• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

天然林与人工林中锥栗外生菌根真菌多样性研究

袁超 张盼盼 庞文博 成圆圆 张桃香

袁超,张盼盼,庞文博,等. 天然林与人工林中锥栗外生菌根真菌多样性研究 [J]. 福建农业学报,2023,38(3):367−375 doi: 10.19303/j.issn.1008-0384.2023.03.014
引用本文: 袁超,张盼盼,庞文博,等. 天然林与人工林中锥栗外生菌根真菌多样性研究 [J]. 福建农业学报,2023,38(3):367−375 doi: 10.19303/j.issn.1008-0384.2023.03.014
YUAN C, ZHANG P P, PANG W B, et al. Ectomycorrhizal Fungi Communities at Natural and Cultivated Castanea henryi Forests [J]. Fujian Journal of Agricultural Sciences,2023,38(3):367−375 doi: 10.19303/j.issn.1008-0384.2023.03.014
Citation: YUAN C, ZHANG P P, PANG W B, et al. Ectomycorrhizal Fungi Communities at Natural and Cultivated Castanea henryi Forests [J]. Fujian Journal of Agricultural Sciences,2023,38(3):367−375 doi: 10.19303/j.issn.1008-0384.2023.03.014

天然林与人工林中锥栗外生菌根真菌多样性研究

doi: 10.19303/j.issn.1008-0384.2023.03.014
基金项目: 福建省林业厅科学技术基金项目(KLb20004A);福建省自然科学基金项目(KJD21006A)
详细信息
    作者简介:

    袁超(1995−),女,硕士研究生,研究方向:森林微生物(E-mail:Yuanchao507@163.com

    通讯作者:

    张桃香(1985−),女,博士,讲师,研究方向:森林培育(E-mail:ning527@fafu.edu.cn

  • 中图分类号: S718

Ectomycorrhizal Fungi Communities at Natural and Cultivated Castanea henryi Forests

  • 摘要:   目的  揭示泰宁地区天然林与人工林锥栗外生菌根真菌的群落组成和多样性。  方法  以泰宁县天然锥栗林与人工锥栗林为采样地,采集锥栗根际土壤和根系样品,检测土壤理化性质,采用菌根学形态描述和分子鉴定对锥栗根部外生菌根真菌类型进行鉴定,并分析其侵染率与环境因子之间的相关性。  结果  天然林锥栗与人工林锥栗之间土壤理化性质存在显著差异,天然林锥栗样地土壤有机质、全氮、全钾与含水量显著高于人工林锥栗样地。人工林锥栗与天然林共鉴定到五类外生菌根真菌,隶属于2门3科5属。其中天然林锥栗土生空团菌(Cenococcum geophilum)的侵染率最高,达到了33.62%;而人工林锥栗橙黄硬皮马勃(Scleroderma citrinum)的侵染率最高,为65.61%;此外,乳菇(Lactarius kesiyae)、绒盖牛肝菌属(Xerocomus sp.)和红菇属(Russula sp.)也是泰宁地区锥栗的主要外生菌根类群。外生菌根真菌侵染率与环境因子相关性分析表明,土壤pH值、全磷、全钾和含水量与菌根侵染率密切相关。  结论  泰宁地区锥栗天然林与人工林外生菌根真菌群落组成及多样性存在差异,且天然林外生菌根真菌多样性高于人工林。研究结果为今后挖掘锥栗优势外生菌根真菌并应用于锥栗栽培提供重要技术依据,为人工锥栗林地土壤质量恢复奠定基础。
  • 图  1  不同类型外生菌根形态学特征

    A—C:土生空团菌;D—F:橙黄硬皮马勃;G:黄孢红菇;H:红菇属;I:绒盖牛肝菌属;J—K:乳菇。

    Figure  1.  Morphology of ECM fungi

    A—C: Cenococcum geophilum; D—F: Scleroderma citrinum; G: Russula xerampelina; H: Russula sp.; I: Xerocomus sp.; J—K: Lactarius kesiyae.

