Certifying Heredity Purity of Monogerm Cytoplasmic Male Sterile and Maintainer Sugar Beet
-
摘要:
目的 提高甜菜单胚细胞质雄性不育系与保持系的育性纯度。 方法 对课题组现有的40对(共计620颗个体植株)甜菜单胚细胞质雄性不育系与保持系进行分子标记育性鉴定,记录鉴定结果中显示不育系中混有的保持系植株和保持系中混有的不育系植株的对应编号;在田间进行形态学验证,同时剔除混杂株。 结果 利用分子标记育性鉴定共检测到92颗混杂植株的DNA,其中73颗为保持系中混有不育植株,19颗为不育系中混有可育植株;在田间进行形态学育性鉴定时,观察花粉鉴定植株育性的同时观察植株的粒性,共有122株个体植株发生混杂(包含分子标记育性鉴定为混杂的92颗植株),即73株为保持系混杂,49株为不育系混杂。在田间验证时发现还有多胚植株混杂,可能是在种子清选过程中,有一定的概率混进了多胚种子。 结论 通过田间对混杂植株的剔除,即保证了不育系与保持系的育性及粒性纯度,又为这40对甜菜单胚细胞质雄性不育系与保持系的遗传多样性分析提供了前提条件,奠定了配制二元不育系的基础。 Abstract:Objective To improve the fertility purity of beet monogerm cytoplasmic male sterile lines and maintainers. Method Forty pairs of molecular markers from a collection of 620 monogerm cytoplasmic male sterile and maintainer sugar beet germplasms were identified.All genetically mixed markers in the sterile and maintainer plants were given specific codes and recorded.Subsequently, a morphological observation was carried out in the field to exclude genetically impure plants. Result The verification of heredity purity by molecular markers revealed 92 DNA including 73 in the maintainers mixed with that of the sterile plant and 19 in the sterile lines contaminated with that belonged to the maintainer.The field examination on pollens and grains identified 122 plants (as compared to 92 isolated by the molecular marker verification) with 73 maintainers and 49 sterile lines to be promiscuous.In addition, polygerm plants were unexpectedly found in the lot that could have grown from the accidentally included seeds. Conclusion By excluding adulterated plants in the field, the purity on heredity of sterile and maintainer lines could be assured.The procedure would provide the prerequisite essential for accurate genetic diversity determination and successful preparation of binary sterile sugar beet lines. -
Key words:
- Sugar beet /
- molecular marker /
- heredity certification /
- morphology /
- screening
-
表 1 40对供试材料序号及名称
Table 1. Codes and names of 40 pair test materials
序号
Serial number名称
Name序号
Serial number名称
Name序号
Serial number名称
Name序号
Serial number名称
Name1 HD-CMS1 21 HD-CMS11 41 HD-CMS21 61 HD-CMS31 2 HD-O1 22 HD-O11 42 HD-O21 62 HD-O31 3 HD-CMS2 23 HD-CMS12 43 HD-CMS22 63 HD-CMS32 4 HD-O2 24 HD-O12 44 HD-O22 64 HD-O32 5 HD-CMS3 25 HD-CMS13 45 HD-CMS23 65 HD-CMS33 6 HD-O3 26 HD-O13 46 HD-O23 66 HD-O33 7 HD-CMS4 27 HD-CMS14 47 HD-CMS24 67 HD-CMS34 8 HD-O4 28 HD-O14 48 HD-O24 68 HD-O34 9 HD-CMS5 29 HD-CMS15 49 HD-CMS25 69 HD-CMS35 10 HD-O5 30 HD-O15 50 HD-O25 70 HD-O35 11 HD-CMS6 31 HD-CMS16 51 HD-CMS26 71 HD-CMS36 12 HD-O6 32 HD-O16 52 HD-O26 72 HD-O36 13 HD-CMS7 33 HD-CMS17 53 HD-CMS27 73 HD-CMS37 14 HD-O7 34 HD-O17 54 HD-O27 74 HD-O37 15 HD-CMS8 35 HD-CMS18 55 HD-CMS28 75 HD-CMS38 16 HD-O8 36 HD-O18 56 HD-O28 76 HD-O38 17 HD-CMS9 37 HD-CMS19 57 HD-CMS29 77 HD-CMS39 18 HD-O9 38 HD-O19 58 HD-O29 78 HD-O39 19 HD-CMS10 39 HD-CMS20 59 HD-CMS30 79 HD-CMS40 20 HD-O10 40 HD-O20 60 HD-O30 80 HD-O40 表 2 40对供试材料取样编号
Table 2. Specimen codes of 40 pair test materials
序号
Serial number名称
Name编号
Number1 HD-CMS1 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 2 HD-O1 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 表 3 分子标记育性鉴定与形态学育性鉴定混杂株数目比较
