Genetic Differences and Mycelial Morphology of Lyophyllum decastes Strains
-
摘要:
目的 比较荷叶离褶伞(Lyophyllum decastes,Lyd)外地引进菌株与本地栽培菌株的遗传差异性和菌丝形态特征,为荷叶离褶伞选育提供参考。 方法 以真菌18S rRNA(V4)和ITS(ITS1–ITS4)(18S rRNA-ITS)序列对外地引进和本地栽培的荷叶离褶伞进行序列同源性分析、多重序列比对和构建系统发育进化树,通过分析碱基序列突变和遗传距离远近明确荷叶离褶伞菌株间的亲缘关系,并通过菌丝体生长及形态变化确定荷叶离褶伞的遗传学差异。 结果 18S rRNA-ITS序列比对结果显示,外地荷叶离褶伞菌株(Lyd-LR1、Lyd-LR6、Lyd-LR10、Lyd-LR15和Lyd-LR17)发生较高比例的碱基缺失和碱基替换突变,且ITS序列同源性下降至80.09%~89.72%; Lyd-LR1和Lyd-LR6菌株的碱基突变比例高于Lyd-LR10、Lyd-LR15和Lyd-LR17以及福建本地栽培菌株(Lyd-LRX和Lyd-LRY)。进化树分析结果进一步显示,Lyd-LR1和Lyd-LR6与Lyd-LR10、Lyd-LR15、Lyd-LR17、Lyd-LRX、Lyd-LRY以及NCBI已经登录的部分荷叶离褶伞或离褶伞(Lyophyllum,Ly)菌株有较远的遗传距离和亲缘关系。Lyd-LR1梭子状菌丝生长较慢且不规则生长,菌丝体呈松散放射状;Lyd-LR6凹陷状菌丝生长较快且明显聚合生长,菌丝体呈平铺状且边缘厚度较高。Lyd-LR1和Lyd-LR6菌株的菌丝体生长速度和菌丝形态均不同于Lyd-LR10、Lyd-LR15、Lyd-LR17、Lyd-LRX、Lyd-LRY菌株圆柱形饱满的菌丝和厚度高生长快的突起状菌丝体。而与Lyd-LR1菌株相比,Lyd-LR6菌株的碱基序列突变位置、碱基突变比例和菌丝形态发生的变化更明显。 结论 外地荷叶离褶伞菌株Lyd-LR6的基因序列碱基突变位置(碱基替换和碱基缺失)、18S rRNA-ITS序列同源性和种属亲缘关系明显区别于其他外地及本地的荷叶离褶伞菌株。高比例的基因序列碱基突变造成Lyd-LR6菌株的菌丝体生长速度和菌丝形态发生明显改变,可作为选育荷叶离褶伞新菌株的材料。 -
关键词:
- 荷叶离褶伞 /
- 18S rRNA-ITS /
- 同源性分析 /
- 发育进化树 /
- 菌丝生长
Abstract:Objective Genetic differences and mycelial morphology of imported and locally cultivated Lyophyllum decastes (Lyd) were compared. Methods Sequence homology, multiple sequence alignment, and phylogenetic tree were examined and constructed based on the sequences of the fungal 18S rRNA (V4) and ITS (ITS1-ITS4) (18S rRNA-ITS) of the imported and locally cultivated Lyd strains. Mutation analysis and genetic distance determination were performed to identify the phylogenetic relationship, while mycelium growth and scanning electron microscopic images observed to differentiate the morphology of the strains. Results The 18S rRNA-ITS sequence alignment between the two strains showed the imported Lyd-LR1, Lyd-LR6, Lyd-LR10, Lyd-LR15, and Lyd-LR17 to be higher on the ratio of base deletion and base substitution mutations. The ITS sequence homology between them decreased to 80.09%–89.72% with Lyd-LR1 and Lyd-LR6 being higher than Lyd-LR10, Lyd-LR15, Lyd-LR17 as well as the local Lyd-LRX and Lyd-LRY on the proportions of base mutation. The phylogenetic tree analysis indicated a distant genetic relationship between Lyd-LR1 and Lyd-LR6 and Lyd-LR10, Lyd-LR15, Lyd-LR17, Lyd-LRX, Lyd-LRY, and some Lyd or Lyophyllum (Ly) registered by NCBI. The loose and radial fusiform mycelia of Lyd-LR1 grew slowly and irregularly, whereas the pitted mycelia of Lyd-LR6 tiled with high margin thickness proliferated