Identification and Pathogenic Response of Tomato WRKY Transcription Factors
-
摘要:
目的 深入了解番茄WRKY转录因子的组学特征及其生物胁迫响应。 方法 基于最新公共数据,利用生物信息学和比较基因组学方法对番茄WRKY进行系统鉴定,结合抗、感2个番茄自交系在青枯菌侵染前后的RNA-seq数据,挖掘青枯病抗性相关WRKY。 结果 85个番茄WRKY转录因子被鉴定,可分为I、IIa+b、IIc、IId+e和III等类别,IIe基因最多。其中,9个基因七肽基序发生了单一氨基酸变异,WRKYGKK为优势突变型。这些WRKY主要分布在5号染色体,且具有端部和成簇分布现象,尤其是IIe亚类。45.88%的番茄WRKY具有共线性。58.82%的番茄WRKY(主要是I和IIc类)与拟南芥和辣椒WRKY形成73对直系同源基因,其选择压力(Ka/Ks)均小于1。16个番茄WRKY(主要是IIa+b和IIc类)对几种生物胁迫反应强烈,且主要在根中表达。12个差异表达WRKY(主要是III和IIb类)被鉴定,其中Solyc03g095770.3(III)与Solyc09g014990.4(I)互作在番茄青枯病响应中发挥重要作用。 结论 综合鉴定了番茄WRKY转录因子,筛选到12个青枯病响应基因。 Abstract:Objective Characteristics and biotic stress response of WRKY transcription factors (TFs) in tomato plants were investigated. Method The latest available bioinformatics and genomics methods were employed to identify the tomato WRKY TFs. RNA-seq of disease-resistant and susceptible tomato inbred lines before and after artificial Ralstonia solanacearum infection were obtained to identify the TFs associated with the pathogenic resistance of the plants. Result Eighty-five tomato WRKY TFs were identified and divided into I, IIa+b, IIc, IId+e, and III categories. The IIe group had the highest number of the TFs. The conserved motif of 9 TFs had one single amino acid variation, and WRKYGKK was the dominant mutant. The TFs, especially those in the IIe group, were mainly found on chromosome 5, at the ends, and in clusters. In them, 45.88% showed collinearity and 58.82% (mainly in I and IIc groups) formed 73 pairs of orthologs with those in Arabidopsis and chili pepper at a Ka/Ks ratio below 1. Sixteen of them, mainly belonging to IIa+b and IIc, responded significantly to the biotic stress with expressions largely in the roots. There were 12 differentially expressed WRKY TFs identified mainly in III and IIb. Of which, the interaction between Solyc03g095770.3 (III) and Solyc09g014990.4 (I) played a significant role in the response of the tomato plant to bacterial wilt. Conclusion The WRKY TFs were identified in tomato plants. Twelve genes responded to the bacterial wilt were isolated. -
图 3 番茄、辣椒和拟南芥WRKY转录因子系统发生树
氨基酸多序列比对后,用IQ-Tree基于最大似然法构建系统发生树。红色标注指图位克隆到的首个抗青枯病基因RRS1。
Figure 3. Phylogenetic trees of WRKY TFs in tomato, chili pepper and Arabidopsis
IQ-Tree based on maximum likelihood (ML) method after multiple amino acid sequence alignment was used to construct phylogenetic tree. Red indicates 1st bacterial wilt resistance gene RRS1 from map-based cloning.
图 4 番茄WRKY在不同组织部位(a)和病菌侵染(b)下的相对表达
a: 栽培番茄Heinz1706,1. 芽,2. 花,3. 叶,4. 根,5~7. 果(1~3 cm),8. 绿熟期,9. 破色期,10. 破色后10 d;醋栗番茄(S. pimpinellifolium),11. 绿果期,12. 破色期,13. 破色后5 d,14. 叶。b:1. 细菌鞭毛蛋白/对照病原相关分子模式 6 h,2~4. 不同丁香假单胞菌/对照细菌 6 h,5. 荧光假单胞菌/对照细菌 6 h,6. 恶臭假单胞菌/对照细菌 6 h,7. 根癌农杆菌/对照细菌 6 h。
Figure 4. Expression profiles of WRKY TFs in different tissues (a) and with pathogen infection (b) in tomato
a: cultivated tomato Heinz1706, 1. bud, 2. flower, 3. leaf, 4. root, 5–7. fruit (1-3 cm), 8. mature green (MG), 9. breaker (B), 10. breaker+10 (B10); wild S. pimpinellifolium, 11. immature green (IM), 12. breaker (B), 13. breaker+5 (B5), 14. leaf. b: 1. flagellin (flgII-28)/mock pathogen-associated molecular pattern (PAMP) 6 h, 2-4. different Pseudomonas syringae strains (DC3000, DC3000ΔhrcQ-UΔfliC, and DC3000ΔAvrPtoΔAvrPtoB)/bacterial mock 6 h, 5. Pseudomonas fluorescens/bacterial mock 6 h, 6. Pseudomonas putida/bacterial mock 6 h, and 7. Agrobacterium tumefaciens/bacterial mock 6 h.
