Effects of Substituting Refined Forage with Beer Lees on Digestion and Microbial Diversity of Hu Sheep Rumen
-
摘要:
目的 研究啤酒糟替代饲粮中不同比例精料对湖羊瘤胃发酵及微生物多样性的影响,促进啤酒糟在湖羊饲养中的合理利用。 方法 选择体况良好、相近体重(15.90±0.36 kg)的湖羊24只,随机分为4组,分别为饲喂基础饲粮(玉米+豆粕为精料,占比36%,Ⅰ组,CK)及啤酒糟替代1/3(Ⅱ组)、2/3(Ⅲ组)和全部(Ⅳ组)基础饲粮中精料。试验结束后,每组随机选取3只羊,测定羊瘤胃发酵参数和瘤胃微生物多样性。 结果 1)啤酒糟替代饲粮中不同比例精料对湖羊瘤胃的pH值、氨态氮、乙酸等挥发性脂肪酸的含量无显著影响(P>0.05),试验Ⅱ组的异丁酸含量显著高于其他试验组(P<0.05)。2)在门水平上,啤酒糟替代饲粮中不同比例精料对湖羊瘤胃微生物厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)、变形菌门(Proteobacteria)、互养菌门(Synergistetes)、纤维杆菌门(Fibrobacteres)、放线菌门(Actinobacteria)、变形杆菌门(Epsilonbacteraeota)、螺旋体门(Spirochaetes)和无壁菌门(Tenericutes)的丰富度均无显著影响(P>0.05)。试验Ⅰ组(CK)中疣微菌门(Verrucomicrobia)的丰富度显著低于其他组(P<0.05)。在属水平上,啤酒糟替代饲粮中不同比例精料对湖羊瘤胃微生物普雷沃氏菌属(Prevotella)、琥珀酸菌属(Succiniclasticum)、肠单胞菌属(Intestinimonas)、酪氨酸菌属(Tyzzerella)、瘤胃球菌属(Ruminococcus)、粪便菌属(Faecalicatena)、假丁酸弧菌属(Pseudobutyrivibrio)和特氏梭菌属(Hungateiclostridium)的丰富度无显著影响(P>0.05)。 结论 啤酒糟替代精料提高了疣微菌门的相对丰富度,未对湖羊其他瘤胃群落结构和瘤胃微生物群落丰富度产生显著影响。 Abstract:Objective Effects of substituting refined meal in forage with beer brewing residues on the digestion and microbial diversity of rumen of Hu sheep were studied to explore the feasibility of utilization of the waste material. Methods Twenty-four healthy Hu sheep with similar body weight of (15.90±0.36) kg were randomly divided into 4 groups. The animals were fed with a basic forage that consisted of corn and soybean meal at 36% as control (Group I) or one that used beer lees to replace 1/3 (Group II), 2/3 (Group III), or total (Group IV) of the meal. At end of the feeding period, 3 sheep were randomly selected from each group to determine the digestion indicators and microbial diversity in the rumen fluid. Results (1) None of the substitutions showed significant differences on volatile fatty acids, pH, ammonia nitrogen, or acetic acid in the rumen (P>0.05), but significantly higher on isobutyric acid in Group II than others (P<0.05). (2) At phylum level, no significant differences on richness of diversity were introduced by the substitutions on Firmicutes, Bacteroidetes, Proteobacteria, Synergistetes, Fibrobacteres, Actinobacteria, Epsilonbacteraeota, Spirochaetes, and Tenericutes (P>0.05). However, the diversity of Verrucomicrobia in Group I was significantly lower (P<0.05). At genus level, the beer lees replacements in the forage did not significantly alter the diversity on Prevotella, Succiniclasticum, Intestinimonas, Tyzzerella, Ruminococcus, Faecalicatena, Pseudobutyrivibrio, and Hungateiclostridiumhad (P>0.05). Conclusion The replacement of the refined meal in forage with beer lees reduced the relative richness of Verrucobacteria but did not significantly changed the microbial community structure and diversity of the rumen fluid. -
Key words:
- Beer lees /
- Hu sheep /
- volatile fatty acids /
- rumen microorganism
-
