Ectomycorrhizal Fungi Communities at Natural and Cultivated Castanea henryi Forests
-
摘要:
目的 揭示泰宁地区天然林与人工林锥栗外生菌根真菌的群落组成和多样性。 方法 以泰宁县天然锥栗林与人工锥栗林为采样地,采集锥栗根际土壤和根系样品,检测土壤理化性质,采用菌根学形态描述和分子鉴定对锥栗根部外生菌根真菌类型进行鉴定,并分析其侵染率与环境因子之间的相关性。 结果 天然林锥栗与人工林锥栗之间土壤理化性质存在显著差异,天然林锥栗样地土壤有机质、全氮、全钾与含水量显著高于人工林锥栗样地。人工林锥栗与天然林共鉴定到五类外生菌根真菌,隶属于2门3科5属。其中天然林锥栗土生空团菌(Cenococcum geophilum)的侵染率最高,达到了33.62%;而人工林锥栗橙黄硬皮马勃(Scleroderma citrinum)的侵染率最高,为65.61%;此外,乳菇(Lactarius kesiyae)、绒盖牛肝菌属(Xerocomus sp.)和红菇属(Russula sp.)也是泰宁地区锥栗的主要外生菌根类群。外生菌根真菌侵染率与环境因子相关性分析表明,土壤pH值、全磷、全钾和含水量与菌根侵染率密切相关。 结论 泰宁地区锥栗天然林与人工林外生菌根真菌群落组成及多样性存在差异,且天然林外生菌根真菌多样性高于人工林。研究结果为今后挖掘锥栗优势外生菌根真菌并应用于锥栗栽培提供重要技术依据,为人工锥栗林地土壤质量恢复奠定基础。 Abstract:Objective Composition and diversity of the ectomycorrhizal (ECM) fungi communities at natural and cultivated Castanea henryi forests in Taining, Fujian were studied. Methods Samples of C. henryi root and rhizosphere soil at the sites were collected for physiochemical analysis, mycorrhizal morphology observation, and molecular identification. A correlation between the ECM fungi in the roots and environmental conditions was analyzed. Results The physicochemical properties of the rhizosphere soil significantly differed between the natural forests and the plantations. The contents of organic matters, total nitrogen, total potassium, and water in the soil of a natural forest were significantly higher than those of a plantation. Five types of ECM fungi belonging to 2 phyla, 3 families, and 5 genera were identified in the collected samples. Among the fungi, the highest infection rate of Cenococcum geophilum at 33.62% was found on the C. henryi roots at the natural forests and that of Scleroderma citrinum at 65.61% at the plantations; while the other dominants included Lactarius kesiyae, Xerocomus sp. and Russula sp. . The contents of total phosphorus, total potassium, and water as well as pH in the soil significantly correlated with the fungal infection on the C. henryi roots. Conclusion Significant differences existed in the ECM fungi communities at the natural C. henryi forests and plantations in Taining. The fungal diversity in rhizosphere soil was higher at the natural forests than the plantations. The information gathered from this study provided a guideline for improved C. henryi cultivation management and plantation soil restoration. -
表 1 不同采样地土壤理化性质
Table 1. Physiochemical properties of soil at sampling sites
(单位:g·kg−1) 采样地
Sampling
plotpH值
pH value有机质含量
SOM content全磷含量
TP content全钾含量
TK content全碳含量
TC content全氮含量
TN content含水量
SM contentRGLⅠ 4.26±0.40 b 29.99±4.25 b 0.10±0.03 c 6.19±2.44 b 15.73±3.08 b 1.31±0.13 b 202.66±22.75 b RGLⅡ 4.55±0.12 ab 30.80±4.43 b 0.24±0.02 a 8.37±1.05 b 17.61±2.08 b 1.60±0.16 b 215.11±32.36 b RGLⅢ 4.41±0.13 ab 32.75±3.86 b 0.20±0.04 ab 8.39±1.73 b 16.76±1.83 b 1.45±0.13 b 259.59±35.88 b TRL 4.82±0.13 a 54.18±7.25 a 0.18±0.03 b 22.94±5.69 a 29.02±2.85 a 2.03±0.14 a 283.71±36.15 a RGLⅠ、RGLⅡ、RGLⅢ代表人工林3个农家栽培锥栗品种,分别是油榛、白露仔、处暑红。TRL代表天然林中锥栗。同列数据后不同小写字母表示各采样地间差异达0.05显著水平(P<0.05)。
