Efficacy of Vomitoxin as Elicitor for Controlling Soilborne Diseases on Potato Plants
-
摘要:
目的 验证脱氧雪腐镰刀菌烯醇(DON)的安全性,探讨DON作为激发子在马铃薯主要土传病害防治中的应用效果。 方法 以大西洋品种马铃薯为研究对象,筛选DON作为激发子诱导抗病的最适质量浓度以及最佳处理时间,优化DON诱导马铃薯抗病的条件,检测生理指标的变化。 结果 结果显示低质量浓度下DON处理对马铃薯植株均无显著药害;5 ng·mL−1 DON处理4 h可以有效抑制青枯病致病菌茄科雷尔氏菌、软腐病致病菌菊欧氏菌、疮痂病致病菌疮痂链霉菌在马铃薯叶片中的扩展,3 ng·mL−1 DON处理4 h可以有效抑制干腐病致病菌接骨木镰刀菌在马铃薯叶片组织中的扩展;当温度为25 ℃、pH为7时DON诱导马铃薯抗青枯病、干腐病、软腐病效果最好,温度为25 ℃、pH为9时DON诱导马铃薯抗疮痂病效果最好;经DON诱导处理的马铃薯叶片在光照强度为12 000 lx条件下诱导抗干腐病效果最好,在光照强度为15 000 lx条件下诱导抗青枯病、软腐病、疮痂病效果最好;DON处理马铃薯叶片后,提高了SOD酶活性,同时,木质素含量增加,MDA含量减少。 结论 低质量浓度的DON作为激发子处理马铃薯叶片后对马铃薯无显著药害,在马铃薯主要土传病害防治中的应用效果较显著,可为马铃薯土传病害的预防和治理提供理论依据和新的思路。 Abstract:Objective Safety and efficacy of applying vomitoxin to control soilborne diseases on potato plants were investigated. Method In a laboratory experiment, vomitoxin (aka deoxynivalenol, DON) was applied on the Atlantic variety potato to determine the disease resistance to and physiological alternations induced by some major soilborne pathogens on the plant for treatment optimization. Result Within a range of concentrations, DON caused no significant ill-effects on the potato plants. A treatment of it at 5 ng·mL−1 for 4 h effectively inhibited the spread of bacterial wilt caused by Ralstonia solanacearum, soft rots by Erwinia chrysanthemi, or scabies by Streptomyces scabies on the leaves, and at a dosage of 3 ng·mL−1, the growth of dry rot pathogen Fusarium sambucinum was retarded. The strongest DON-induced resistance against the bacterial wilt or dry and soft rots of the plant was found at 25 ℃ and pH 7, and against scabies at pH 9. With an exposure of 12 000 lx light, the DON-induction on the plants reached the greatest efficacy against the dry rots. Whereas, under 15 000 lx, that could be achieved on the bacterial wilt, soft rots, and scabies. A DON treatment significantly raised the SOD activity and lignin content but lowered MDA in the leaves. Conclusion Application of DON as an elicitor in low concentrations exerted no adverse effect but significantly inhibit some major soilborne diseases on potato plants. A potential venue for preventing and treating the diseases seemed merit further investigation. -
Key words:
- DON /
- elicitor /
- soilborne diseases /
- optimization /
- physiological indices
-
图 1 不同质量浓度DON对马铃薯叶片接种致病菌病斑直径的影响
①图中字母A–D分别表示:茄科雷尔氏菌、接骨木镰刀菌、菊欧氏菌、疮痂链霉菌。图2~5同。②不同小写字母表示差异显著(P<0.05)。图2~5同。
Figure 1. Effect of DON in varied concentrations on diameter of diseased spot on infected potato leaves
① A–D: R. solanacearum, F. sambucinum, E. chrysanthemi, and S. scabiesscab. Same for Fig.2–5. ② Data with different lowercase letters indicate significant differences (P<0.05). Same for Fig.2–5.