表 1 基础饲粮成分及营养水平(干物质基础)
Table 1. Nutritional composition of basal diet (DM basis)
项目
Items试验Ⅰ组
Group Ⅰ试验Ⅱ组
Group Ⅱ试验Ⅲ组
Group Ⅲ试验Ⅳ组
Group Ⅳ原料 Ingredients 啤酒糟 Brewers dried grain/% 0.00 12.00 24.00 36.00 玉米 Corn/% 24.00 16.00 8.00 0.00 豆粕 Soybean meal/% 12.00 8.00 4.00 0.00 谷壳粉 Chaff bran/% 9.00 9.00 9.00 9.00 杂交狼尾草 Hybrid penisetum/% 51.50 51.50 51.50 51.50 磷酸氢钙 CaHPO4/% 0.50 0.50 0.50 0.50 石粉 Limestone/% 1.50 1.50 1.50 1.50 食盐 NaCl/% 0.50 0.50 0.50 0.50 预混料 Premix1)/% 1.00 1.00 1.00 1.00 合计 Total/% 100.00 100.00 100.00 100.00 营养水平 Nutrient levels2) 有机物 OM/% 90.18 90.12 90.11 89.75 代谢能 ME/(MJ·kg−1) 9.52 9.19 8.56 8.14 总能 GE/(MJ·kg−1) 17.00 16.80 16.68 16.56 中性洗涤纤维 NDF/% 46.98 49.38 54.07 57.13 酸性洗涤纤维 ADF/% 26.54 28.91 30.20 30.71 粗蛋白质 CP/% 12.20 12.60 13.27 13.71 钙 Ca/% 0.77 0.78 0.81 0.83 总磷 TP/% 0.23 0.24 0.24 0.25 1)每千克饲粮预混料中含有Cu 20.0 mg,Fe 80.0 mg,Mn 30.0 mg,Zn 80.0 mg,I 1 mg,Se 0.30 mg,VA 20 000 IU,VD 5 000 IU,VE 50.0 mg。2)代谢能为计算值,其他均为实测值。
1) The premix provid the following per kg of diets: Cu 20.0 mg, Fe 80.0 mg, Mn 30.0 mg, Zn 80.0 mg, I 1 mg, Se 0.30 mg, VA 20 000 IU, VD 5 000 IU, VE 50.0 mg. 2)ME is calculated, others are measured values.表 2 啤酒糟替代饲粮中不同比例精料对湖羊瘤胃发酵参数的影响
Table 2. Effects of different forages on Hu sheep rumen digestion indicators
项目
Items试验Ⅰ组
Group Ⅰ试验Ⅱ组
Group Ⅱ试验Ⅲ组
Group Ⅲ试验Ⅳ组
Group ⅣpH值 pH value 6.73±0.005 6.99±0.06 6.79±0.07 6.85±0.009 氨态氮 NH3-N/(mg·dL−1) 9.40±0.45 9.83±0.54 10.50±0.50 10.97±1.02 乙酸 Acetate/(mmoL·L−1) 47.35±3.52 49.31±3.68 51.79±3.86 50.97±3.89 丙酸 Propionate/(mmoL·L−1) 20.53±1.69 21.71±1.72 22.51±2.35 20.57±3.20 异丁酸 Isobutyrate/(mmoL·L−1) 4.12±0.85 b 6.74±0.71 a 2.47±0.80 b 3.60±0.95 b 丁酸 Butyrate/(mmoL·L−1) 15.84±2.05 16.34±3.56 18.36±1.20 17.59±1.07 异戊酸 Isovalerate/(mmoL·L−1) 3.60±1.01 6.48±2.56 5.22±2.20 3.78±2.60 戊酸 Valerate/(mmoL·L−1) 1.03±0.35 1.56±0.23 1.66±0.39 1.30±0.42 乙酸/丙酸 Acetate/Propionate 2.33±0.20 2.27±0.23 2.31±0.25 2.57±0.24 同行数据后不同小写字母表示差异显著(P<0.05)。下表同。
In the same row, data with different lowercase letters indicate significant differences(P>0.05). The same as below.表 3 啤酒糟替代饲粮中不同比例精料对湖羊瘤胃真菌Alpha多样性指数的影响
Table 3. Effects of different forages on fungal alpha diversity index of Hu sheep rumen
项目
Items试验Ⅰ组
Group Ⅰ试验Ⅱ组
GroupⅡ试验Ⅲ组
Group Ⅲ试验Ⅳ组
Group ⅣShannon指数 Shannon index 7.985±0.062 b 7.932±0.060 b 8.012±0.073 b 8.489±0.059 a Simpson指数 Simpson index 0.9887±0.002 0.9886±0.003 0.9851±0.002 0.9917±0.002 Chao1指数 Chao1 index 851.228±51.106 b 805.601±50.205 b 1056.283±61.488 a 1191.569±58. 476 a Ace指数 Ace index 929.949±57.366 bc 791.286±48.859 c 1092.112±48.547 ab 1146.678±46.839 a 表 4 啤酒糟替代饲粮中不同比例精料处理湖羊瘤胃微生物门水平上菌群丰富度
Table 4. Effects of different forages on microbiota richness at phylum level of Hu sheep rumen (单位: %)
项目
Items试验Ⅰ组
Group Ⅰ试验Ⅱ组
Group Ⅱ试验Ⅲ组
Group Ⅲ试验Ⅳ组