Table 3. Number of plants with mixed genes determined by molecular and morphological verifications
(单位:颗) 混杂类型
Mixed type分子标记育性鉴定
Identification of fertility by
molecular markers田间形态学育性鉴定
Morphological fertility identification in the field与分子标记鉴定结果相同
With the same results与分子标记鉴定结果不同
With the different rseults多胚植株
Polyembryony plant细胞核育性混杂
The nuclei are promiscuous不育系混杂 Mixed sterile lines 19 19 12 18 保持系混杂 Mixed Maintainer line 73 69 0 4 -
[1] IVANA V, ZDENKO L, SUZANA K, et al. Sugar beet root yield and quality with leaf seasonal dynamics in relation to planting densities and nitrogen fertilization [J]. Agriculture, 2021, 11(5): 407. doi: 10.3390/agriculture11050407 [2] 苏欣欣, 胡晓航, 马亚怀, 等. 滤泥施用量对不同品种甜菜产量及土壤中氮磷钾含量的影响 [J]. 中国农学通报, 2022, 38(11):38−45. doi: 10.11924/j.issn.1000-6850.casb2021-0661SU X X, HU X H, MA Y H, et al. Effect of sugar mill filter mud application rate on yield of sugar beet varieties and contents of nitrogen, phosphorus and potassium in soil [J]. Chinese Agricultural Science Bulletin, 2022, 38(11): 38−45.(in Chinese) doi: 10.11924/j.issn.1000-6850.casb2021-0661 [3] EBMEYER H , FIEDLER-WIECHERS K , HOFFMANN C M. Drought tolerance of sugar beet - Evaluation of genotypic differences in yield potential and yield stability under varying environmental conditions [J]. European Journal of Agronomy, 2021, 125: 126262. doi: 10.1016/j.eja.2021.126262 [4] OWEN F V. The sugar beet breeder's problem of establishing male-sterile populations for hybridization purposes [J]. Proc Am Soc Sugar Beet Technol., 1950, 6: 191−194. [5] 冯小磊, 范光宇, 苏旭, 等. 植物雄性不育生理生化研究进展 [J]. 作物杂志, 2012(3):6−11. doi: 10.16035/j.issn.1001-7283.2012.03.005FENG X L, FAN G Y, SU X, et al. Advances in physiological and biochemical study on plant male sterility [J]. Crops, 2012(3): 6−11.(in Chinese) doi: 10.16035/j.issn.1001-7283.2012.03.005 [6] 王昱丹. 甜瓜雄性不育苗期早期鉴定方法[D]. 大庆: 黑龙江八一农垦大学, 2018WANG Y D. Early identification method of male sterility in muskmelon seedling stage[D]. Daqing: Heilongjiang Bayi Agricultural University, 2018. (in Chinese) [7] 柴军琳, 孙阳阳, 贾小平, 等. 一种普通小麦细胞质雄性不育系的鉴定及恢保关系研究 [J]. 麦类作物学报, 2016, 36(8):1003−1007. doi: 10.7606/j.issn.1009-1041.2016.08.05CHAI J L, SUN Y Y, JIA X P, et al. Identification and restoring-maintaining relationship of a cytoplasmic male sterile line in common wheat [J]. Journal of Triticeae Crops, 2016, 36(8): 1003−1007.(in Chinese) doi: 10.7606/j.issn.1009-1041.2016.08.05 [8] 刘一珺. 甜菜Owen型育性分子鉴定及分子辅助育种研究[D]. 哈尔滨: 哈尔滨工业大学, 2015LIU Y J. Molecular identification and molecular-assisted breeding of Owen type fertility in sugarbeet[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese) [9] NISHIZAWA S, KUBO T, MIKAMI T. Variable number of tandem repeat loci in the mitochondrial genomes of beets [J]. Current Genetics, 2000, 37(1): 34−38. doi: 10.1007/s002940050005 [10] 刘巧红, 程大友, 罗成飞, 等. 甜菜TR1位点多态性分析及细胞质育性鉴定 [J]. 中国甜菜糖业, 2013(1):18−20,24. doi: 10.3969/j.issn.1002-0551.2013.01.005LIU Q H, CHENG D Y, LUO C F, et al. TR1 allele polymorphism analysis and cytoplasm fertility identification for 8 sugar beet material populations [J]. China Beet & Sugar, 2013(1): 18−20,24.(in Chinese) doi: 10.3969/j.issn.1002-0551.2013.01.005 [11] 唐文帮, 肖应辉, 王建龙, 等. 水稻光温敏核不育系株系育性鉴定保纯法原种生产技术 [J]. 