Organic Matter Content and Its Grey Prediction in Latosolic Red Soil Affected by Long-Term Fertilization
-
摘要:
目的 阐明长期不同施肥处理对赤红壤旱地土壤有机质(SOM)含量的影响,为区域土壤培肥和高产稳产提供最佳养分管理依据。 方法 根据闽东南旱地花生-甘薯轮作制赤红壤连续16年化肥定位试验和14年化肥配施有机肥定位试验的历年SOM含量监测结果,探讨长期施肥下SOM含量动态变化,构建SOM灰色预测模型。 结果 与不施肥相比,施肥均能提高土壤SOM含量;化肥推荐施肥模式的SOM含量为(19.83±0.77)g·kg−1,显著高于其他化肥处理;化肥配施有机肥可进一步提高SOM含量,尤其是配施农家腐熟猪粪的SOM达到(22.53±1.69) g·kg−1,年递增速率是化肥推荐施肥的2.8倍。SOM灰色预测模型显示,不同施肥模式的拟合误差在1.226%~3.307%。不施肥模式的SOM含量变化趋势仍然处于下降状态;化肥推荐施肥模式的SOM趋势值为(20.220±0.002)g·kg−1,在该试验点中排序第一;化肥配施有机肥均提高了SOM长期趋势值,尤其是配施农家腐熟猪粪的SOM趋势值达到(23.777±0.017)g·kg−1,排序位居第一,显著高于该试验点的化肥推荐施肥模式。 结论 从SOM含量和未来含量趋势综合评价,化肥推荐施肥有利于提高赤红壤旱地SOM含量,在推荐施肥基础上配施有机肥尤其是配施农家腐熟猪粪的效果更佳。 Abstract:Objective Organic matter contents in the latosolic red soils under various long-term fertilization practices were measured to analyze the effects and to establish a prediction model for efficient management. Method Two long-term experiments were conducted on separate uplands in Fujian of peanut-sweet potato rotating cultivation fields with latosolic red soil. The designated lots were under either a continuous application of different chemical fertilizers for 16 years or of chemical/organic fertilizations for 14 years. Content of soil organic matters (SOM) was monitored, and a grey prediction model constructed based on the collected data. Result The fertilizations boosted SOM content in the soils in comparison to the lot without fertilizer application. The use of the Recommended Fertilizer (RF) increased the average SOM to (19.83±0.77) g·kg−1, which was significantly higher than the applications of other chemical fertilizers. The content further increased to (22.53±1.69) g·kg−1, i.e., 2.8 times of RF treatment on an annual basis, when the chemical/organic manure combination (RF+OM), especially the decomposed pig manure (RF+PM), was applied. The grey prediction model on SOM yielded fitting errors ranging from 1.226% to 3.307% for all fertilizations. While the predicted result of the non-fertilization was on a continuously downward trend, and the RF treatment increased to (20.220±0.002) g·kg−1, which was superior to all other fertilizations using chemicals. More important, the long-term SOM would be on a increasing trend under chemical/organic fertilization, especially RF+PM that ranked the top among all treatments reaching the significantly higher level than RF at (23.777±0.017) g·kg−1. Conclusion Based on the past records and the predicted trend on SOM, RF undoubtedly improved the fertility of the latosolic red soil. However, RF+OM, especially RF+PM, would bring even more impressive results, and thus deserved serious consideration for the agricultural practice in the area. -
Key words:
- Latosolic red soil /
- long-term fertilization /
- soil organic matter /
- evolution /
- grey prediction model
-
表 1 花生-甘薯轮作制长期定位试验设计方案
Table 1. Long-term fertilizeration experiment on fields of peanut-sweet potato rotating cultivation
试验点
Sites处理
Treatments花生施肥量
Fertilizer application rate on peanut/(kg·hm−2)甘薯施肥量
Fertilizer application rate on sweet potato/(kg·hm−2)N P2O5 K2O 有机肥
ManureN P2O5 K2O 有机肥
Manure化肥