Group Ⅳ厚壁菌门 Firmicutes 29.86±6.23 37.44±5.61 51.27±8.62 40.58±6.51 拟杆菌门 Bacteroidetes 18.10±3.23 15.76±4.10 11.89±4.28 14.56±3.87 变形菌门 Proteobacteria 1.43±0.23 0.59±0.39 0.86±0.51 0.43±0.21 互养菌门 Synergistetes 1.27±0.20 0.37±0.02 0.18±0.06 0.73±0.25 纤维杆菌门 Fibrobacteres 0.06±0.01 0.78±0.21 0.08±0.02 0.06±0.01 放线菌门 Actinobacteria 0.03±0.01 0.27±0.22 0.15±0.10 0.46±0.20 变形杆菌门 Epsilonbacteraeota 0.087±0.012 0.009±0.001 0.388±0.021 0.001±0.001 螺旋体门 Spirochaetes 0.195±0.052 0.044±0.068 0.080±0.058 0.124±0.060 无壁菌门 Tenericutes 0.008±0.034 0.052±0.038 0.019±0.032 0.026±0.045 疣微菌门 Verrucomicrobia 0.002±0.002 c 0.026±0.003 a 0.011±0.002 bc 0.017±0.005 ab 表 5 啤酒糟替代饲粮中不同比例精料处理湖羊瘤胃微生物属水平上菌群丰富度
Table 5. Effects of different forages on microbiota richness at genus level of Hu sheep rumen (单位: %)
项目
Items试验Ⅰ组
Group Ⅰ试验Ⅱ组
GroupⅡ试验Ⅲ组
Group Ⅲ试验Ⅳ组
Group Ⅳ普雷沃氏菌属 Prevotella 17.94±3.95 15.68±3.94 10.61±3.95 14.46±3.95 琥珀酸菌属 Succiniclasticum 4.24±1.87 2.37±1.64 6.68±1.34 9.21±1.52 肠单胞菌属 Intestinimonas 3.34±1.82 4.43±1.42 4.67±2.10 6.62±2.87 酪氨酸菌属 Tyzzerella 4.07±1.56 4.05±1.30 6.05±0.89 3.32±1.20 Uncultured_bacterium_f_Ruminococcaceae 1.20±1.95 4.16±2.01 7.09±3.56 3.71±1.89 瘤胃球菌属 Ruminococcus 2.63±1.56 2.90±0.89 3.59±0.85 3.58±1.02 Uncultured_bacterium_o_Clostridiales 4.09±1.56 1.67±1.02 2.19±0.89 2.23±1.33 粪便菌属 Faecalicatena 0.03±0.00 1.58±1.14 3.63±0.87 0.52±0.23 假丁酸弧菌属 Pseudobutyrivibrio 0.59±0.23 1.36±0.65 1.21±0.56 2.30±0.75 特氏梭菌属 Hungateiclostridium 0.62±0.05 2.00±0.25 1.85±0.52 0.38±0.03 表 6 啤酒糟替代饲粮中不同比例精料处理湖羊瘤胃微生物功能预测的基因占比
Table 6. Effects of different forages on genes proportion of predicted functions of microbial community in Hu sheep rumen (单位:%)
项目
Items试验Ⅰ组
Group Ⅰ试验Ⅱ组
GroupⅡ试验Ⅲ组
Group Ⅲ试验Ⅳ组
Group Ⅳ代谢途径 Metabolic pathways 17.43±0.89 17.25±0.89 17.19±0.89 17.34±0.89 次生代谢产物的生物合成 Biosynthesis of secondary metabolites 8.00±0.02 7.96±0.02 8.05±0.02 8.05±0.02 抗生素的生物合成 Biosynthesis of antibiotics 5.84±0.02 5.83±0.02 5.87±0.02 5.87±0.02 氨基酸的生物合成 Biosynthesis of amino acids 4.10±0.07 4.22±0.07 4.35±0.07 4.26±0.07 不同环境中的微生物代谢 Microbial metabolism in diverse environments 3.78±0.02 3.76±0.02 3.76±0.02 3.75±0.02 碳代谢 Carbon metabolism 2.62±0.02 2.60±0.02 2.56±0.02 2.58±0.02 ABC转运 ABC transporters 2.20±0.14 2.41±0.14 2.62±0.14 2.39±0.14 嘌呤代谢 Purine metabolism 2.11±0.01 2.12±0.01 2.10±0.01 2.10±0.01 嘧啶代谢 Pyrimidine metabolism 1.82±0.02 1.83±0.02 1.79±0.02 1.83±0.02 -
[1] 汪成, 王之盛, 胡瑞, 等. 不同类型白酒糟对西杂牛生长性能、养分表观消化率、血清生化指标及瘤胃发酵参数的影响 [J]. 动物营养学报, 2021, 33(2):913−922. doi: 10.3969/j.issn.1006-267x.2021.02.032WANG C, WANG Z S, HU R, et al. Effects of different types of white distiller’s grains on growth performance, nutrient apparent digestibility, serum biochemical indexes and rumen fermentation parameters of Simmental crossbred cattle [J]. Chinese Journal of Animal Nutrition, 2021, 33(2): 913−922.(in Chinese) doi: 10.3969/j.issn.1006-267x.2021.02.032 [2] 宾冬梅. 啤酒糟发酵研究进展 [J]. 