RGLⅠ、RGLⅡ、RGLⅢ represent three farm cultivated varieties of Castanea henryi in plantation, which are oil hazelnut, bailuzi and chushuhong, respectively. TRL stands for Castanea henryi in natural forest. Values in the same column followed by the different lowercase letters are significantly different among different sampling plots at 0.05 level(P < 0.05).表 2 锥栗外生菌根(ECM)真菌种类的相对频率、相对多度度和重要值
Table 2. Relative frequency, abundance, and importance index of ECM fungi in C. henry
物种数
Species No.外生菌根真菌
EM Fungi树种 Tree species 相对频率
RF/%相对多度
RA/%重要值
IA/%油榛
RGLⅠ白露仔
RGLⅡ处暑红
RGLⅢ天然林
TRL1 土生空团菌 Cenococcum geophilum + + + + 24.39 15.86 20.12 2 橙黄硬皮马勃 Scleroderma citrinum + + + + 24.39 79.55 51.97 3 红菇属 Russula sp. + + + + 20.73 1.78 11.26 4 乳菇 Lactarius kesiyae + + + + 24.39 2.58 13.48 5 绒盖牛肝菌属 Xerocomus sp. — — — + 6.10 0.24 3.17 +表示真菌和锥栗有共生关系,—表示两者之间没有共生关系。
+: fungi and C. henryi with a symbiotic relationship; —: absence of a symbiotic relationship.表 3 天然林与人工林锥栗外生菌根真菌α多样性指数
Table 3. α diversity index of ECM fungi in natural C. henryi forests and at plantations
采样地
Sampling plotα多样性指数 α diversity index 多样性指数
Shannon优势度指数
Simpson均匀度指数
PielouRGLⅠ 1.33 0.73 0.96 RGLⅡ 1.39 0.75 1 RGLⅢ 1.39 0.75 1 TRL 1.61 0.8 1 表 4 天然林与人工林锥栗外生菌根真菌相似性指数
Table 4. Similarity index of ECM fungi in natural C. henryi forests and at plantations
相似性指数(Jaccad) RGLⅠ RGLⅡ RGLⅢ RGLⅡ 1 1 RGLⅢ 1 1 TRL 0.89 0.89 0.89 表 5 土壤理化性质与侵染率的Pearson相关系数
Table 5. Pearson correlation between soil physiochemical properties and colonization rate
环境因子
Environmental factors土生空团菌
Cenococcum geophilum橙黄硬皮马勃
Scleroderma citrinum绒盖牛肝菌属
Xerocomus sp.红菇属
Russula sp.乳菇
Lactarius kesiyaepH 0.593** −0.346 0.580** 0.468* −0.083 TK 0.890** −0.766** 0.763** 0.687** 0.088 TP 0.034 −0.020 0.034 0.579** −0.299 SM 0.605** −0.529* 0.668** 0.588** 0.134 正负数值表示两者具有不同的相关性;正值表示呈正相关性,负值表示呈负相关性;*表示显著相关(P<0.05);**表示极显著相关(P<0.01)。
Positive and negative values indicate positive correlation and reverse correlation, respectively; *indicates significant correlation at P<0.05; ** extremely significant correlation at P<0.01. -
[1] GENRE A, LANFRANCO L, PEROTTO S, et al. Unique and common traits in mycorrhizal symbioses [J]. Nature Reviews Microbiology, 2020, 18(11): 649−660. doi: 10.1038/s41579-020-0402-3 [2] 王家源, 殷小琳, 任悦, 等. 毛乌素沙地樟子松外生菌根真菌多样性特征 [J]. 微生物学通报, 2020, 47(11):3856−3867. doi: 10.13344/j.microbiol.china.200365WANG J Y, YIN X L, REN Y, et al. Diversity characteristics of ectomycorrhizal fungi associated with Pinus sylvestris var. mongolica in the Mu Us sandy land [J]. Microbiology China, 2020, 47(11): 3856−3867.