表 1 番茄WRKY转录因子基因家族
Table 1. WRKY TF gene family in tomato
基因 ID
Gene IDAA MW/kD pI II SL 基因 ID
Gene IDAA MW/kD pI II SL Solyc01g058540.3 324 35.49 4.74 72.92 nucl Solyc05g050060.1 322 36.76 9.23 56.65 nucl Solyc01g079260.4 347 39.15 6.45 40.95 extr Solyc05g050065.1 126 14.62 9.11 58.95 nucl Solyc01g079360.4 240 26.88 5.03 49.87 nucl Solyc05g050300.3 195 22.57 6.06 53.10 cyto Solyc01g089960.3 288 32.57 8.60 46.70 nucl Solyc05g050330.3 244 27.54 6.02 54.36 nucl Solyc01g095100.4 315 34.95 6.50 63.97 nucl Solyc05g050340.4 218 24.58 5.05 46.20 nucl Solyc01g095630.3 336 37.73 5.55 58.66 nucl Solyc05g053380.4 304 34.36 7.75 56.40 nucl Solyc01g104550.3 475 52.98 6.09 50.54 nucl Solyc05g055750.3 459 51.65 8.77 45.35 nucl Solyc02g021680.3 381 42.63 5.37 47.45 nucl Solyc06g008610.3 348 39.05 9.64 53.70 nucl Solyc02g032950.3 504 56.31 8.17 49.81 nucl Solyc06g048870.3 243 26.85 6.15 38.10 nucl Solyc02g067430.3 440 48.40 6.99 60.86 nucl Solyc06g066370.4 549 61.30 6.72 60.62 vacu Solyc02g071130.4 329 37.85 6.55 55.76 nucl Solyc06g068460.3 360 39.74 8.37 43.78 nucl Solyc02g072190.4 304 33.99 6.29 70.76 nucl Solyc06g070990.3 649 71.66 6.07 52.36 nucl Solyc02g080890.3 550 59.66 7.25 45.54 nucl Solyc07g005650.4 513 56.29 6.41 56.26 nucl Solyc02g088340.4 460 50.95 6.20 59.45 nucl Solyc07g047960.3 420 45.96 6.93 69.06 nucl Solyc02g093050.3 326 36.21 9.65 48.66 nucl Solyc07g051840.4 660 72.08 6.32 50.50 nucl Solyc02g094270.2 131 15.47 9.51 35.84 cyto Solyc07g055280.4 275 29.90 5.48 55.13 nucl Solyc03g007380.2 353 40.06 6.09 51.86 nucl Solyc07g056280.3 322 36.65 6.00 61.72 nucl Solyc03g007640.1 359 41.14 6.98 64.88 nucl Solyc07g065260.4 601 65.55 6.58 49.22 nucl Solyc03g082750.1 178 20.73 9.64 38.54 chlo Solyc07g066220.3 739 79.85 6.04 51.97 nucl Solyc03g082810.1 219 25.05 6.55 43.49 nucl Solyc08g006320.4 335 36.44 9.70 37.80 nucl Solyc03g095770.3 273 31.53 6.02 55.04 nucl Solyc08g008280.3 360 40.71 5.51 47.00 nucl Solyc03g104810.3 486 53.90 6.83 66.50 nucl Solyc08g067340.4 279 31.95 9.31 50.58 nucl Solyc03g113120.4 530 58.87 6.83 43.04 nucl Solyc08g067360.3 258 29.35 5.60 51.10 nucl Solyc03g116890.3 350 39.18 8.73 48.24 nucl Solyc08g081610.4 303 34.69 5.49 56.18 nucl Solyc04g050205.1 117 13.73 9.54 44.50 cyto Solyc08g081630.2 231 26.41 8.97 56.81 pero Solyc04g050210.1 366 41.61 5.25 51.49 nucl Solyc08g082110.4 380 43.45 6.82 45.73 chlo Solyc04g051540.3 237 27.14 8.74 57.58 nucl Solyc09g010960.3 290 32.37 5.27 48.26 nucl Solyc04g051690.4 174 19.96 7.05 40.62 nucl Solyc09g014990.4 529 58.67 7.66 56.35 nucl Solyc04g056360.4 413 47.29 5.83 57.52 nucl Solyc09g015770.3 291 33.25 5.51 60.87 nucl Solyc04g072070.3 255 29.59 8.32 37.35 nucl Solyc09g066010.3 331 37.30 9.66 57.28 nucl Solyc04g078550.3 351 38.49 9.63 54.29 nucl Solyc10g005680.2 703 76.13 5.18 47.47 nucl Solyc05g007110.2 392 44.41 8.89 48.16 nucl Solyc10g007970.2 255 28.60 7.07 47.03 nucl