表 1 试验仪器与试剂
Table 1. Instruments and reagents applied for experiment
序号
Serial
number名称
Name型号
Model
number公司
Company1 电子天平 ML204 梅特勒-托利多仪器有限公司 2 高压灭菌锅 QC-SOE 山东新华医疗器械股份有限公司 3 摇床 SPH-211B-GZ 上海世单实验设备有限公司 4 高速台式离心机 TCL-16 上海子期实验设备有限 公司 5 光照培养箱 BSG-400 上海博迅医疗生物仪器公司 6 电热恒温培养箱 DRP-9162 上海森信实验仪器有限公司 7 4 ℃离心机 MIkro-220R 德祥科技有限公司 8 −80 ℃冰箱 U410-86 济南光耀医疗设备有限公司 9 pH计 PHS-3C 上海高致精密仪器公司 10 −20 ℃冰箱 BCD-116 广州金松电器营销有限公司 11 酶标仪 上海科华实验系统有限公司 12 丙二醛测定试剂盒 南京建成生物工程研究所 13 SOD活性检测试剂盒 索莱宝生物科技有限公司 14 木质素含量检测试剂盒 索莱宝生物科技有限公司 表 2 DON处理对马铃薯生长的影响
Table 2. Effect of DON treatment on potato growth
处理
Treatments平均株高
Average plant height /cm生长速率
Growth rate/(cm·d−1)变色率
Discoloration rate/%坏死率
Necrosis rate/%处理7 d后
7 d after treatment处理14 d后
14 d after treatmentCK 24.53 0.88±0.36 a 0.65±0.47 a — — 5 ng·mL−1DON 25.06 0.93±0.48 a 0.62±0.45 a 0 0 10 ng·mL−1DON 26.05 0.92±0.42 a 0.64±0.40 a 0 0 15 ng·mL−1DON 23.12 0.87±0.42 a 0.66±0.43 a 0 0 20 ng·mL−1DON 27.80 0.92±0.38 a 0.64±0.41 a 0 0 ①“—”为对照组的变色率、坏死率,无数据。②同列数据后不同小写字母表示差异显著 (P<0.05)。
①"—" refers to discoloration and necrosis rates of control, no data available.②Data with different lowercase letters on the same column indicate significant differences (P<0.05).表 3 DON处理马铃薯叶片SOD酶活性的变化
Table 3. SOD activity in potato leaves treated by DON
(U·g−1) 处理
Treatment时间 Time/h 0 6 12 24 48 CK 97.89±7.53 de 106.73±15.30 e 111.04±10.16 f 122.00±13.11 d 116.44±6.5 c DON 93.06±5.15 e 130.12±10.00 bcd 146.74±5.84 bcd 167.08±5.06 ab 144.79±12.37 b RS 94.40±13.02 e 112.79±6.30 de 122.03±13.74 ef 130.00±10.00 cd 134.66±5.03 b RS+DON 138.52±13.69 ab 149.44±12.74 ab 164.21±11.99 ab 155±15.00 ab 136.79±7.01 b F. Samb 112.96±6.12 cd 113.85±5.38 de 116.53±18.11 ef 129.35±10.06 cd 135.16±5.01 b F. Samb+DON 122.26±5.16 bc 140.82±8.80 abc 151.23±9.18 abc 159.67±8.96 ab 165.57±6.08 a ECH 102.63±5.54 de 123.13±11.37 cde 136.03±15.51 cde 149.11±12.49 bc 135.54±5.09 b ECH+DON 140.3±13.06 a 138.83±7.82 abc 165.41±15.02 ab 173.74±6.48 a 136.79±7.01 b SS 99.30±9.51 de 129.21±7.89 cd 127.03±15.41 def 128.11±10.12 d 110.06±12.67 c SS+DON 135.8±17.13 ab 154.22±20.00 a 170.52±7.62 a 161.03±20.00 ab 134.26±10.01 b ①表中CK、DON分别表示:无菌水、5 ng·mL−1 DON,下同。②RS、F. Samb、ECH、SS分别表示:茄科雷尔氏菌、接骨木镰刀菌、菊欧氏菌、疮痂链霉菌,下同。③RS+DON、F. Samb+DON、ECH+DON、SS+DON分别表示:接菌并施加DON处理,下同。④不同小写字母表示差异显著(P<0.05),下同。
① CK、DON: Sterile water, 5 ng·mL−1 DON, same for below. ② RS、F. Samb、ECH、SS: R. solanacearum, F. sambucinum, E. chrysanthemi, S. scabies, same for below. ③ RS+DON、F. Samb+DON、ECH+DON、SS+DON: Inoculate and apply DON, same for below. ④ Data with different lowercase letters indicate significant differences (P<0.05), same for below.表 4 DON处理马铃薯叶片MDA含量的变化
Table 4. MDA content in potato leaves treated by DON
(nmol·mg−1) 处理