Chemical fertilizer对照 CK 0 0 0 — 0 0 0 — 习惯施肥 FP 90 45 75 — 225 45 150 — 推荐施肥 RF 75 60 90 — 180 45 225 — 推荐施肥减氮 RF-N 0 60 90 — 0 45 225 — 推荐施肥减磷 RF-P 75 0 90 — 180 0 225 — 推荐施肥减钾 RF-K 75 60 0 — 180 45 0 — 化肥配施有机肥
Chemical and organic fertilizer对照 CK 0 0 0 0 0 0 0 0 推荐施肥 RF 75 60 90 0 180 60 225 0 推荐施肥+有机肥 RF+CM 50 40 60 1995 120 40 150 4140 推荐施肥+猪粪 RF+PM 50 50 71 6585 120 35 177 15795 推荐施肥+稻草 RF+S 50 57 38 2745 120 51 101 6600 表 2 不同年限轮作体系中各施肥模式的土壤有机质含量
Table 2. SOM in soil of designed long-term experiment with varied fertilizations
试验点
Site处理
Treatment不同年限的土壤有机质含量
SOM content over experimental years/(g∙kg−1)平均
Average/(g∙kg−1)年均递增
Average annual increment/(g∙kg−1)1~5年 6~10年 11~16年* 化肥
Chemical fertilizerCK 17.41±0.60 c 17.45±0.36 d 16.05±0.43 e 16.91±0.76 e −0.056 FP 18.60±0.60 b 19.32±0.65 b 19.65±0.48 b 19.22±0.64 b 0.089 RF 19.11±0.72 a 19.98±0.76 a 20.31±0.93 a 19.83±0.77 a 0.127 RF-N 18.13±0.46 b 18.28±0.52 c 17.80±0.74 d 18.04±0.56 d 0.015 RF-P 18.50±0.54 b 18.83±0.80 b 18.46±0.83 c 18.54±0.61 c 0.046 RF-K 18.33±0.46 b 19.02±0.56 b 18.56±0.58 c 18.59±0.76 c 0.049 化肥配施有机肥
Chemical and organic fertilizerCK 17.31±0.58 c 17.50±0.99 d 15.96±0.78 c 16.99±0.91 e −0.009 RF 18.23±0.64 b 18.84±0.63 c 20.32±1.06 b 19.04±1.09 d 0.137 RF+CM 18.08±0.94 bc 20.89±0.95 b 21.11±0.96 b 19.95±1.63 c 0.202 RF+PG 20.74±1.58 a 23.29±1.02 a 23.81±0.96 a 22.53±1.69 a 0.386 RF+S 18.89±1.20 b 22.57±0.86 a 22.79±0.61 a 21.32±1.03 b 0.300 *化肥配施有机肥定位试验的第3个时间段年限是第11~14年;年均递增率= (SOM均值–基础土壤SOM) /试验年限。
*: 3rd period chemical/organic fertilization from year 11 to year 14; average annual increase rate = (mean SOM – basic SOM in soil)/test duration, year.表 3 长期化肥不同施肥模式下土壤有机质动态的TPGM(1,1)模型拟合参数及其预测结果
Table 3. Fitting parameters and predicted values by TPGM (1,1) model for SOM under long-term chemical fertilizations
处理
TreatmentsTPGM(1,1)模型参数
TPGM(1,1) model parameters模拟误差
Fitting error/%未来5年预测值
Predicted value in the
next 5 years/(g·kg−1)预测值排序
Predicted
value sortingφ1 φ2 φ3 CK 1.093 −1.708 19.499 2.180 15.020±0.567 6 FP 0.736 5.166 12.312 1.669 19.590±0.005 2 RF 0.665 6.773 10.487 1.826 20.220±0.002 1 RF-N 0.616 6.974 11.151 2.112 18.178±0.000 5 RF-P 0.595 7.580 10.371 2.274 18.723±0.000 4 RF-K 0.546 8.528 9.032 1.226 18.783±0.000 3 表 4 长期化肥配施不同有机肥模式的土壤有机质动态TPGM(1,1)模型拟合参数及其预测结果
Table 4. Fitting parameters and predicted values by TPGM (1,1) model for SOM under long-term chemical/organic fertilizations
处理
TreatmentTPGM(1,1)模型参数
TPGM(1,1) model parameters模拟误差
Fitting error/%未来5年预测值
Predicted value in the
next 5 year/(g·kg−1)预测值排序
Predicted
value Sortingφ1 φ2 φ3 CK 1.017 −0.417 18.383 3.307 15.864±0.197 5 RF 0.979 0.597 16.802 2.526 20.593±0.225 4 RF+CM 0.834 3.652 12.390 2.915 21.634±0.088 3 RF+PG 0.708 6.963 9.499 1.391 23.777±0.017 1 RF+S 0.785 5.031 10.506 2.412 23.223±0.063 2 -