湖南农业科学, 2013(22):32−35. doi: 10.3969/j.issn.1006-060X.2013.22.011BIN D M. Research progress of beer lees fermentation [J]. Hunan Agricultural Sciences, 2013(22): 32−35.(in Chinese) doi: 10.3969/j.issn.1006-060X.2013.22.011 [3] 张磊, 徐杨, 潘孝青, 等. 啤酒糟发酵饲料研究进展 [J]. 饲料研究, 2022, 45(3):154−156. doi: 10.13557/j.cnki.issn1002-2813.2022.03.031ZHANG L, XU Y, PAN X Q, et al. Research progress on fermented feed from brewer’s grains [J]. Feed Research, 2022, 45(3): 154−156.(in Chinese) doi: 10.13557/j.cnki.issn1002-2813.2022.03.031 [4] 谢华德, 谢芳, 梁辛, 等. 乳酸菌和啤酒糟对象草青贮发酵品质及营养价值的影响 [J]. 饲料研究, 2021, 44(9):99−103.XIE H D, XIE F, LIANG X, et al. Effect of wet brewers’ grains and lactic acid bacteria supplementation on the qualities and nutrients concentration of elephant grass silage [J]. Feed Research, 2021, 44(9): 99−103.(in Chinese) [5] 中华人民共和国统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2021. [6] 毛胜勇, 朱伟云. 反刍动物瘤胃真菌在饲料降解中的作用 [J]. 黑龙江畜牧兽医, 2000(12):31−33. doi: 10.3969/j.issn.1004-7034.2000.12.021MAO S Y, ZHU W Y. Function of rumen fungi in rumen of ruminants in feed degradation [J]. Heilongjinag Journal of Animal Science and Veterinary Medicine, 2000(12): 31−33.(in Chinese) doi: 10.3969/j.issn.1004-7034.2000.12.021 [7] 马健, 范雪, 陈晖, 等. 奶牛瘤胃微生物的研究进展 [J]. 中国奶牛, 2019(6):6−11.MA J, FAN X, CHEN H, et al. Research progress of rumen microorganism in dairy cows [J]. China Dairy Cattle, 2019(6): 6−11.(in Chinese) [8] HATUNGIMANA E, STAHL T C, ERICKSON P S. Growth performance and apparent total tract nutrient digestibility of limit-fed diets containing wet brewer’s grains to Holstein heifers [J]. Translational Animal Science, 2020, 4(3): txaa079. doi: 10.1093/tas/txaa079 [9] IMAIZUMI H, BATISTEL F, DE SOUZA J, et al. Replacing soybean meal for wet brewer’s grains or urea on the performance of lactating dairy cows [J]. Tropical Animal Health and Production, 2015, 47(5): 877−882. doi: 10.1007/s11250-015-0802-y [10] 黄继康, 高杨, 张同平, 等. 啤酒糟在肉羊生产中应用观察 [J]. 中国畜禽种业, 2018, 14(11):122. doi: 10.3969/j.issn.1673-4556.2018.11.099HUANG J K, GAO Y, ZHANG T P, et al. Observation on the application of beer lees in mutton sheep production [J]. The Chinese Livestock and Poultry Breeding, 2018, 14(11): 122.(in Chinese) doi: 10.3969/j.issn.1673-4556.2018.11.099 [11] FACCENDA A, ZAMBOM M A, CASTAGNARA D D, et al. Use of dried brewers' grains instead of soybean meal to feed lactating cows [J]. Revista Brasileira De Zootecnia, 2017, 46(1): 39−46. doi: 10.1590/s1806-92902017000100007 [12] 李鹏程. 啤酒糟对育肥山羊瘤胃发酵及宏基因组的影响[D]. 绵阳: 西南科技大学, 2021.LI P C. Effects of brewer’s grains on rumen fermentation and metagenome of fattening goats[D]. Mianyang: Southwest University of Science and Technology, 2021. (in Chinese) [13] 李文杨, 王迎港, 吴贤锋, 等. 啤酒糟替代饲粮中不同比例精料对湖羊生长性能、营养物质表观消化率、氮代谢和血清生化指标的影响 [J]. 