rapidly and polymerized considerably. The growth rates and morphology of Lyd-LR1 and Lyd-LR6 mycelia differed from those of Lyd-LR10, Lyd-LR15, Lyd-LR17, Lyd-LRX, and Lyd-LRY, which had full cylindrical mycelia and thick and fast-growing protuberant mycelia. Compared to Lyd-LR1, Lyd-LR6 exhibited more apparent changes in gene sequence base mutation location, base mutation proportion, and mycelial morphology. Conclusion The gene sequence base mutation location (base substitution and base deletion), 18S rRNA-ITS sequence homology, and phylogenetic relationship of Lyd-LR6 significantly differed from those of the other imported and the locally cultivated Lyd strains. A high proportion of gene sequence base mutations induced significant changes in the growth and morphology of Lyd-LR6 mycelia indicating a potential use of it in breeding new varieties of Lyd mushrooms. -
Key words:
- Lyophyllum decastes /
- 18S rRNA-ITS /
- homology analysis /
- phylogenetic tree /
- mycelial growth
-
表 1 荷叶离褶伞菌株的18S rRNA(V4)序列同源性分析
Table 1. Homology of 18S rRNA (V4) sequences in Lyd strains
(单位:%) 菌株 Strain Lyd-LR1 Lyd-LR6 Lyd-LR10 Lyd-LR15 Lyd-LR17 Lyd-LRX Lyd-LRY Lyd-PBM3069 98.45 98.22 98.88 99.11 98.48 98.66 98.21 Lyd-JM87/16 98.23 97.55 98.66 98.44 97.83 97.99 97.54 Ly-shimeji(D84555.1) 97.96 97.90 98.59 98.83 97.95 98.13 97.90 Ly-sp. MSG166 96.69 96.44 97.10 97.32 96.96 96.88 96.64 Ly-sp. PBM 2688 96.47 96.21 96.88 97.10 96.75 96.65 96.42 Ly-praslinense 10295 94.92 94.65 95.31 95.54 95.23 95.09 94.85 Ly-leucophaeatum HAe251 94.48 94.21 94.87 95.09 94.79 94.64 94.41 Ly-shimeji(D84553.1) 100.00 93.44 98.36 98.36 100.00 95.08 93.22 表 2 荷叶离褶伞菌株的ITS(ITS1–ITS4)序列同源性分析
Table 2. Homology of ITS (ITS1–ITS4) sequences in Lyd strains
(单位:%) 菌株
StrainLyd-LR1 Lyd-LR6 Lyd-LR10 Lyd-LR15 Lyd-LR17 Lyd-LRX Lyd-LRY Lyd-dcy2255 89.72 83.52 90.33 84.64 89.38 86.52 82.92 Lyd-ywy1 89.42 82.76 90.05 84.33 89.06 86.06 82.49 Lyd-Ld418 89.27 82.92 89.94 84.45 89.24 85.67 82.58 Lyd-060926 89.30 82.82 90.08 84.07 88.79 85.80 82.24 Lyd-060801 89.15 82.66 89.94 83.94 88.61 85.91 82.06 Lyd-061011 88.98 82.35 89.77 83.33 88.02 85.76 81.65 Lyd-iNAT 88.34 82.37 88.99 83.26 87.95 85.23 81.26 Lyd-22/14DMRJU 88.69 81.74 88.98 83.14 88.69 85.60 80.09 -