    图  2  基于基因序列构建的锥栗外生菌根真菌系统进化树

    Figure  2.  Gene sequence-based phylogenetic tree of C. henryi ECM fungi

    图  3  锥栗外生菌根真菌优势度

    Figure  3.  Dominance of C. henryi ECM fungi

    图  4  锥栗外生菌根真菌侵染率

    Figure  4.  Infection rate of ECM ectomycorrhizal fungi on Castanea henryi roots

    表  1  不同采样地土壤理化性质

    Table  1.   Physiochemical properties of soil at sampling sites (单位:g·kg−1

    采样地
    Sampling
    plot
    pH值
    pH value
    有机质含量
    SOM content
    全磷含量
    TP content
    全钾含量
    TK content
    全碳含量
    TC content
    全氮含量
    TN content
    含水量
    SM content
    RGLⅠ4.26±0.40 b29.99±4.25 b0.10±0.03 c6.19±2.44 b15.73±3.08 b1.31±0.13 b202.66±22.75 b
    RGLⅡ4.55±0.12 ab30.80±4.43 b0.24±0.02 a8.37±1.05 b17.61±2.08 b1.60±0.16 b215.11±32.36 b
    RGLⅢ4.41±0.13 ab32.75±3.86 b0.20±0.04 ab8.39±1.73 b16.76±1.83 b1.45±0.13 b259.59±35.88 b
    TRL4.82±0.13 a54.18±7.25 a0.18±0.03 b22.94±5.69 a29.02±2.85 a2.03±0.14 a283.71±36.15 a
    RGLⅠ、RGLⅡ、RGLⅢ代表人工林3个农家栽培锥栗品种,分别是油榛、白露仔、处暑红。TRL代表天然林中锥栗。同列数据后不同小写字母表示各采样地间差异达0.05显著水平(P<0.05)。
    RGLⅠ、RGLⅡ、RGLⅢ represent three farm cultivated varieties of Castanea henryi in plantation, which are oil hazelnut, bailuzi and chushuhong, respectively. TRL stands for Castanea henryi in natural forest. Values in the same column followed by the different lowercase letters are significantly different among different sampling plots at 0.05 level(P < 0.05).
    下载: 导出CSV

    表  2  锥栗外生菌根(ECM)真菌种类的相对频率、相对多度度和重要值

    Table  2.   Relative frequency, abundance, and importance index of ECM fungi in C. henry

    物种数
    Species No.
    外生菌根真菌
    EM Fungi
    树种 Tree species相对频率
    RF/%
    相对多度
    RA/%
    重要值
    IA/%
    油榛
    RGLⅠ
    白露仔
    RGLⅡ
    处暑红
    RGLⅢ
    天然林
    TRL
    1 土生空团菌 Cenococcum geophilum + + + + 24.39 15.86 20.12
    2 橙黄硬皮马勃 Scleroderma citrinum + + + + 24.39 79.55 51.97
    3 红菇属 Russula sp. + + + + 20.73 1.78 11.26
    4 乳菇 Lactarius kesiyae + + + + 24.39 2.58 13.48
    5 绒盖牛肝菌属 Xerocomus sp. + 6.10 0.24 3.17
    +表示真菌和锥栗有共生关系,—表示两者之间没有共生关系。
    +: fungi and C. henryi with a symbiotic relationship; —: absence of a symbiotic relationship.
    下载: 导出CSV

    表  3  天然林与人工林锥栗外生菌根真菌α多样性指数

    Table  3.   α diversity index of ECM fungi in natural C. henryi forests and at plantations

    采样地
    Sampling plot
    α多样性指数 α diversity index
    多样性指数
    Shannon
    优势度指数
    Simpson
    均匀度指数
    Pielou
    RGLⅠ1.330.730.96
    RGLⅡ1.390.751
    RGLⅢ1.390.751
    TRL1.610.81
    下载: 导出CSV

    表  4  天然林与人工林锥栗外生菌根真菌相似性指数

    Table  4.   Similarity index of ECM fungi in natural C. henryi forests and at plantations