Solyc05g012500.3 327 35.43 5.26 57.84 nucl Solyc10g009550.3 290 33.65 5.45 50.93 nucl Solyc05g012770.3 508 55.40 7.65 65.68 nucl Solyc10g011910.4 348 39.17 5.97 50.91 nucl Solyc05g014040.1 290 32.49 9.41 59.32 nucl Solyc10g084380.1 422 46.99 9.49 70.75 nucl Solyc05g015850.4 176 20.31 9.22 40.11 nucl Solyc12g006170.2 549 60.45 6.24 49.52 nucl Solyc05g045710.3 238 26.99 9.00 63.69 cyto Solyc12g011200.3 335 37.80 5.87 63.14 nucl Solyc05g045800.1 253 28.49 9.29 58.72 nucl Solyc12g014610.2 611 65.94 6.23 51.69 nucl Solyc05g045880.1 321 36.33 8.74 50.56 nucl Solyc12g042590.2 252 28.56 8.82 38.23 nucl Solyc05g045927.1 241 27.83 9.25 48.99 nucl Solyc12g056745.1 324 37.80 6.33 38.64 nucl Solyc05g050040.3 278 31.44 9.37 57.09 nucl Solyc12g056750.3 188 22.46 8.78 24.31 nucl Solyc05g050050.1 322 36.75 9.26 58.14 nucl Solyc12g096350.2 338 36.94 9.75 34.56 nucl Solyc05g050057.1 129 14.92 9.71 62.07 nucl 1)AA:氨基酸数;MW:分子量;pI:理论等电点;II:不稳定系数;SL:亚细胞定位。2)nucl:细胞核;cyto:细胞质;chlo:叶绿体;pero:过氧化物酶体;extr:胞外间隙;vacu:液泡。
1) AA: Number of amino acids; MW: molecular weight; pI: Theoretical isoelectric point; II: Instability index; SL: Subcellular localization. 2) nucl: Nucleus; cyto: Cytoplasm; chlo: Chloroplast; pero: Peroxysome; extr: Extracellular; vacu: Vacuole.表 2 番茄WRKY转录因子染色体分布
Table 2. Distribution of WRKY TFs in tomato chromosomes
染色体
Chromosome基因数
Genes基因簇
Gene clusters成簇基因
Genes in clusters单簇基因
Genes per cluster成簇基因占比
Percentage/%串联重复基因
Tandem repeat genes重复基因占比
Percentage/%Chr.1 7 0 0 — 0.0 0 0.0 Chr.2 9 0 0 — 0.0 0 0.0 Chr.3 8 1 2 2 25.0 0 0.0 Chr.4 7 0 0 — 0.0 0 0.0 Chr.5 19 3 12 4 63.2 9 47.4 Chr.6 5 0 0 — 0.0 0 0.0 Chr.7 7 0 0 — 0.0 0 0.0 Chr.8 7 2 4 2 57.1 2 28.6 Chr.9 4 0 0 — 0.0 0 0.0 Chr.10 5 0 0 — 0.0 0 0.0 Chr.11 0 0 0 — — 0 — Chr.12 7 1 2 2 28.6 2 28.6 —:表示不适用,下同。
—: Not applicable. The same below.表 3 番茄与辣椒、拟南芥之间的WRKY同源基因对
Table 3. WRKY homolog between tomato and chili pepper or Arabidopsis
基因1
Gene 1基因2
Gene 2类别
GroupKa Ks Ka/Ks 基因1
Gene 1基因2
Gene 2类别
GroupKa Ks Ka/Ks Solyc01g079260.4 Capana01g002803 IIc 0.114 0.654 0.174 Solyc08g082110.4 Capana01g004471 III 0.268 0.970 0.276 Solyc01g089960.3 Capana01g003441 IIc 0.088 0.355 0.249 Solyc10g005680.2 Capana10g000205 I 0.236 0.283 0.834 Solyc01g095100.4 Capana08g001012 IIe 0.042 0.301 0.140 Solyc10g009550.3 Capana08g001044 III 0.331 1.184 0.279 Solyc01g095630.3 Capana08g001044 III 0.103 0.439 0.235 Solyc10g084380.1 Capana10g001791 I 0.072 0.231 0.314 Solyc01g104550.3 Capana08g001961 IIb 0.052 0.262 0.199 Solyc12g006170.2 Capana00g004057 I 0.088 0.188 0.470 Solyc02g067430.3 Capana02g000918 IIb 0.070 0.316 0.222 Solyc12g011200.3 Capana09g000676 IIc 0.071 0.228 0.310 Solyc02g072190.4 Capana02g001642 IIe 0.066 0.389 0.169 Solyc01g079260.4 AT2G47260.1 IIc 0.488 1.512 0.323 Solyc02g080890.3 Capana02g002230 IIb 0.054 0.373 0.144 Solyc01g089960.3 AT2G44745.1 IIc 0.289 2.165 0.134 Solyc02g088340.4 