[1] 中国食用菌协会. 2019年度全国食用菌统计调查结果分析 [J]. 中国食用菌, 2021, 40(6):104−110.China Edible Fungi Association (CEFA). Analysis on the results of the national statistical survey of edible fungi in 2019 [J]. Edible Fungi of China, 2021, 40(6): 104−110.(in Chinese) [2] 魏雨恬, 冯娜, 张劲松, 等. 荷叶离褶伞子实体有机溶剂萃取物的化学成分和抗肿瘤活性 [J]. 食用菌学报, 2016, 23(2):70−74.WEI Y T, FENG N, ZHANG J S, et al. Qualitative chemical analysis and antitumor activity of Lyophyllum decastes fruit body extracts [J]. Acta Edulis Fungi, 2016, 23(2): 70−74.(in Chinese) [3] 程继红. 鹿茸菇的栽培现状与营养保健价值 [J]. 食药用菌, 2021, 29(1):12−15.CHENG J H. Cultivation status and its nutrition and health care value of Lyophyllum decastes [J]. Edible and Medicinal Mushrooms, 2021, 29(1): 12−15.(in Chinese) [4] 木村荣一, 王建兵. 鹿茸菇的工厂化栽培 [J]. 食药用菌, 2019, 27(4):237−240.Eiichi Kimura, WANG J B. Industrial cultivation of Lyophyllum decastes [J]. Edible and Medicinal Mushrooms, 2019, 27(4): 237−240.(in Chinese) [5] 秦春青. 鹿茸菇子实体多糖提取分离、结构鉴定及抗氧化研究[D]. 杭州: 浙江工业大学, 2019.QIN C Q. Study on extraction, isolation, structure identification and antioxidant activity of polysaccharide from the fruit body of velvet antler mushroom[D]. Hangzhou: Zhejiang University of Technology, 2019. (in Chinese) [6] 黄健航, 郑峻, 杨斌, 等. 不同干燥温度对鹿茸菇品质及其抗氧化活性的比较分析 [J]. 中国食品添加剂, 2022, 33(2):194−200.HUANG J H, ZHENG J, YANG B, et al. Comparative analysis of quality and antioxidant activity of Lyophyllum decastes at different drying temperatures [J]. China Food Additives, 2022, 33(2): 194−200.(in Chinese) [7] 张凤培, 徐慧, 邱绍峰, 等. 鹿茸菇多糖抗氧化保肝研究 [J]. 生物技术通报, 2021, 37(11):92−100.ZHANG F P, XU H, QIU S F, et al. Study on antioxidant and liver protection of polysaccharide from Lyophyllum decastes [J]. Biotechnology Bulletin, 2021, 37(11): 92−100.(in Chinese) [8] 杨斌, 方柄栋, 郑峻, 等. 鹿茸菇多酚提取工艺优化及其抗氧化活性 [J]. 食品研究与开发, 2021, 42(24):41−49. doi: 10.12161/j.issn.1005-6521.2021.24.007YANG B, FANG B D, ZHENG J, et al. Extraction procedure optimization and antioxidant activity of polyphenols from Lyophyllum decastes [J]. Food Research and Development, 2021, 42(24): 41−49.(in Chinese) doi: 10.12161/j.issn.1005-6521.2021.24.007 [9] 律诗, 代晹鑫, 刘野, 等. 食用菌鲜味强度评价及鲜味氨基酸和核苷酸提取工艺优化 [J]. 食品科学技术学报, 2022, 40(1):100−108. doi: 10.12301/spxb202100376LV S, DAI Y X, LIU Y, et al. Evaluation of umami intensity of edible fungi and optimization of umami amino acid and nucleotide extraction [J]. Journal of Food Science and Technology, 2022, 40(1): 100−108.(in Chinese) doi: 10.12301/spxb202100376 [10] 汤倩倩, 孙育红. 以稻草和鹿茸菇菌渣为原料的大棚畦式草菇栽培技术 [J]. 中国蔬菜, 2022(1):118−120. doi: 10.19928/j.cnki.1000-6346.2021.3061TANG Q Q, SUN Y H. Cultivation techniques of straw mushroom in greenhouse with rice straw and antler mushroom residue as raw materials [J]. China Vegetables, 2022(1): 118−120.