[1] SCHMIDT M W I, TORN M S, ABIVEN S, et al. Persistence of soil organic matter as an ecosystem property [J]. Nature, 2011, 478(7367): 49−56. doi: 10.1038/nature10386 [2] LAL R. Soil carbon sequestration impacts on global climate change and food security [J]. Science, 2004, 304(5677): 1623−1627. doi: 10.1126/science.1097396 [3] LU F, WANG X K, HAN B, et al. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China’s cropland [J]. Global Change Biology, 2009, 15(2): 281−305. doi: 10.1111/j.1365-2486.2008.01743.x [4] 蔡岸冬, 张文菊, 杨品品, 等. 基于Meta-Analysis研究施肥对中国农田土壤有机碳及其组分的影响 [J]. 中国农业科学, 2015, 48(15):2995−3004. doi: 10.3864/j.issn.0578-1752.2015.15.009CAI A D, ZHANG W J, YANG P P, et al. Effect degree of fertilization practices on soil organic carbon and fraction of croplands in China—Based on meta-analysis [J]. Scientia Agricultura Sinica, 2015, 48(15): 2995−3004.(in Chinese) doi: 10.3864/j.issn.0578-1752.2015.15.009 [5] ZHANG W J, WANG X J, XU M G, et al. Soil organic carbon dynamics under long-term fertilizations in arable land of Northern China [J]. Biogeosciences, 2010, 7(2): 409−425. doi: 10.5194/bg-7-409-2010 [6] HUANG S, PENG X X, HUANG Q R, et al. Soil aggregation and organic carbon fractions affected by long-term fertilization in a red soil of subtropical China [J]. Geoderma, 2010, 154(3/4): 364−369. [7] 孟磊, 丁维新, 蔡祖聪, 等. 长期定量施肥对土壤有机碳储量和土壤呼吸影响 [J]. 地球科学进展, 2005, 20(6):687−692. doi: 10.3321/j.issn:1001-8166.2005.06.013MENG L, DING W X, CAI Z C, et al. Storage of soil organic c and soil respiration as effected by long-term quantitative fertilization [J]. Advance in Earth Sciences, 2005, 20(6): 687−692.(in Chinese) doi: 10.3321/j.issn:1001-8166.2005.06.013 [8] 王晓娇, 齐鹏, 蔡立群, 等. 培肥措施对旱地农田产量可持续性及土壤有机碳库稳定性的影响 [J]. 草业学报, 2020, 29(10):58−69. doi: 10.11686/cyxb2020187WANG X J, QI P, CAI L Q, et al. Effects of alternative fertilization practices on components of the soil organic carbon pool and yield stability in rain-fed maize production on the Loess Plateau [J]. Acta Prataculturae Sinica, 2020, 29(10): 58−69.(in Chinese) doi: 10.11686/cyxb2020187 [9] BAJGAI Y, KRISTIANSEN P, HULUGALLE N, et al. Changes in soil carbon fractions due to incorporating corn residues in organic and conventional vegetable farming systems [J]. Soil Research, 2014, 52(3): 244. doi: 10.1071/SR13295 [10] 兰延, 黄国勤, 杨滨娟, 等. 稻田绿肥轮作提高土壤养分增加有机碳库 [J]. 农业工程学报, 2014, 30(13):146−152. doi: 10.3969/j.issn.1002-6819.2014.13.018LAN Y, HUANG G Q, YANG B J, et al. Effect of green manure rotation on soil fertility and organic carbon pool [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(13): 146−152.(in Chinese) doi: 10.3969/j.issn.1002-6819.2014.13.018 [11] 田康, 赵永存, 邢喆, 等. 中国保护性耕作农田土壤有机碳变化速率研究: 基于长期试验点的Meta分析 [J]. 土壤学报, 2013, 50(3):433−440.TIAN K, ZHAO Y C, XING Z, et al. A meta-analysis of long-term experiment data for characterizing the topsoil organic carbon changes under different conservation tillage in cropland of China [J]. Acta Pedologica Sinica, 2013, 50(3): 433−440.(in Chinese) [12] 金琳, 李玉娥, 高清竹, 等. 中国农田管理土壤碳汇估算 [J]. 中国农业科学, 2008, 41(3):734−743. doi: 10.3864/j.issn.0578-1752.2008.03.014JIN L, LI Y E, GAO Q Z, et al. Estimate of carbon sequestration under cropland management in China [J]. Scientia Agricultura Sinica, 2008, 41(3): 734−743.(in Chinese) doi: 10.3864/j.issn.0578-1752.2008.03.014 [13] RUI W Y, ZHANG W J. Effect size and duration of recommended management practices on carbon sequestration in paddy field in Yangtze Delta Plain of China: A meta-analysis [J]. Agriculture, Ecosystems & Environment, 2010, 135(3): 199−205. [14] 章明清, 林琼, 杨杰, 等. 