [J]. 福建农业学报, 2019, 34(10):1173−1178. doi: 10.19303/j.issn.1008-0384.2019.10.009LIN B, HUANG J Q, GUAN X F, et al. Application of Bacillus amyloliquefaciens liquid fertilizer on tea bushes [J]. Fujian Journal of Agricultural Sciences, 2019, 34(10): 1173−1178.(in Chinese) doi: 10.19303/j.issn.1008-0384.2019.10.009