(in Chinese) doi: 10.19928/j.cnki.1000-6346.2021.3061 [11] 张凌姗. 鹿茸菇生态学特性与液体菌种配方的优化研究 [J]. 食药用菌, 2020, 28(6):425−427,439.ZHANG L S. Study on ecological characteristics and optimization of liquid spawn formula of Lyophyllum decastes [J]. Edible and Medicinal Mushrooms, 2020, 28(6): 425−427,439.(in Chinese) [12] 汤倩倩, 章超, 孙育红, 等. 以水稻秸秆和鹿茸菇菌渣为主要原料的草菇栽培技术 [J]. 中国食用菌, 2021, 40(6):34−36,40.TANG Q Q, ZHANG C, SUN Y H, et al. Facilities cultivation technology of Volvaria volvacea cultivated by Oryza sativa straw and lyoyllum decastes chaff fomula [J]. Edible Fungi of China, 2021, 40(6): 34−36,40.(in Chinese) [13] 魏军, 赵青青, 石世达, 等. 不同容器室内栽培食用菌的应用与研究 [J]. 中国食用菌, 2021, 40(9):93−97.WEI J, ZHAO Q Q, SHI S D, et al. Application and study on edible fungi cultivation in different containers [J]. Edible Fungi of China, 2021, 40(9): 93−97.(in Chinese) [14] 蒋宁, 李辉平, 林金盛, 等. 草菇培养料发酵过程中细菌菌群的变化研究 [J]. 湖北民族大学学报(自然科学版), 2021, 39(3):261−265.JIANG N, LI H P, LIN J S, et al. Study on bacterial community of Volvariella volvacea compost during fermentation [J]. Journal of Hubei Minzu University (Natural Science Edition), 2021, 39(3): 261−265.(in Chinese) [15] 翟美珠, 张圆圆, 赵丽娜. 食用菌主题现代农业生态园规划设计 [J]. 中国食用菌, 2020, 39(6):202−204,208.ZHAI M Z, ZHANG Y Y, ZHAO L N. Planning and design of modern agricultural eco-park with edible fungi theme [J]. Edible Fungi of China, 2020, 39(6): 202−204,208.(in Chinese) [16] 张鑫, 何井瑞, 徐国平, 等. 宿迁市工厂化食用菌产业现状及发展途径 [J]. 上海蔬菜, 2021(4):72−73,88. doi: 10.3969/j.issn.1002-1469.2021.04.030ZHANG X, HE J R, XU G P, et al. Present situation and development approach of industrialized edible fungi industry in Suqian city [J]. Shanghai Vegetables, 2021(4): 72−73,88.(in Chinese) doi: 10.3969/j.issn.1002-1469.2021.04.030 [17] 宋立志. 基于ITS序列对市售常见食用菌的鉴定及系统发育研究 [J]. 中国林副特产, 2019(3):7−10.SONG L Z. Identification and Phylogenic study of common commercial edible mushrooms based on ITS sequences [J]. Forest by-Product and Speciality in China, 2019(3): 7−10.(in Chinese) [18] 杜萍, 凃慧, 蒋佳颖, 等. 野生Paxillus ammoniavirescens菌的分子鉴定及生物学特性研究 [J]. 林业科学研究, 2020, 33(3):146−155.DU P, TU H, JIANG J Y, et al. Molecular identification and biological characteristics of wild Paxillus ammoniavirescens strain [J]. Forest Research, 2020, 33(3): 146−155.(in Chinese) [19] 胡扬楠, 张扬, 兰慧芳, 等. 徐州四种市售食用菌的分子鉴定 [J]. 农业与技术, 2016, 36(21):12−13,42.HU Y N, ZHANG Y, LAN H F, et al. Molecular identification of four kinds of edible fungi in Xuzhou [J]. Agriculture and Technology, 2016, 36(21): 12−13,42.(in Chinese)