花生-甘薯轮作制中磷钾肥施肥模型研究 [J]. 土壤通报, 2004, 35(6):758−762. doi: 10.3321/j.issn:0564-3945.2004.06.019ZHANG M Q, LIN Q, YANG J, et al. Phosphate and potassium fertilizer application model in peanut and sweet potato rotation [J]. Chinese Journal of Soil Science, 2004, 35(6): 758−762.(in Chinese) doi: 10.3321/j.issn:0564-3945.2004.06.019 [15] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 146-196. [16] 董春华, 曾闹华, 高菊生, 等. 长期不同施肥模式下红壤性稻田水稻产量及有机碳含量变化特征 [J]. 中国水稻科学, 2014, 28(2):193−198. doi: 10.3969/j.issn.1001-7216.2014.02.011DONG C H, ZENG N H, GAO J S, et al. Effects of different fertilization models on rice yield and soil organic carbon content in a long period in red soil paddy field [J]. Chinese Journal of Rice Science, 2014, 28(2): 193−198.(in Chinese) doi: 10.3969/j.issn.1001-7216.2014.02.011 [17] 廖育林, 郑圣先, 聂军, 等. 长期施用化肥和稻草对红壤水稻土肥力和生产力持续性的影响 [J]. 中国农业科学, 2009, 42(10):3541−3550. doi: 10.3864/j.issn.0578-1752.2009.10.0020LIAO Y L, ZHENG S X, NIE J, et al. Effects of long-term application of fertilizer and rice straw on soil fertility and sustainability of a reddish paddy soil productivity [J]. Scientia Agricultura Sinica, 2009, 42(10): 3541−3550.(in Chinese) doi: 10.3864/j.issn.0578-1752.2009.10.0020 [18] 高伟, 杨军, 任顺荣. 长期不同施肥模式下华北旱作潮土有机碳的平衡特征 [J]. 植物营养与肥料学报, 2015, 21(6):1465−1472. doi: 10.11674/zwyf.2015.0611GAO W, YANG J, REN S R. Balance characteristics of soil organic carbon under different long-term fertilization models in the upland fluvo-aquic soil of North China [J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(6): 1465−1472.(in Chinese) doi: 10.11674/zwyf.2015.0611 [19] 曾波, 尹小勇, 孟伟. 实用灰色预测建模方法及其MATLAB程序实现[M]. 北京: 科学出版社, 2018. [20] 刘思峰, 杨英杰, 吴利丰, 等. 灰色系统理论及其应用[M]. 第7版. 北京: 科学出版社, 2014. [21] 李娟, 张立成, 章明清, 等. 长期不同施肥模式下赤红壤旱地花生–甘薯轮作体系产量稳定性研究 [J]. 植物营养与肥料学报, 2021, 27(2):179−190. doi: 10.11674/zwyf.20285LI J, ZHANG L C, ZHANG M Q, et al. Yield stability in peanut-sweet potato rotation system under long-term combined application of chemical and organic fertilizers in latosolic red soil [J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(2): 179−190.(in Chinese) doi: 10.11674/zwyf.20285 [22] 王成己, 潘根兴, 田有国. 保护性耕作下农田表土有机碳含量变化特征分析: 基于中国农业生态系统长期试验资料 [J]. 农业环境科学学报, 2009, 28(12):2464−2475. doi: 10.3321/j.issn:1672-2043.2009.12.005WANG C J, PAN G X, TIAN Y G. Characteristics of cropland topsoil organic carbon dynamics under different conservation tillage treatments based on long-term agro-ecosystem experiments across China’s mainland [J]. Journal of Agro-Environment Science, 2009, 28(12): 2464−2475.(in Chinese) doi: 10.3321/j.issn:1672-2043.2009.12.005 [23] 许国根, 贾瑛, 黄智勇, 等. 预测理论与方法及其MATLAB实现[M]. 北京: 北京航空航天大学出版社, 2020: 186-210. [24] 张维理, KOLBE H, 张认连. 土壤有机碳作用及转化机制研究进展 [J]. 中国农业科学, 2020, 53(2):317−331. doi: 10.3864/j.issn.0578-1752.2020.02.007ZHANG W L, KOLBE H, ZHANG R L. Research progress of SOC functions and transformation mechanisms [J]. Scientia Agricultura Sinica, 2020, 53(2): 317−331.(in Chinese) doi: 10.3864/j.issn.0578-1752.2020.02.007