    相似性指数(Jaccad)RGLⅠRGLⅡRGLⅢ
    RGLⅡ11
    RGLⅢ11
    TRL0.890.890.89
    下载: 导出CSV

    表  5  土壤理化性质与侵染率的Pearson相关系数

    Table  5.   Pearson correlation between soil physiochemical properties and colonization rate

    环境因子
    Environmental factors
    土生空团菌
    Cenococcum geophilum
    橙黄硬皮马勃
    Scleroderma citrinum
    绒盖牛肝菌属
    Xerocomus sp.
    红菇属
    Russula sp.
    乳菇
    Lactarius kesiyae
    pH0.593**−0.3460.580**0.468*−0.083
    TK0.890**−0.766**0.763**0.687**0.088
    TP0.034−0.0200.0340.579**−0.299
    SM0.605**−0.529*0.668**0.588**0.134
    正负数值表示两者具有不同的相关性;正值表示呈正相关性,负值表示呈负相关性;*表示显著相关(P<0.05);**表示极显著相关(P<0.01)。
    Positive and negative values indicate positive correlation and reverse correlation, respectively; *indicates significant correlation at P<0.05; ** extremely significant correlation at P<0.01.
    下载: 导出CSV
  • [1] GENRE A, LANFRANCO L, PEROTTO S, et al. Unique and common traits in mycorrhizal symbioses [J]. Nature Reviews Microbiology, 2020, 18(11): 649−660. doi: 10.1038/s41579-020-0402-3
    [2] 王家源, 殷小琳, 任悦, 等. 毛乌素沙地樟子松外生菌根真菌多样性特征 [J]. 微生物学通报, 2020, 47(11):3856−3867. doi: 10.13344/j.microbiol.china.200365

    WANG J Y, YIN X L, REN Y, et al. Diversity characteristics of ectomycorrhizal fungi associated with Pinus sylvestris var. mongolica in the Mu Us sandy land [J]. Microbiology China, 2020, 47(11): 3856−3867.(in Chinese) doi: 10.13344/j.microbiol.china.200365
    [3] SCHÜTZ L, SAHARAN K, MÄDER P, et al. Rate of hyphal spread of arbuscular mycorrhizal fungi from pigeon pea to finger millet and their contribution to plant growth and nutrient uptake in experimental microcosms [J]. Applied Soil Ecology, 2022, 169: 104156. doi: 10.1016/j.apsoil.2021.104156
    [4] BOUSKOUT M, BOURHIA M, AL FEDDY M N, et al. Mycorrhizal fungi inoculation improves Capparis spinosa’s yield, nutrient uptake and photosynthetic efficiency under water deficit [J]. Agronomy, 2022, 12(1): 149. doi: 10.3390/agronomy12010149
    [5] WANG T, PERSSON P, TUNLID A. A widespread mechanism in ectomycorrhizal fungi to access nitrogen from mineral-associated proteins [J]. Environmental Microbiology, 2021, 23(10): 5837−5849. doi: 10.1111/1462-2920.15539
    [6] BINGHAM M A, SIMARD S W. Do mycorrhizal network benefits to survival and growth of interior Douglas-fir seedlings increase with soil moisture stress? [J]. Ecology and Evolution, 2011, 1(3): 306−316. doi: 10.1002/ece3.24
    [7] BINGHAM M A, SIMARD S. Ectomycorrhizal networks of Pseudotsuga menziesii var. glauca trees facilitate establishment of conspecific seedlings under drought [J]. Ecosystems, 2012, 15(2): 188−199. doi: 10.1007/s10021-011-9502-2
    [8] MARTIN F, KOHLER A, MURAT C, et al. Unearthing the roots of ectomycorrhizal symbioses [J]. Nature Reviews Microbiology, 2016, 14(12): 760−773. doi: 10.1038/nrmicro.2016.149
    [9] 杨国亭, 宋关玲, 高兴喜. 外生菌根在森林生态系统中的重要性(Ⅰ): 外生菌根对宿主树木的影响 [J]. 东北林业大学学报, 1999, 27(6):72−77. doi: 10.3969/j.issn.1000-5382.1999.06.018