(in Chinese) doi: 10.13344/j.microbiol.china.200365 [3] SCHÜTZ L, SAHARAN K, MÄDER P, et al. Rate of hyphal spread of arbuscular mycorrhizal fungi from pigeon pea to finger millet and their contribution to plant growth and nutrient uptake in experimental microcosms [J]. Applied Soil Ecology, 2022, 169: 104156. doi: 10.1016/j.apsoil.2021.104156 [4] BOUSKOUT M, BOURHIA M, AL FEDDY M N, et al. Mycorrhizal fungi inoculation improves Capparis spinosa’s yield, nutrient uptake and photosynthetic efficiency under water deficit [J]. Agronomy, 2022, 12(1): 149. doi: 10.3390/agronomy12010149 [5] WANG T, PERSSON P, TUNLID A. A widespread mechanism in ectomycorrhizal fungi to access nitrogen from mineral-associated proteins [J]. Environmental Microbiology, 2021, 23(10): 5837−5849. doi: 10.1111/1462-2920.15539 [6] BINGHAM M A, SIMARD S W. Do mycorrhizal network benefits to survival and growth of interior Douglas-fir seedlings increase with soil moisture stress? [J]. Ecology and Evolution, 2011, 1(3): 306−316. doi: 10.1002/ece3.24 [7] BINGHAM M A, SIMARD S. Ectomycorrhizal networks of Pseudotsuga menziesii var. glauca trees facilitate establishment of conspecific seedlings under drought [J]. Ecosystems, 2012, 15(2): 188−199. doi: 10.1007/s10021-011-9502-2 [8] MARTIN F, KOHLER A, MURAT C, et al. Unearthing the roots of ectomycorrhizal symbioses [J]. Nature Reviews Microbiology, 2016, 14(12): 760−773. doi: 10.1038/nrmicro.2016.149 [9] 杨国亭, 宋关玲, 高兴喜. 外生菌根在森林生态系统中的重要性(Ⅰ): 外生菌根对宿主树木的影响 [J]. 东北林业大学学报, 1999, 27(6):72−77. doi: 10.3969/j.issn.1000-5382.1999.06.018YANG G T, SONG G L, GAO X X. The significance of ectomycorrhizas in forest ecosystems: The influence of ectomycorrhizas on host trees [J]. Journal of Northeast Forestry University, 1999, 27(6): 72−77.(in Chinese) doi: 10.3969/j.issn.1000-5382.1999.06.018 [10] 郑诚乐, 江由. 闽北锥栗品种资源及其利用前景 [J]. 福建农业大学学报, 1998, 27(3):291−295.ZHENG C L, JIANG Y. Cultivar resources of chinquapin in North Fujian and their utilization prospects [J]. Journal of Fujian Agricultural University (Natural Science), 1998, 27(3): 291−295.(in Chinese) [11] 李成伟. 锥栗林地水土流失原因及治理技术 [J]. 福建农业科技, 2012(8):47−48. doi: 10.3969/j.issn.0253-2301.2012.08.028LI C W. Study on the cause of soil erosion and technical measures of in plating area of Castanea henryi [J]. Fujian Agricultural Science and Technology, 2012(8): 47−48.(in Chinese) doi: 10.3969/j.issn.0253-2301.2012.08.028 [12] 邹显花, 黄彬彬, 高清贵, 等. 闽北锥栗林经营过程中的水土流失防治效果研究 [J]. 水土保持学报, 2016, 30(6):47−55. doi: 10.13870/j.cnki.stbcxb.2016.06.009ZOU X H, HUANG B B, GAO Q G, et al. The control effect of soil erosion in Castanea henryi plantation in the north of Fujian Province [J]. Journal of Soil and Water Conservation, 2016, 30(6): 47−55.(in Chinese) doi: 10.13870/j.cnki.stbcxb.2016.06.009 [13] 高清贵. 福建省建瓯市锥栗山水土流失防治措施及其效益初探 [J]. 亚热带水土保持, 2016, 28(1):37−39. doi: 10.3969/j.issn.1002-2651.2016.01.012GAO Q G. Preliminary study on soil erosion control measures and their benefits in Zhuili Mountain, Jian 'ou City, Fujian Province [J]. Subtropical Soil and Water Conservation, 2016, 28(1): 37−39.(in Chinese) doi: 10.3969/j.issn.1002-2651.2016.01.012 [14] 王倩, 李振双, 杨富成, 等. 外生菌根共生对林木氮素吸收的促进作用 [J]. 