动物营养学报, 2022, 34(10):6539−6549.LI W Y, WANG Y G, WU X F, et al. Effects of different proportions of concentrate replaced by brewer’s grains in diets on growth performance, nutrient apparent digestibility, nitrogen metabolism and serum biochemical indices of hu sheep [J]. Chinese Journal of Animal Nutrition, 2022, 34(10): 6539−6549.(in Chinese) [14] 中华人民共和国农业部. 肉羊饲养标准: NY/T 816—2004[S]. 北京: 中国农业出版社, 2004. [15] 刘洁. 肉用绵羊饲料代谢能与代谢蛋白质预测模型的研究[D]. 北京: 中国农业科学院, 2012.LIU J. Prediciton of metabolizable energy and metabolizable protein in feeds for meat sheep[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. (in Chinese) [16] 郭旭东. 芦丁对奶牛泌乳性能、瘤胃消化代谢和对大鼠乳腺发育的影响[D]. 北京: 中国农业科学院, 2011.GUO X D. Studies of rutin’s role on lactation performance, the rumen digestion and metabolism in dairy cows, and the development of mammary glands in rats[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese) [17] EDGAR R C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads [J]. Nature Methods, 2013, 10(10): 996−998. doi: 10.1038/nmeth.2604 [18] WHITE J R, NAGARAJAN N, POP M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples [J]. PLoS Computational Biology, 2009, 5(4): e1000352. doi: 10.1371/journal.pcbi.1000352 [19] WANG C, LIU Q, GUO G, et al. Effects of rumen-protected folic acid on ruminal fermentation, microbial enzyme activity, cellulolytic bacteria and urinary excretion of purine derivatives in growing beef steers [J]. Animal Feed Science and Technology, 2016, 221: 185−194. doi: 10.1016/j.anifeedsci.2016.09.006 [20] HALL M B. Challenges with nonfiber carbohydrate methods, [J]. Journal of Animal Science, 2003, 81(12): 3226−3232. doi: 10.2527/2003.81123226x [21] 吕永艳, 蔡李逢, 崔海净, 等. 奶牛日粮中复合处理玉米秸与苜蓿及精料的最佳组合研究 [J]. 中国饲料, 2012(19):14−18. doi: 10.3969/j.issn.1004-3314.2012.19.007LÜ Y Y, CAI L F, CUI H J, et al. The optimal combination of complex treatment of maize straw, alfalfa hay and concentrate in dairy cattle dietary [J]. China Feed, 2012(19): 14−18.(in Chinese) doi: 10.3969/j.issn.1004-3314.2012.19.007 [22] 苏勇华, 方雷, 应璐, 等. 枯草芽孢杆菌对多浪羊消化率、瘤胃发酵参数及血液指标的影响 [J]. 江苏农业科学, 2018, 46(8):162−166.SU Y H, FANG L, YING L, et al. Effects of Bacillus subtilis on nutrient digestibility, rumen fermentation and blood indices of Duolang sheep [J]. Jiangsu Agricultural Sciences, 2018, 46(8): 162−166.(in Chinese) [23] REZAEI J, ROUZBEHAN Y, FAZAELI H, et al. Effects of substituting amaranth silage for corn silage on intake, growth performance, diet digestibility, microbial protein, nitrogen retention and ruminal fermentation in fattening lambs [J]. Animal Feed Science and Technology, 2014, 192: 29−38. doi: 10.1016/j.anifeedsci.2014.03.005 [24] 王绿叶, 和东迁, 张倩, 等. 不同剩余采食量滩羊瘤胃发酵参数的研究 [J]. 中国草食动物科学, 2022, 42(4):69−73. doi: 10.3969/j.issn.2095-3887.2022.04.015WANG L Y, HE D Q, ZHANG Q, et al. Study on rumen fermentation parameters of Tan sheep with different residual feed intake [J]. China Herbivore Science, 2022, 42(4): 69−73.(in Chinese) doi: 10.3969/j.issn.2095-3887.2022.04.015 [25] 张兴夫, 钱英红, 李国东, 等. 