    YANG G T, SONG G L, GAO X X. The significance of ectomycorrhizas in forest ecosystems: The influence of ectomycorrhizas on host trees [J]. Journal of Northeast Forestry University, 1999, 27(6): 72−77.(in Chinese) doi: 10.3969/j.issn.1000-5382.1999.06.018
    [10] 郑诚乐, 江由. 闽北锥栗品种资源及其利用前景 [J]. 福建农业大学学报, 1998, 27(3):291−295.

    ZHENG C L, JIANG Y. Cultivar resources of chinquapin in North Fujian and their utilization prospects [J]. Journal of Fujian Agricultural University (Natural Science), 1998, 27(3): 291−295.(in Chinese)
    [11] 李成伟. 锥栗林地水土流失原因及治理技术 [J]. 福建农业科技, 2012(8):47−48. doi: 10.3969/j.issn.0253-2301.2012.08.028

    LI C W. Study on the cause of soil erosion and technical measures of in plating area of Castanea henryi [J]. Fujian Agricultural Science and Technology, 2012(8): 47−48.(in Chinese) doi: 10.3969/j.issn.0253-2301.2012.08.028
    [12] 邹显花, 黄彬彬, 高清贵, 等. 闽北锥栗林经营过程中的水土流失防治效果研究 [J]. 水土保持学报, 2016, 30(6):47−55. doi: 10.13870/j.cnki.stbcxb.2016.06.009

    ZOU X H, HUANG B B, GAO Q G, et al. The control effect of soil erosion in Castanea henryi plantation in the north of Fujian Province [J]. Journal of Soil and Water Conservation, 2016, 30(6): 47−55.(in Chinese) doi: 10.13870/j.cnki.stbcxb.2016.06.009
    [13] 高清贵. 福建省建瓯市锥栗山水土流失防治措施及其效益初探 [J]. 亚热带水土保持, 2016, 28(1):37−39. doi: 10.3969/j.issn.1002-2651.2016.01.012

    GAO Q G. Preliminary study on soil erosion control measures and their benefits in Zhuili Mountain, Jian 'ou City, Fujian Province [J]. Subtropical Soil and Water Conservation, 2016, 28(1): 37−39.(in Chinese) doi: 10.3969/j.issn.1002-2651.2016.01.012
    [14] 王倩, 李振双, 杨富成, 等. 外生菌根共生对林木氮素吸收的促进作用 [J]. 世界林业研究, 2021, 34(3):19−24. doi: 10.13348/j.cnki.sjlyyj.2020.0133.y

    WANG Q, LI Z S, YANG F C, et al. Nitrogen uptake promoting mechanism of trees in ectomycorrhizal symbioses [J]. World Forestry Research, 2021, 34(3): 19−24.(in Chinese) doi: 10.13348/j.cnki.sjlyyj.2020.0133.y
    [15] 熊欢. 锥栗外生菌根效应及共生机制研究[D]. 长沙: 中南林业科技大学, 2019.

    XIONG H. Study on ectomycorrhizal effectand symbiosis mechanism of Castanea henryi[D]. Changsha: Central South University of Forestry & Technology, 2019. (in Chinese)
    [16] 高程, 郭良栋. 外生菌根真菌多样性的分布格局与维持机制研究进展 [J]. 生物多样性, 2013, 21(4):488−498.

    GAO C, GUO L D. Distribution pattern and maintenance of ectomycorrhizal fungus diversity [J]. Biodiversity Science, 2013, 21(4): 488−498.(in Chinese)
    [17] 郭米山, 高广磊, 丁国栋, 等. 呼伦贝尔沙地樟子松外生菌根真菌多样性 [J]. 菌物学报, 2018, 37(9):1133−1142. doi: 10.13346/j.mycosystema.180114

    GUO M S, GAO G L, DING G D, et al. Diversity of ectomycorrhizal fungi associated with Pinus sylvestris var. mongolica in Hulunbuir Sandy Land [J]. Mycosystema, 2018, 37(9): 1133−1142.(in Chinese) doi: 10.13346/j.mycosystema.180114
    [18] 陈世平. 福建·泰宁锥栗销售顺畅 [J]. 中国果业信息, 2014, 31(11):64.