世界林业研究, 2021, 34(3):19−24. doi: 10.13348/j.cnki.sjlyyj.2020.0133.yWANG Q, LI Z S, YANG F C, et al. Nitrogen uptake promoting mechanism of trees in ectomycorrhizal symbioses [J]. World Forestry Research, 2021, 34(3): 19−24.(in Chinese) doi: 10.13348/j.cnki.sjlyyj.2020.0133.y [15] 熊欢. 锥栗外生菌根效应及共生机制研究[D]. 长沙: 中南林业科技大学, 2019.XIONG H. Study on ectomycorrhizal effectand symbiosis mechanism of Castanea henryi[D]. Changsha: Central South University of Forestry & Technology, 2019. (in Chinese) [16] 高程, 郭良栋. 外生菌根真菌多样性的分布格局与维持机制研究进展 [J]. 生物多样性, 2013, 21(4):488−498.GAO C, GUO L D. Distribution pattern and maintenance of ectomycorrhizal fungus diversity [J]. Biodiversity Science, 2013, 21(4): 488−498.(in Chinese) [17] 郭米山, 高广磊, 丁国栋, 等. 呼伦贝尔沙地樟子松外生菌根真菌多样性 [J]. 菌物学报, 2018, 37(9):1133−1142. doi: 10.13346/j.mycosystema.180114GUO M S, GAO G L, DING G D, et al. Diversity of ectomycorrhizal fungi associated with Pinus sylvestris var. mongolica in Hulunbuir Sandy Land [J]. Mycosystema, 2018, 37(9): 1133−1142.(in Chinese) doi: 10.13346/j.mycosystema.180114 [18] 陈世平. 福建·泰宁锥栗销售顺畅 [J]. 中国果业信息, 2014, 31(11):64.CHEN S P. Fujian Taining Castanea henryi sells smoothly [J]. China Fruit News, 2014, 31(11): 64.(in Chinese) [19] 胡慧蓉, 田昆. 土壤学实验指导教程[M]. 北京: 中国林业出版社, 2012.HU H R, TIAN K. Guide course of soil science experiment[M]. Beijing: China Forestry Publishing House, 2012. (in Chinese) [20] 耿荣, 耿增超, 黄建, 等. 秦岭辛家山林区锐齿栎外生菌根真菌多样性 [J]. 菌物学报, 2016, 35(7):833−847. doi: 10.13346/j.mycosystema.150122GENG R, GENG Z C, HUANG J, et al. Diversity of ectomycorrhizal fungi associated with Quercus aliena in Xinjiashan forest region of Qinling Mountains [J]. Mycosystema, 2016, 35(7): 833−847.(in Chinese) doi: 10.13346/j.mycosystema.150122 [21] KENNEDY P G, HILL L T. A molecular and phylogenetic analysis of the structure and specificity of Alnus rubra ectomycorrhizal assemblages [J]. Fungal Ecology, 2010, 3(3): 195−204. doi: 10.1016/j.funeco.2009.08.005 [22] 方精云, 王襄平, 沈泽昊, 等. 植物群落清查的主要内容、方法和技术规范 [J]. 生物多样性, 2009, 17(6):533−548. doi: 10.3724/SP.J.1003.2009.09253FANG J Y, WANG X P, SHEN Z H, et al. Methods and protocols for plant community inventory [J]. Biodiversity Science, 2009, 17(6): 533−548.(in Chinese) doi: 10.3724/SP.J.1003.2009.09253 [23] 王琴. 蒙古栎外生菌根真菌多样性研究 [J]. 辽宁林业科技, 2013(3):6−9,14. doi: 10.3969/j.issn.1001-1714.2013.03.003WANG Q. Ectomycorrhizal community composition of Quercus mongolica [J]. Liaoning Forestry Science and Technology, 2013(3): 6−9,14.(in Chinese) doi: 10.3969/j.issn.1001-1714.2013.03.003 [24] TN A, AH A, MK A, et al. Changes in plant species diversity over 5 years in Larix kaempferi plantations and abandoned coppice forests in central Japan[J]. Forest Ecology and Management, 2006, 236(2–3): 278-285. [25] 陈伟楠, 曹磊, 冷平生, 等. 北京地区槲树外生菌根真菌群落特征 [J]. 森林与环境学报, 2021, 41(6):629−636.CHEN W N, CAO L, LENG P S, et al. Community composition of ectomycorrhizal fungi associated with Quercus dentata in Beijing, China [J]. Journal of Forest and Environment, 2021, 41(6): 629−636.(in Chinese) [26] 乌仁陶格斯, 韩胜利, 闫伟. 