Treatment时间 Time/h 0 6 12 24 48 CK 1.24±0.05 a 1.31±0.17 a 1.28±0.06 a 1.36±0.14 a 1.15±0.14 a DON 1.18±0.20 ab 1.12±0.14 ab 1.09±0.07 ab 1.00±0.12 bc 0.97±0.04 ab RS 1.25±0.11 a 1.04±0.13 bc 0.83±0.05 c 1.07±0.16 b 0.99±0.01 ab RS+DON 0.91±0.17 cd 0.84±0.18 cd 0.94±0.20 bc 0.81±0.14 c 0.80±0.16 bc F. Samb 1.11±0.22 abc 1.04±0.13 bc 1.25±0.11 a 0.91±0.10 bc 0.94±0.22 abc F. Samb+DON 0.83±0.09 d 0.73±0.10 d 0.94±0.20 bc 0.77±0.10 c 0.67±0.12 c ECH 1.18±0.09 ab 1.04±0.12 bc 0.92±0.06 bc 1.08±0.18 b 1.01±0.20 ab ECH+DON 0.92±0.17 bcd 0.85±0.17 cd 0.79±0.17 c 0.88±0.10 bc 0.88±0.15 abc SS 1.22±0.15 a 0.90±0.04 bcd 1.24±0.14 a 1.00±0.10 bc 1.08±0.10 ab DON+SS 0.90±0.04 cd 0.81±0.17 cd 0.94±0.20 bc 0.87±0.10 bc 0.80±0.16 bc 表 5 DON处理马铃薯叶片木质素含量的变化
Table 5. Lignin content in potato leaves treated by DON
(mg·g−1) 处理
Treatment时间 Time/h 0 6 12 24 48 CK 0.58±0.06 c 0.59±0.08 d 0.65±0.05 c 0.67±0.08 d 0.73±0.04 c DON 0.64±0.11 bc 0.74±0.06 bc 0.90±0.04 ab 0.92±0.07 bc 0.89±0.07 b RS 0.69±0.05 bc 0.75±0.09 bc 0.81±0.12 bc 0.89±0.12 c 0.89±0.09 b RS+DON 0.91±0.06 a 0.99±0.05 a 1.05±0.08 a 1.10±0.08 a 1.12±0.11 a F. Samb 0.69±0.08 bc 0.77±0.08 bc 0.82±0.15 bc 0.85±0.06 c 0.88±0.10 b F. Samb+DON 0.91±0.08 a 1.00±0.10 a 1.07±0.14 a 1.11±0.12 a 1.15±0.11 a ECH 0.65±0.12 bc 0.69±0.05 cd 0.80±0.12 bc 0.77±0.17 cd 0.83±0.10 bc ECH+DON 0.91±0.10 a 1.02±0.03 a 1.07±0.12 a 1.14±0.09 a 1.12±0.08 a SS 0.71±0.06 b 0.82±0.07 b 0.80±0.19 bc 0.78±0.10 cd 0.74±0.06 c SS+DON 1.01±0.03 a 1.04±0.07 a 1.07±0.12 a 1.08±0.03 ab 1.10±0.08 a -
[1] 韩晓. 浅析马铃薯主粮产业化发展现状—基于希森马铃薯产业集团的调研 [J]. 农村农业农民, 2021(10):54−55.HAN X. Brief analysis on the status quo of potato staple grain industrialization —based on the investigation of Xisen Potato Industry Group [J]. Country Agriculture Farmers, 2021(10): 54−55.(in Chinese) [2] DEVAUX A, GOFFART J P, KROMANN P, et al. The Potato of the Future: Opportunities and Challenges in Sustainable Agri-food Systems [J]. Potato research, 2021, 64(4): 681−720. doi: 10.1007/s11540-021-09501-4 [3] 王素华, 李树举, 杨丹, 等. 中国马铃薯产业的发展现状及方向[C]. 2019年中国马铃薯大会, 2019: 44-50. [4] 贺加永. 中国马铃薯产业发展现状及建议 [J]. 农业展望, 2020, 16(9):34−39.HE J Y. Status quo and suggestions of China’s potato industry development [J]. Agricultural Outlook, 2020, 16(9): 34−39.(in Chinese) [5] 病虫害防治处. 2020年马铃薯重大病虫害防控技术方案[EB/OL]. (2020-04-03)[2020-04-10]. http://www.nzdb.com.cn/nj/20200403/266424.html. [6] 冷功业, 杨建利, 邢娇阳, 等. 我国农业高质量发展的机遇、问题及对策研究 [J]. 中国农业资源与区划, 2021, 42(5):1−11.LENG G Y, YANG J L, XING J Y, et al. The research on the opportunities, problems and solutions for the high qualityagricultural development in China [J]. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 42(5): 1−11.(in Chinese) [7] 潘哲超, 陈建斌, 范静华, 等. 稻瘟菌粗毒素对水稻防御性相关酶系的诱导 [J]. 云南农业大学学报, 2008, 23(2):162−166.PAN Z C, CHEN J B, FAN J H, et al. Activities of defense-related enzymes induced by grude toxin from Magnaporthe grisea [J]. Journal of Yunnan Agricultural University, 2008, 23(2): 162−166.(in Chinese) [8] 马春红, 翟彩霞, 商闯, 等. 低浓度玉米小斑病菌T小种和C小种毒素培养滤液对玉米C103叶片过氧化物酶活性的诱导作用[C]. 