Capana02g003339 I 0.080 0.222 0.359 Solyc01g095100.4 AT4G01250.1 IIe 0.382 1.931 0.198 Solyc02g093050.3 Capana02g003053 IId 0.116 0.532 0.218 Solyc01g095630.3 AT2G46400.1 III 0.590 — — Solyc02g094270.2 Capana02g003661 IIc 0.099 0.278 0.356 Solyc02g021680.3 AT2G34830.2 IIe 0.446 — — Solyc03g007380.2 Capana03g002072 III 0.103 0.486 0.213 Solyc02g071130.4 AT4G18170.1 IIc 0.446 1.921 0.232 Solyc03g007640.1 Capana03g002134 IIe 0.388 0.708 0.547 Solyc02g071130.4 AT5G46350.1 IIc 0.424 2.659 0.159 Solyc03g082810.1 Capana03g001962 IIe 0.142 0.308 0.460 Solyc02g071130.4 AT1G29860.1 IIc 0.366 2.306 0.159 Solyc03g095770.3 Capana03g002635 III 0.148 0.309 0.480 Solyc02g088340.4 AT1G13960.1 I 0.382 1.643 0.233 Solyc03g113120.4 Capana03g001099 IIb 0.083 0.399 0.209 Solyc02g088340.4 AT3G01080.2 I 0.512 — — Solyc03g116890.3 Capana03g000473 IIa 0.102 0.455 0.224 Solyc02g094270.2 AT3G01970.1 IIc 0.384 — — Solyc04g051540.3 Capana12g001851 IIc 0.042 0.194 0.215 Solyc03g116890.3 AT1G80840.1 IIa 0.340 2.918 0.117 Solyc04g051690.4 Capana12g001826 IIc 0.080 0.300 0.266 Solyc05g007110.2 AT1G69810.1 IIb 0.491 — — Solyc04g056360.4 Capana05g002502 I 0.394 1.071 0.368 Solyc05g012500.3 AT1G69310.1 IIc 0.376 3.568 0.106 Solyc04g078550.3 Capana04g000568 IId 0.066 0.660 0.099 Solyc05g012770.3 AT1G13960.1 I 0.285 2.483 0.115 Solyc05g012500.3 Capana11g001905 IIc 0.132 0.357 0.369 Solyc05g012770.3 AT2G03340.1 I 0.290 2.177 0.133 Solyc05g012770.3 Capana11g001882 I 0.045 0.346 0.130 Solyc06g048870.3 AT2G40740.3 NG 0.389 2.044 0.190 Solyc05g055750.3 Capana05g002502 I 0.118 0.324 0.363 Solyc06g070990.3 AT1G18860.1 IIb 0.464 2.330 0.199 Solyc06g008610.3 Capana06g003072 IId 0.042 0.251 0.168 Solyc06g070990.3 AT5G15130.1 IIb 0.524 3.356 0.156 Solyc06g066370.4 Capana06g001506 I 0.032 0.261 0.123 Solyc07g047960.3 AT2G04880.1 I 0.513 2.372 0.216 Solyc06g068460.3 Capana06g001110 IIa 0.053 0.282 0.187 Solyc07g065260.4 AT4G26640.2 I 0.370 2.286 0.162 Solyc06g070990.3 Capana06g001008 IIb 0.058 0.396 0.146 Solyc08g006320.4 AT2G24570.1 IId 0.343 1.396 0.245 Solyc07g005650.4 Capana07g000181 I 0.131 0.307 0.427 Solyc08g006320.4 AT4G31550.1 IId 0.401 2.820 0.142 Solyc07g047960.3 Capana07g001256 I 0.089 0.162 0.553 Solyc08g081610.4 AT4G23550.1 IIe 0.552 — — Solyc07g051840.4 Capana07g001387 IIb 0.061 0.259 0.235 Solyc08g082110.4 AT4G11070.1 III 0.439 2.534 0.173 Solyc07g055280.4 Capana07g001809 IIe 0.087 0.445 0.195 Solyc08g082110.4 AT4G23810.1 III 0.436 — — Solyc07g056280.3 Capana07g001968 IIc 0.051 0.251 0.202 Solyc09g014990.4 AT2G38470.1 I 0.368 — — Solyc07g065260.4 Capana07g002350 I 0.054 0.176 0.308 Solyc10g005680.2 AT4G26440.1 I 0.524 1.613 0.325 Solyc08g008280.3 Capana01g004471 III 0.131 0.401 0.327 Solyc10g084380.1 AT2G37260.1 I 0.496 2.115 0.235 Solyc08g081610.4 Capana01g000167 IIe 0.076 0.228 0.334 Solyc12g014610.2 AT4G26640.2 I 0.394 2.070 0.190 Solyc08g081630.2 Capana01g000165 IIc 0.187 0.522 0.358 表 4 番茄青枯菌诱导转录差异表达WRKY