不同粗饲料日粮对西门塔尔繁殖母牛瘤胃发酵和血液指标的影响 [J]. 畜牧与饲料科学, 2022, 43(5):22−28. doi: 10.12160/j.issn.1672-5190.2022.05.004ZHANG X F, QIAN Y H, LI G D, et al. Effects of different forage diets on ruminal fermentation and blood parameters of Simmental brood cows [J]. Animal Husbandry and Feed Science, 2022, 43(5): 22−28.(in Chinese) doi: 10.12160/j.issn.1672-5190.2022.05.004 [26] 曹善勇. 肉牛常用饲料瘤胃降解特性及日粮类型对瘤胃发酵影响的研究[D]. 泰安: 山东农业大学, 2015.CAO S Y. The degradation characteristics of common feeds of beef cattle and the influence of diet type on rumen fermentation[D]. Taian: Shandong Agricultural University, 2015. (in Chinese) [27] 黄雅莉. 啤酒糟、木薯渣对奶水牛体外瘤胃发酵特性和产奶性能的影响[D]. 南宁: 广西大学, 2012.HUANG Y L. Effects of distiller’s grains and cassava pulp on rumen fermentation characteristics in vitro and milk performance of water buffalo[D]. Nanning: Guangxi University, 2012. (in Chinese) [28] GRICE E A, KONG H H, CONLAN S, et al. Topographical and temporal diversity of the human skin microbiome [J]. Science, 2009, 324(5931): 1190−1192. doi: 10.1126/science.1171700 [29] LI H Y, LI S N, WANG S X, et al. Degradation of lignocellulose in the corn straw by Bacillus amyloliquefaciens MN-8 [J]. Chinese Journal of Applied Ecology, 2015, 26(5): 1404−1410. [30] ALZAHAL O, LI F Y, GUAN L L, et al. Factors influencing ruminal bacterial community diversity and composition and microbial fibrolytic enzyme abundance in lactating dairy cows with a focus on the role of active dry yeast [J]. Journal of Dairy Science, 2017, 100(6): 4377−4393. doi: 10.3168/jds.2016-11473 [31] KITTELMANN S, KIRK M R, JONKER A, et al. Buccal swabbing as a noninvasive method to determine bacterial, archaeal, and eukaryotic microbial community structures in the rumen [J]. Applied and Environmental Microbiology, 2015, 81(21): 7470−7483. doi: 10.1128/AEM.02385-15 [32] MU C T, DING N, HAO X Y, et al. Effects of different proportion of buckwheat straw and corn straw on performance, rumen fermentation and rumen microbiota composition of fattening lambs [J]. Small Ruminant Research, 2019, 181: 21−28. doi: 10.1016/j.smallrumres.2019.09.006 [33] SINGH K M, AHIR V B, TRIPATHI A K, et al. Metagenomic analysis of Surti buffalo (Bubalus bubalis) rumen: A preliminary study [J]. Molecular Biology Reports, 2012, 39(4): 4841−4848. doi: 10.1007/s11033-011-1278-0 [34] KAAKOUSH N O. Insights into the role of Erysipelotrichaceae in the human host [J]. Frontiers in Cellular and Infection Microbiology, 2015, 5: 84. [35] ALI AHMAD A, YANG C, ZHANG J B, et al. Effects of dietary energy levels on rumen fermentation, microbial diversity, and feed efficiency of yaks (Bos grunniens) [J]. Frontiers in Microbiology, 2020, 11: 625. doi: 10.3389/fmicb.2020.00625 [36] STAPPENBECK T S, HOOPER L V, GORDON J I. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(24): 15451−15455. doi: 10.1073/pnas.202604299 [37] SEARS C L. A dynamic partnership: Celebrating our gut flora [J]. Anaerobe, 2005, 11(5): 247−251. doi: 10.1016/j.anaerobe.2005.05.001 [38] WANG L L, HATEM A, CATALYUREK U V, et al. Metagenomic insights into the carbohydrate-active enzymes carried by the microorganisms adhering to solid digesta in the rumen of cows [J]. PLoS One, 2013, 8(11): e78507. doi: 10.1371/journal.pone.0078507 [39] PETRI R M, SCHWAIGER T, PENNER G B, et al. Changes in the rumen epimural bacterial diversity of beef cattle as affected by diet and induced ruminal acidosis [J]. Applied and Environmental Microbiology, 2013, 79(12): 3744−3755. doi: 10.1128/AEM.03983-12 [40] SONG S D, CHEN G J, GUO C H, et al. Effects of exogenous fibrolytic enzyme supplementation to diets with different NFC/NDF ratios on the growth performance, nutrient digestibility and ruminal fermentation in Chinese domesticated black goats [J]. Animal Feed Science and Technology, 2018, 236: 170−177. doi: 10.1016/j.anifeedsci.2017.12.008 [41] GUO W, GUO X J, XU L N, et al. Effect of whole-plant corn silage treated with lignocellulose-degrading bacteria on growth performance, rumen fermentation, and rumen microflora in sheep [J]. Animal:an International Journal of Animal Bioscience, 2022, 16(7): 100576. doi: 10.1016/j.animal.2022.100576 [42] KRAUSE D O, DENMAN S E, MACKIE R I, et al. Opportunities to improve fiber degradation in the rumen: Microbiology, ecology, and genomics [J]. FEMS Microbiology Reviews, 2003, 27(5): 663−693. doi: 10.1016/S0168-6445(03)00072-X [43] CHIQUETTE J, ALLISON M J, RASMUSSEN M. Use of Prevotella bryantii 25A and a commercial probiotic during subacute acidosis challenge in midlactation dairy cows [J]. Journal of Dairy Science, 2012, 95(10): 5985−5995. doi: 10.3168/jds.2012-5511 [44] REICHARDT N, DUNCAN S H, YOUNG P, et al. Erratum: Phylogenetic distribution of three pathways for propionate production within the human gut microbiota [J]. The ISME Journal, 2014, 8(6): 1352. doi: 10.1038/ismej.2014.48 [45] DIAS J, MARCONDES M I, NORONHA M F, et al. Effect of pre-weaning diet on the ruminal archaeal, bacterial, and fungal communities of dairy calves [J]. Frontiers in Microbiology, 2017, 8: 1553. doi: 10.3389/fmicb.2017.01553 [46] 祁敏丽. 反刍动物瘤胃发育研究进展 [J]. 中国草食动物科学, 2015, 35(5):62−65. doi: 10.3969/j.issn.2095-3887.2015.05.017QI M L. Review on rumen development [J]. China Herbivore Science, 2015, 35(5): 62−65.(in Chinese) doi: 10.3969/j.issn.2095-3887.2015.05.017 [47] 张瑜, 张叁保, 申玉建, 等. 2个品种山羊瘤胃菌群结构比较及其功能预测分析 [J]. 南方农业学报, 2022, 53(6):1724−1733. doi: 10.3969/j.issn.2095-1191.2022.06.026ZHANG Y, ZHANG S B, SHEN Y J, et al. Rumen microbial community structure comparison and function prediction of two goat breeds [J]. Journal of Southern Agriculture, 2022, 53(6): 1724−1733.(in Chinese) doi: 10.3969/j.issn.2095-1191.2022.06.026