杂交水稻, 2010, 25(5):25−27,33. doi: 10.3969/j.issn.1005-3956.2010.05.009TANG W B, XIAO Y H, WANG J L, et al. A foundation seed production method to ensure seed purity of rice PTGMS lines by fertility identification of plant lines [J]. Hybrid Rice, 2010, 25(5): 25−27,33.(in Chinese) doi: 10.3969/j.issn.1005-3956.2010.05.009 [12] 张井勇. 大豆细胞质雄性不育“三系”异交率相关性状及其异交率鉴定方法的研究[D]. 哈尔滨: 东北农业大学, 2018.ZHANG J Y. Study on outcrossing rate related characters of soybean cytoplasmic male sterility “three lines” and its identification method[D]. Harbin: Northeast Agricultural University, 2018. (in Chinese) [13] 杨金华, 杜黎君, 贾菲芸, 等. 基于冬季负积温预测小麦BNS雄性不育系育性的转换率 [J]. 甘肃农业大学学报, 2021, 56(4):31−35,42. doi: 10.13432/j.cnki.jgsau.2021.04.005YANG J H, DU L J, JIA F Y, et al. Prediction of fertility conversion rate of wheat BNS male sterile lines based on negative accumulated temperature in winter [J]. Journal of Gansu Agricultural University, 2021, 56(4): 31−35,42.(in Chinese) doi: 10.13432/j.cnki.jgsau.2021.04.005 [14] BLUMWALD E, POOLE R J. Salt tolerance in suspension cultures of sugar beet: Induction of na/h antiport activity at the tonoplast by growth in salt [J]. Plant Physiology, 1987, 83(4): 884−887. doi: 10.1104/pp.83.4.884 [15] HAJHEIDARI M, ABDOLLAHIAN-NOGHABI M, ASKARI H, et al. Proteome analysis of sugar beet leaves under drought stress [J]. Proteomics, 2005, 5(4): 950−960. doi: 10.1002/pmic.200401101 [16] KLEUKER G, HOFFMANN C M. Causes of different tissue strength, changes during storage and effect on the storability of sugar beet genotypes [J]. Postharvest Biology and Technology, 2022, 183: 111744. doi: 10.1016/j.postharvbio.2021.111744 [17] 王良, 白晨, 李晓东, 等. VNTR分子标记技术在甜菜不育系选育中的应用 [J]. 华北农学报, 2014, 29(4):135−139. doi: 10.7668/hbnxb.2014.04.023WANG L, BAI C, LI X D, et al. VNTR molecular marker technology in the application of beet sterile lines breeding [J]. Acta Agriculturae Boreali-Sinica, 2014, 29(4): 135−139.(in Chinese) doi: 10.7668/hbnxb.2014.04.023 [18] MORITANI M, TAGUCHI K, KITAZAKI K, et al. Identification of the predominant nonrestoring allele for Owen-type cytoplasmic male sterility in sugar beet (Beta vulgaris L. ): Development of molecular markers for the maintainer genotype [J]. Molecular Breeding, 2013, 32(1): 91−100. doi: 10.1007/s11032-013-9854-8 [19] 石好琪, 吴则东, 兴旺, 等. 甜菜多胚种质资源育性组成的分子标记分析 [J]. 中国糖料, 2021, 43(4):26−31. doi: 10.13570/j.cnki.scc.2021.04.004SHI H Q, WU Z D, XING W, et al. Molecular marker analysis of fertility composition of sugarbeet multi-embryo germplasm resources [J]. Sugar Crops of China, 2021, 43(4): 26−31.(in Chinese) doi: 10.13570/j.cnki.scc.2021.04.004 [20] 石好琪, 丁刘慧子, 邳植, 等. 利用分子标记快速鉴定甜菜育性的研究 [J]. 中国农学通报, 2021, 37(3):61−65. doi: 10.11924/j.issn.1000-6850.casb2020-0446SHI H Q, DING L H Z, PI Z, et al. Study on rapid identification of sugarbeet fertility by molecular markers [J]. Chinese Agricultural Science Bulletin, 2021, 37(3): 61−65.(in Chinese) doi: 10.11924/j.issn.1000-6850.casb2020-0446 [21] 孟祥雯, 程大友, 崔杰, 等. 甜菜Owen型质核互作雄性不育系及保持系花蕾cDNA-AFLP多态性分析 [J]. 分子植物育种, 2016, 14(1):135−140. doi: 10.13271/j.mpb.014.000135MENG X W, CHENG D Y, CUI J, et al. Bud of sugar beet c DNA-AFLP polymorphism analysis of Owen-type male sterile line and maintainer line [J]. Molecular Plant Breeding, 2016, 14(1): 135−140.(in Chinese) doi: 10.13271/j.mpb.014.000135