Table 4. Transcriptionally DE WRKY TFs with RsI in tomato
基因ID
Gene ID类别
GroupRC_vs_RT
FDRRC_vs_RT
log2FCSC_vs_ST
FDRSC_vs_ST
log2FCGO/KEGG注释
GO/KEGG annotationSolyc01g089960.3 IIc 0.00 −0.99 0.90 0.05 GO:0003700、GO:0006355、GO:0043565 Solyc01g104550.3 IIb 0.03 0.65 0.62 0.22 GO:0003700、GO:0006355、GO:0043565、GO:0044212 Solyc02g032950.3 IIb 0.01 1.05 0.19 0.49 GO:0003700、GO:0006355、GO:0043565 Solyc03g095770.3 III 0.80 0.12 0.02 0.78 GO:0003700、GO:0006355、GO:0043565 Solyc04g051540.3 IIc 0.00 −1.08 0.54 −0.24 GO:0003700、GO:0006355、GO:0043565 Solyc05g050340.4 III 0.46 0.26 0.05 0.71 GO:0003700、GO:0006355、GO:0043565 Solyc05g055750.3 I 0.91 0.06 0.02 −0.67 GO:0003700、GO:0006355、GO:0043565 Solyc07g051840.4 IIb 0.00 1.17 0.00 0.76 GO:0003700、GO:0006355、GO:0043565 Solyc09g014990.4 I 0.01 1.06 0.01 0.88 GO:0003700、GO:0006355、GO:0043565、ko04626 Solyc09g015770.3 III 0.20 0.61 0.00 1.44 GO:0003700、GO:0006355、GO:0043565 Solyc09g066010.3 IId 0.37 −0.24 0.00 −0.66 GO:0003700、GO:0006355、GO:0043565 Solyc10g009550.3 III 0.00 1.18 0.00 0.90 GO:0003700、GO:0006355、GO:0043565 R和S分别代表抗病和感病番茄自交系,C和T分别代表对照和青枯菌侵染。GO:0003700表示转录因子活性和序列特异性DNA结合,GO:0006355表示转录调控,GO:0043565表示序列特异性DNA结合,GO:0044212表示转录调控区DNA结合,ko04626表示植物-病原互作。
R and S: resistant and susceptible tomato inbred lines, respectively; C: control; T: RsI. GO:0003700: transcription factor activity and sequence-specific DNA binding; GO:0006355: regulation of transcription; GO:0043565: sequence-specific DNA binding; GO:0044212: transcription regulatory region DNA binding; ko04626: plant-pathogen interaction. -
[1] 刘强, 张贵友, 陈受宜. 植物转录因子的结构与调控作用 [J]. 科学通报, 2000, 45(14):1465−1474. doi: 10.3321/j.issn:0023-074X.2000.14.002LIU Q, ZHANG G Y, CHEN S Y. Structure and regulation of plant transcription factors [J]. Chinese Science Bulletin, 2000, 45(14): 1465−1474.(in Chinese) doi: 10.3321/j.issn:0023-074X.2000.14.002 [2] RUSHTON P J, SOMSSICH I E, RINGLER P, et al. WRKY transcription factors [J]. Trends in Plant Science, 2010, 15(5): 247−258. doi: 10.1016/j.tplants.2010.02.006 [3] EULGEM T, RUSHTON P J, ROBATZEK S, et al. The WRKY superfamily of plant transcription factors [J]. Trends in Plant Science, 2000, 5(5): 199−206. doi: 10.1016/S1360-1385(00)01600-9 [4] AGARWAL P, REDDY M P, CHIKARA J. WRKY: Its structure, evolutionary relationship, DNA-binding selectivity, role in stress tolerance and development of plants [J]. Molecular Biology Reports, 2011, 38(6): 3883−3896. doi: 10.1007/s11033-010-0504-5 [5] 赵楠楠, 刘立峰. 植物WRKY转录因子及其生物学功能 [J]. 分子植物育种, 2019, 17(21):7040−7046. doi: 10.13271/j.mpb.017.007040ZHAO N N, LIU L F. WRKY transcription factors and their biological functions in plants [J]. Molecular Plant Breeding, 2019, 17(21): 7040−7046.(in Chinese) doi: 10.13271/j.mpb.017.007040 [6] XIE Z, ZHANG Z L, ZOU X L, et al. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells [J]. Plant Physiology, 2005, 137(1): 176−189. doi: 10.1104/pp.104.054312 [7] BAKSHI M, OELMÜLLER R. WRKY transcription factors: Jack of many trades in plants [J]. Plant Signaling & Behavior, 2014, 9(2): e27700. [8] WU K L, GUO Z J, WANG H H, et al. The WRKY family of transcription factors in rice and Arabidopsis and their origins [J]. DNA Research, 2005, 12(1): 9−26. doi: 10.1093/dnares/12.1.9 [9] ZHANG Y J, WANG L J. The WRKY transcription factor superfamily: Its origin in eukaryotes and expansion in plants [J]. BMC Evolutionary Biology, 2005, 5(1): 1. doi: 10.1186/1471-2148-5-1 [10] CHEN L G, SONG Y, LI S J, et al. The role of WRKY transcription factors in plant abiotic stresses [J]. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2012, 1819(2): 120−128. doi: 10.1016/j.bbagrm.2011.09.002 [11] ROSS C A, LIU Y, SHEN Q J. The WRKY gene family in rice (Oryza sativa) [J]. Journal of Integrative Plant Biology, 2007, 49(6): 827−842. doi: 10.1111/j.1744-7909.2007.00504.x [12] WEI K F, CHEN J, CHEN Y F, et al. Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize [J]. DNA Research, 2012, 19(2): 153−164. doi: 10.1093/dnares/dsr048 [13] BENCKE-MALATO M, CABREIRA C, WIEBKE-STROHM B, et al. Genome-wide annotation of the soybean WRKY family and functional characterization of genes involved in response to Phakopsora pachyrhizi infection [J]. BMC Plant Biology, 2014, 14: 236. doi: 10.1186/s12870-014-0236-0 [14] ZHANG C, WANG D D, YANG C H, et al. Genome-wide identification of the potato WRKY transcription factor family [J]. PLoS One, 2017, 12(7): e0181573. doi: 10.1371/journal.pone.0181573 [15] HUANG S X, GAO Y F, LIU J K, et al. Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum [J]. Molecular Genetics and Genomics, 2012, 287(6): 495−513. doi: 10.1007/s00438-012-0696-6 [16] YANG Y, LIU J, ZHOU X H, et al. Identification of WRKY gene family and characterization of cold stress-responsive WRKY genes in eggplant [J]. PeerJ, 2020, 8: e8777. doi: 10.7717/peerj.8777 [17] SCIENCE F I P. Retraction: Genome-wide identification and expression analysis of WRKY gene family in Capsicum annuum L [J]. Frontiers in Plant Science, 2016, 7: 1727. [18] LING J, JIANG W J, ZHANG Y, et al. Genome-wide analysis of WRKY gene family in Cucumis sativus [J]. BMC Genomics, 2011, 12: 471. doi: 10.1186/1471-2164-12-471 [19] PHUKAN U J, JEENA G S, SHUKLA R K. WRKY transcription factors: Molecular regulation and stress responses in plants [J]. Frontiers in Plant Science, 2016, 7: 760. [20] 史建磊, 熊自立, 苏世闻, 等. 基于RNA-seq的番茄青枯病响应基因鉴定与表达分析 [J]. 华北农学报, 2022, 37(2):171−182. doi: 10.7668/hbnxb.20192621SHI J L, XIONG Z L, SU S W, et al. Identification and expression analysis of bacterial wilt response genes based on RNA-seq in tomato [J]. Acta Agriculturae Boreali-Sinica, 2022, 37(2): 171−182.