    CHEN S P. Fujian Taining Castanea henryi sells smoothly [J]. China Fruit News, 2014, 31(11): 64.(in Chinese)
    [19] 胡慧蓉, 田昆. 土壤学实验指导教程[M]. 北京: 中国林业出版社, 2012.

    HU H R, TIAN K. Guide course of soil science experiment[M]. Beijing: China Forestry Publishing House, 2012. (in Chinese)
    [20] 耿荣, 耿增超, 黄建, 等. 秦岭辛家山林区锐齿栎外生菌根真菌多样性 [J]. 菌物学报, 2016, 35(7):833−847. doi: 10.13346/j.mycosystema.150122

    GENG R, GENG Z C, HUANG J, et al. Diversity of ectomycorrhizal fungi associated with Quercus aliena in Xinjiashan forest region of Qinling Mountains [J]. Mycosystema, 2016, 35(7): 833−847.(in Chinese) doi: 10.13346/j.mycosystema.150122
    [21] KENNEDY P G, HILL L T. A molecular and phylogenetic analysis of the structure and specificity of Alnus rubra ectomycorrhizal assemblages [J]. Fungal Ecology, 2010, 3(3): 195−204. doi: 10.1016/j.funeco.2009.08.005
    [22] 方精云, 王襄平, 沈泽昊, 等. 植物群落清查的主要内容、方法和技术规范 [J]. 生物多样性, 2009, 17(6):533−548. doi: 10.3724/SP.J.1003.2009.09253

    FANG J Y, WANG X P, SHEN Z H, et al. Methods and protocols for plant community inventory [J]. Biodiversity Science, 2009, 17(6): 533−548.(in Chinese) doi: 10.3724/SP.J.1003.2009.09253
    [23] 王琴. 蒙古栎外生菌根真菌多样性研究 [J]. 辽宁林业科技, 2013(3):6−9,14. doi: 10.3969/j.issn.1001-1714.2013.03.003

    WANG Q. Ectomycorrhizal community composition of Quercus mongolica [J]. Liaoning Forestry Science and Technology, 2013(3): 6−9,14.(in Chinese) doi: 10.3969/j.issn.1001-1714.2013.03.003
    [24] TN A, AH A, MK A, et al. Changes in plant species diversity over 5 years in Larix kaempferi plantations and abandoned coppice forests in central Japan[J]. Forest Ecology and Management, 2006, 236(2–3): 278-285.
    [25] 陈伟楠, 曹磊, 冷平生, 等. 北京地区槲树外生菌根真菌群落特征 [J]. 森林与环境学报, 2021, 41(6):629−636.

    CHEN W N, CAO L, LENG P S, et al. Community composition of ectomycorrhizal fungi associated with Quercus dentata in Beijing, China [J]. Journal of Forest and Environment, 2021, 41(6): 629−636.(in Chinese)
    [26] 乌仁陶格斯, 韩胜利, 闫伟. 浅析土生空团菌自然侵染率与植被、根际土壤因子的关系 [J]. 中国农学通报, 2012, 28(25):47−51. doi: 10.3969/j.issn.1000-6850.2012.25.009

    WURENTAOGESI, HAN S L, YAN W. The relationship between natural infection rate of Cenococcum geophilum and vegetation, rhizosphere soil factors [J]. Chinese Agricultural Science Bulletin, 2012, 28(25): 47−51.(in Chinese) doi: 10.3969/j.issn.1000-6850.2012.25.009
    [27] 乌仁陶格斯. 内蒙古典型森林类型土生空团菌生态分布的研究[D]. 呼和浩特: 内蒙古农业大学, 2010

    WURENTAOGESI. Ecological distribution of Cenococcum geophilum in typical forest in Inner Mongolia[D]. Hohhot: Inner Mongolia Agricultural University, 2010. (in Chinese)
    [28] 刘冬明. 锥栗优势共生菌根真菌筛选[D]. 长沙: 中南林业科技大学, 2016.