浅析土生空团菌自然侵染率与植被、根际土壤因子的关系 [J]. 中国农学通报, 2012, 28(25):47−51. doi: 10.3969/j.issn.1000-6850.2012.25.009WURENTAOGESI, HAN S L, YAN W. The relationship between natural infection rate of Cenococcum geophilum and vegetation, rhizosphere soil factors [J]. Chinese Agricultural Science Bulletin, 2012, 28(25): 47−51.(in Chinese) doi: 10.3969/j.issn.1000-6850.2012.25.009 [27] 乌仁陶格斯. 内蒙古典型森林类型土生空团菌生态分布的研究[D]. 呼和浩特: 内蒙古农业大学, 2010WURENTAOGESI. Ecological distribution of Cenococcum geophilum in typical forest in Inner Mongolia[D]. Hohhot: Inner Mongolia Agricultural University, 2010. (in Chinese) [28] 刘冬明. 锥栗优势共生菌根真菌筛选[D]. 长沙: 中南林业科技大学, 2016.LIU D M. The advantages of Castanea henryi symbiotic fungi screening[D]. Changsha: Central South University of Forestry & Technology, 2016. (in Chinese) [29] 何绍昌. 贵州林木外生菌根菌种类及生态、分布的初步研究 [J]. 贵州科学, 1991, 9(1):51−58.HE S C. A preliminary study on the resources of forest ectotrophic fungi and their ecological distribution from Guizhou Province, China [J]. Guizhou Science, 1991, 9(1): 51−58.(in Chinese) [30] 谭方河, 王云璋. 四川松树、桉树外生菌根菌种类调查 [J]. 四川林业科技, 2000, 21(3):65−69. doi: 10.16779/j.cnki.1003-5508.2000.03.023TAN F H, WANG Y Z. Investigation on ectomycorrhizal fungi species of pine and eucalyptus in Sichuan [J]. Journal of Sichuan Forestry Science and Technology, 2000, 21(3): 65−69.(in Chinese) doi: 10.16779/j.cnki.1003-5508.2000.03.023 [31] 贺小香, 谭周进, 肖启明, 等. 外生菌根的功能及与环境因子的关系 [J]. 中国生态农业学报, 2007, 15(2):201−204.HE X X, TAN Z J, XIAO Q M, et al. A review on the function of ectomycorrhiza and the effects of environmental factors on them [J]. Chinese Journal of Eco-Agriculture, 2007, 15(2): 201−204.(in Chinese) [32] 龚珊珊, 廖善刚. 桉树人工林与天然林土壤养分的对比研究 [J]. 江苏林业科技, 2009, 36(3):1−4. doi: 10.3969/j.issn.1001-7380.2009.03.001GONG S S, LIAO S G. Soil nutrient characteristics in eucalypt plantation and natural forest [J]. Journal of Jiangsu Forestry Science & Technology, 2009, 36(3): 1−4.(in Chinese) doi: 10.3969/j.issn.1001-7380.2009.03.001 [33] 祁雪连, 葛晓敏, 钱壮壮, 等. 武夷山天然针阔混交林与毛竹人工林土壤性质差异 [J]. 生态环境学报, 2021, 30(8):1599−1606. doi: 10.16258/j.cnki.1674-5906.2021.08.006QI X L, GE X M, QIAN Z Z, et al. Differences of soil properties between natural mixed coniferous and broad-leaved forest and moso bamboo plantation in Wuyi Mountains [J]. Ecology and Environmental Sciences, 2021, 30(8): 1599−1606.(in Chinese) doi: 10.16258/j.cnki.1674-5906.2021.08.006 [34] SATAPUTE P, KAMBLE M V, ADHIKARI S S, et al. Influence of triazole pesticides on tillage soil microbial populations and metabolic changes[J]. The Science of the Total Environment, 2019, 651(Pt 2): 2334-2344. [35] 刘建明, 温爱亭, 姚颖, 等. 榛子天然林、榛子人工林及农田土壤理化性质分析研究 [J]. 森林工程, 2019, 35(6):26−30. doi: 10.3969/j.issn.1006-8023.2019.06.004LIU J M, WEN A T, YAO Y, et al. Research on Soil Physical and Chemical Properties in Farmland, Natural Corylus Forest and Plantation Forest [J]. Forest Engineering, 2019, 35(6): 26−30.(in Chinese) doi: 10.3969/j.issn.1006-8023.2019.06.004