(in Chinese) doi: 10.7668/hbnxb.20192621 [21] CHEN C J, CHEN H, ZHANG Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194−1202. doi: 10.1016/j.molp.2020.06.009 [22] ASHBURNER M, BALL C A, BLAKE J A, et al. Gene Ontology: Tool for the unification of biology [J]. Nature Genetics, 2000, 25(1): 25−29. doi: 10.1038/75556 [23] KANEHISA M, GOTO S, KAWASHIMA S, et al. The KEGG resource for deciphering the genome [J]. Nucleic Acids Research, 2004, 32(Suppl_1): D277−D280. [24] LEE S W, HAN S W, SRIRIYANUM M, et al. A type I–secreted, sulfated peptide triggers XA21-mediated innate immunity [J]. Science, 2009, 326(5954): 850−853. doi: 10.1126/science.1173438 [25] 张红, 姜景彬, 许向阳, 等. 番茄WRKY基因家族的生物信息学分析 [J]. 分子植物育种, 2016, 14(8):1965−1976. doi: 10.13271/j.mpb.014.001965ZHANG H, JIANG J B, XU X Y, et al. Bioinformatics analysis of WRKY gene family in tomato [J]. Molecular Plant Breeding, 2016, 14(8): 1965−1976.(in Chinese) doi: 10.13271/j.mpb.014.001965 [26] SONG H, SUN W H, YANG G F, et al. WRKY transcription factors in legumes [J]. BMC Plant Biology, 2018, 18(1): 243. doi: 10.1186/s12870-018-1467-2 [27] MOHANTA T K, PARK Y H, BAE H H. Novel genomic and evolutionary insight of WRKY transcription factors in plant lineage [J]. Scientific Reports, 2016, 6(1): 1−22. doi: 10.1038/s41598-016-0001-8 [28] CHEN F, HU Y, VANNOZZI A, et al. The WRKY transcription factor family in model plants and crops [J]. Critical Reviews in Plant Sciences, 2017, 36(5/6): 311−335. [29] 刁卫平, 王述彬, 刘金兵, 等. 辣椒全基因组WRKY转录因子的分析 [J]. 园艺学报, 2015, 42(11):2183−2196.DIAO W P, WANG S B, LIU J B, et al. Genome-wide analysis of the WRKY transcription factor family in pepper [J]. Acta Horticulturae Sinica, 2015, 42(11): 2183−2196.(in Chinese) [30] LIU J L, LIU X L, DAI L Y, et al. Recent progress in elucidating the structure, function and evolution of disease resistance genes in plants [J]. Journal of Genetics and Genomics, 2007, 34(9): 765−776. doi: 10.1016/S1673-8527(07)60087-3 [31] ÜLKER B, SOMSSICH I E. WRKY transcription factors: From DNA binding towards biological function [J]. Current Opinion in Plant Biology, 2004, 7(5): 491−498. doi: 10.1016/j.pbi.2004.07.012 [32] RINERSON C I, RABARA R C, TRIPATHI P, et al. The evolution of WRKY transcription factors [J]. BMC Plant Biology, 2015, 15: 66. doi: 10.1186/s12870-015-0456-y [33] DESLANDES L, OLIVIER J, THEULIERES F, et al. Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(4): 2404−2409. doi: 10.1073/pnas.032485099 [34] MUKHTAR M S, DESLANDES L, AURIAC M C, et al. The Arabidopsis transcription factor WRKY27 influences wilt disease symptom development caused by Ralstonia solanacearum [J]. The Plant Journal, 2008, 56(6): 935−947. doi: 10.1111/j.1365-313X.2008.03651.x [35] DANG F F, WANG Y N, YU L, et al. CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection [J]. Plant, Cell & Environment, 2013, 36(4): 757−774. [36] CAI H Y, YANG S, YAN Y, et al. CaWRKY6 transcriptionally activates