中国植物病理学会2008年学术年会论文集, 2008: 504-508. [9] BAJESTANI B, BASTAION V. Study on differentialy lipase gene expression against different inducers of defense resonse in scab-resisitant and susceptible wheat cultivars [J]. RecAdv Agric, 2010(1): 6−14. [10] NISHIUCHI T, MASUDA D, NAKASHITA H, et al. Fusarium phytotoxin trichothecenes have an elicitor-like activity in Arabidopsis thaliana, but the activity differed significantly among their molecular species [J]. Molecular Plant Microbe Interactions, 2006, 19(5): 512−520. doi: 10.1094/MPMI-19-0512 [11] 赵莹, 薛华丽, 毕阳, 等. 低质量浓度T-2处理对马铃薯块茎苯丙烷代谢活性的诱导 [J]. 食品科学, 2015, 36(6):232−235.ZHAO Y, XUE H L, BI Y, et al. T-2 toxin at low concentration activates phenylpropanoid pathway in potato tubers [J]. Food Science, 2015, 36(6): 232−235.(in Chinese) [12] 赵潇璨, 徐永清, 贺付蒙, 等. 低浓度呕吐毒素作为激发子对马铃薯抗干腐病的诱导及其作用机制 [J]. 作物学报, 2020, 46(11):1801−1809.ZHAO X C, XU Y Q, HE F M, et al. Low concentration of vomitoxin as elicitor induced resistance of dry rot disease of potato and its mechanism [J]. Acta Agronomica Sinica, 2020, 46(11): 1801−1809.(in Chinese) [13] 贺付蒙, 单玮玉, 赵潇璨, 等. T-2毒素在马铃薯品种对镰刀菌干腐病抗性评价中的应用 [J]. 西北农业学报, 2021, 30(3):445−451.HE F M, SHAN W Y, ZHAO X C, et al. Application of T-2 toxin in evaluation of potato varieties resistance to Fusarium dry rot [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2021, 30(3): 445−451.(in Chinese) [14] 阮双, 司红起. 小麦DON毒素研究进展 [J]. 生物技术进展, 2021, 11(5):634−641.RUAN S, SI H Q. Research progress on DON toxin in wheat [J]. Current Biotechnology, 2021, 11(5): 634−641.(in Chinese) [15] 吴琼. 深绿木霉T2蛋白TraT2A诱导抗病活性及其机理研究[D]. 兰州: 甘肃农业大学, 2019.WU Q. Study on induced disease resistance activity and mechanism of T2 protein TraT2A from Trichoderma viride[D]. Lanzhou: Gansu Agricultural University, 2019. (in Chinese) [16] ANTERPREET K, SATVIR K G. Induced defense dynamics inplant parts is requisite for resistance to Helicoverpa armigera (Hubner) infestation in chickpea[J] Phytoparasitica, 2017, 45: 559-576. [17] XIAO S, HU Q, SHEN J, et al. GhMYB4 downregulates lignin biosynthesis and enhances cotton resistance to Verticillium dahlia [J]. Plant Cell Rep, 2021, 40(4): 735−751. doi: 10.1007/s00299-021-02672-x [18] KASHYAP A, PLANAS-MARQUÈS M, CAPELLADES M, et al. Blocking intruders: Inducible physico-chemical barriers against plant vascular wilt pathogens [J]. Journal of Experimental Botany, 2021, 72(2): 184−198. doi: 10.1093/jxb/eraa444 [19] 霍宏丽. 硅酸钠提高马铃薯对黑痣病抗性及其生理生化抗病机制[D]. 呼和浩特: 内蒙古农业大学, 2018.HUO H L. Sodium silicate increases the resistance of potato and its physiological and biochemical mechanism on stem canker and black scurf[D]. Hohhot: Inner Mongolia Agricultural University, 2018. (in Chinese) [20] 刘兆明. 诱导马铃薯抗晚疫病复配激发子筛选模型的初步研究[D]. 保定: 河北大学, 2011.LIU Z M. Preliminary study on screening model of compound elicitor for inducing potato resistance to late blight[D]. Baoding: Hebei University, 2011. (in Chinese) [21] 刘惠标, 郑颂, 赵恢发, 等. 比重复式清选机降低小麦呕吐毒素的研究 [J]. 粮油仓储科技通讯, 2019, 35(1):39−41,45.LIU H B, ZHENG S, ZHAO H F, et al. Study on reducing wheat vomiting toxin by compound gravity cleaner [J]. Liangyou Cangchu Keji Tongxun, 2019, 35(1): 39−41,45.(in Chinese)