    LIU D M. The advantages of Castanea henryi symbiotic fungi screening[D]. Changsha: Central South University of Forestry & Technology, 2016. (in Chinese)
    [29] 何绍昌. 贵州林木外生菌根菌种类及生态、分布的初步研究 [J]. 贵州科学, 1991, 9(1):51−58.

    HE S C. A preliminary study on the resources of forest ectotrophic fungi and their ecological distribution from Guizhou Province, China [J]. Guizhou Science, 1991, 9(1): 51−58.(in Chinese)
    [30] 谭方河, 王云璋. 四川松树、桉树外生菌根菌种类调查 [J]. 四川林业科技, 2000, 21(3):65−69. doi: 10.16779/j.cnki.1003-5508.2000.03.023

    TAN F H, WANG Y Z. Investigation on ectomycorrhizal fungi species of pine and eucalyptus in Sichuan [J]. Journal of Sichuan Forestry Science and Technology, 2000, 21(3): 65−69.(in Chinese) doi: 10.16779/j.cnki.1003-5508.2000.03.023
    [31] 贺小香, 谭周进, 肖启明, 等. 外生菌根的功能及与环境因子的关系 [J]. 中国生态农业学报, 2007, 15(2):201−204.

    HE X X, TAN Z J, XIAO Q M, et al. A review on the function of ectomycorrhiza and the effects of environmental factors on them [J]. Chinese Journal of Eco-Agriculture, 2007, 15(2): 201−204.(in Chinese)
    [32] 龚珊珊, 廖善刚. 桉树人工林与天然林土壤养分的对比研究 [J]. 江苏林业科技, 2009, 36(3):1−4. doi: 10.3969/j.issn.1001-7380.2009.03.001

    GONG S S, LIAO S G. Soil nutrient characteristics in eucalypt plantation and natural forest [J]. Journal of Jiangsu Forestry Science & Technology, 2009, 36(3): 1−4.(in Chinese) doi: 10.3969/j.issn.1001-7380.2009.03.001
    [33] 祁雪连, 葛晓敏, 钱壮壮, 等. 武夷山天然针阔混交林与毛竹人工林土壤性质差异 [J]. 生态环境学报, 2021, 30(8):1599−1606. doi: 10.16258/j.cnki.1674-5906.2021.08.006

    QI X L, GE X M, QIAN Z Z, et al. Differences of soil properties between natural mixed coniferous and broad-leaved forest and moso bamboo plantation in Wuyi Mountains [J]. Ecology and Environmental Sciences, 2021, 30(8): 1599−1606.(in Chinese) doi: 10.16258/j.cnki.1674-5906.2021.08.006
    [34] SATAPUTE P, KAMBLE M V, ADHIKARI S S, et al. Influence of triazole pesticides on tillage soil microbial populations and metabolic changes[J]. The Science of the Total Environment, 2019, 651(Pt 2): 2334-2344.
    [35] 刘建明, 温爱亭, 姚颖, 等. 榛子天然林、榛子人工林及农田土壤理化性质分析研究 [J]. 森林工程, 2019, 35(6):26−30. doi: 10.3969/j.issn.1006-8023.2019.06.004

    LIU J M, WEN A T, YAO Y, et al. Research on Soil Physical and Chemical Properties in Farmland, Natural Corylus Forest and Plantation Forest [J]. Forest Engineering, 2019, 35(6): 26−30.(in Chinese) doi: 10.3969/j.issn.1006-8023.2019.06.004
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  463
  • HTML全文浏览量:  255
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-20
  • 修回日期:  2022-12-12
  • 网络出版日期:  2023-03-28
  • 刊出日期:  2023-03-28

目录

    /

    返回文章
    返回