CaWRKY40, regulates Ralstonia solanacearum resistance, and confers high-temperature and high-humidity tolerance in pepper [J]. Journal of Experimental Botany, 2015, 66(11): 3163−3174. doi: 10.1093/jxb/erv125 [37] HUSSAIN A, LI X, WENG Y H, et al. CaWRKY22 acts as a positive regulator in pepper response to RalstoniaSolanacearum by constituting networks with CaWRKY6, CaWRKY27, CaWRKY40, and CaWRKY58 [J]. International Journal of Molecular Sciences, 2018, 19(5): 1426. doi: 10.3390/ijms19051426 [38] DANG F F, WANG Y N, SHE J J, et al. Overexpression of CaWRKY27, a subgroup IIe WRKY transcription factor of Capsicum annuum, positively regulates tobacco resistance to Ralstonia solanacearum infection [J]. Physiologia Plantarum, 2014, 150(3): 397−411. doi: 10.1111/ppl.12093 [39] YANG S, ZHANG Y W, CAI W W, et al. CaWRKY28 Cys249 is required for interaction with CaWRKY40 in the regulation of pepper immunity to Ralstonia solanacearum [J]. Molecular Plant-Microbe Interactions:MPMI, 2021, 34(7): 733−745. doi: 10.1094/MPMI-12-20-0361-R [40] HUSSAIN A, KHAN M I, ALBAQAMI M, et al. CaWRKY30 positively regulates pepper immunity by targeting CaWRKY40 against Ralstonia solanacearum inoculation through modulating defense-related genes [J]. International Journal of Molecular Sciences, 2021, 22(21): 12091. doi: 10.3390/ijms222112091 [41] IFNAN KHAN M, ZHANG Y W, LIU Z Q, et al. CaWRKY40b in pepper acts as a negative regulator in response to Ralstonia solanacearum by directly modulating defense genes including CaWRKY40 [J]. International Journal of Molecular Sciences, 2018, 19(5): 1403. doi: 10.3390/ijms19051403 [42] WANG Y N, DANG F F, LIU Z Q, et al. CaWRKY58, encoding a group WRKY transcription factor of Capsicum annuum, negatively regulates resistance to Ralstonia solanacearum infection [J]. Molecular Plant Physiology, 2013, 14(2): 131−144. [43] 谢政文, 王连军, 陈锦洋, 等. 植物WRKY转录因子及其生物学功能研究进展 [J]. 中国农业科技导报, 2016, 18(3):46−54. doi: 10.13304/j.nykjdb.2015.605XIE Z W, WANG L J, CHEN J Y, et al. Studies on WRKY transcription factors and their biological functions in plants [J]. Journal of Agricultural Science and Technology, 2016, 18(3): 46−54.(in Chinese) doi: 10.13304/j.nykjdb.2015.605 [44] CHENG Y, ZHOU Y, YANG Y, et al. Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors [J]. Plant Physiology, 2012, 159(2): 810−825. doi: 10.1104/pp.112.196816 [45] PARK C Y, LEE J H, YOO J H, et al. WRKY group IId transcription factors interact with calmodulin [J]. FEBS Letters, 2005, 579(6): 1545−1550. doi: 10.1016/j.febslet.2005.01.057 [46] 黄幸, 丁峰, 彭宏祥, 等. 植物WRKY转录因子家族研究进展 [J]. 生物技术通报, 2019, 35(12):129−143. doi: 10.13560/j.cnki.biotech.bull.1985.2019-0626HUANG X, DING F, PENG H X, et al. Research progress on family of plant WRKY transcription factors [J]. Biotechnology Bulletin, 2019, 35(12): 129−143.(in Chinese) doi: 10.13560/j.cnki.biotech.bull.1985.2019-0626