• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周年生长特性(大小年)下毛竹根际细菌和内生细菌群落结构及其多样性特征

袁宗胜 刘芳 章进峰 陈洪华 郭建芳 曾志浩 王思凡 王英姿 潘辉

袁宗胜,刘芳,章进峰,等. 周年生长特性(大小年)下毛竹根际细菌和内生细菌群落结构及其多样性特征 [J]. 福建农业学报,2023,38(2):220−228 doi: 10.19303/j.issn.1008-0384.2023.02.012
引用本文: 袁宗胜,刘芳,章进峰,等. 周年生长特性(大小年)下毛竹根际细菌和内生细菌群落结构及其多样性特征 [J]. 福建农业学报,2023,38(2):220−228 doi: 10.19303/j.issn.1008-0384.2023.02.012
YUAN Z S, LIU F, ZHANG J F, et al. The Community Structure and Diversity Characteristics of Rhizosphere Bacteria and Endophytic Bacteria in Phyllostachys edulis under Annual Growth Characteristics (On and Off Years) [J]. Fujian Journal of Agricultural Sciences,2023,38(2):220−228 doi: 10.19303/j.issn.1008-0384.2023.02.012
Citation: YUAN Z S, LIU F, ZHANG J F, et al. The Community Structure and Diversity Characteristics of Rhizosphere Bacteria and Endophytic Bacteria in Phyllostachys edulis under Annual Growth Characteristics (On and Off Years) [J]. Fujian Journal of Agricultural Sciences,2023,38(2):220−228 doi: 10.19303/j.issn.1008-0384.2023.02.012

周年生长特性(大小年)下毛竹根际细菌和内生细菌群落结构及其多样性特征

doi: 10.19303/j.issn.1008-0384.2023.02.012
基金项目: 福建省林业科技项目(2021FKJ07)
详细信息
    作者简介:

    袁宗胜(1976−),男,博士,副教授,研究方向:森林资源培育、微生物等(E-mail:yuanzs369@163.com

    通讯作者:

    潘辉(1968−),男,博士,教授,研究方向:环境资源管理、生态保育及生态旅游开发(E-mail:fjpanhui@126.com

  • 中图分类号: Q938

The Community Structure and Diversity Characteristics of Rhizosphere Bacteria and Endophytic Bacteria in Phyllostachys edulis under Annual Growth Characteristics (On and Off Years)

  • 摘要:   目的  研究大小年毛竹林毛竹根际细菌和内生细菌群落多样性及其结构差异。  方法  采集I度、II度和IV度的大年和小年毛竹林中毛竹的竹鞭、鞭根、根际土壤和林间土壤,提取样本基因组DNA,利用Illumina高通量测序技术分析毛竹根际细菌和内生细菌群落结构多样性。  结果  各组样本总共鉴定出31个门、49个纲、108个目、212个科、472个属细菌。从优势菌群及丰度来看,大年竹鞭和鞭根的优势菌纲为α-变形菌纲,优势菌目为根瘤菌目;小年竹鞭和鞭根的优势菌纲为γ-变形菌纲,优势菌目为芽孢杆菌目。在门水平上,大年竹鞭样本放线菌门的丰度高于小年竹鞭样本,大年毛竹鞭根酸杆菌门和变形菌门的丰度大于小年毛竹鞭根样本,厚壁菌门和拟杆菌门的丰富度小于小年毛竹鞭根样本。在纲和目水平上,大年竹鞭和鞭根样本与小年样本相比较,主要优势菌群为弗兰克氏菌目和α-变形菌纲下属的根瘤菌目。在科水平上,大年毛竹鞭根样本在黄杆菌科的丰度都大于小年样本。在属水平上,大年毛竹鞭根样本在慢生根瘤菌属的丰度大于小年毛竹鞭根样本,而大年毛竹竹鞭和鞭根样本细菌在伯克氏菌科的丰度都低于小年毛竹竹鞭和鞭根样本。从多样性来看,大小年毛竹根际土壤在各水平的细菌群落组成上差异不大,但根际细菌的多样性和丰度高于林间土壤。  结论  毛竹的竹龄及大小年更替对根际细菌群落多样性的影响不大,根际细菌群落具有更高的多样性。大小年毛竹竹鞭和鞭根内生细菌在主要类群上有明显的不同。
  • 图  1  相似度为97%水平下的稀释曲线

    Figure  1.  Dilution curve at 97% similarity level

    图  2  各样本细菌OTU数量与分布

    a:竹鞭样本;b:鞭根样本; c:土壤样本。

    Figure  2.  Number and distribution of bacteria OTUs of samples

    a: Comparison on rhizomes; b: Comparison on rhizome roots; c: Comparison on soils.

    图  3  样本细菌群落在门水平的相对丰度

    Figure  3.  Relative abundance of bacterial communities at phylum level

    图  4  样本细菌群落在纲水平的相对丰度

    Figure  4.  Relative abundance of bacterial communities at class level

    图  5  样本细菌群落在目水平的相对丰度

    Figure  5.  Relative abundance of bacterial communities at order level

    图  6  样本细菌群落在科水平的相对丰度

    Figure  6.  Relative abundance of bacterial communities at family level

    图  7  样本细菌群落在属水平的相对丰度

    Figure  7.  Relative abundance of bacterial communities at genus level

    图  8  各组样本细菌NMDS分析

    Figure  8.  NMDS analysis on samples

    图  9  基于Weighted Unifrac距离的样本聚类结果

    Figure  9.  Clustering tree result of samples based on weighted UniFrac distances

    表  1  样本编码规则

    Table  1.   Sample codes

    毛竹类型P. edulis type样本编码 Sample encoding
    竹鞭Rhizome鞭根Rhizome root根际土壤Rhizosphere soil林间土壤Forest soil
    大年毛竹IOn-year P. edulis ION.1.A5ON.1.B5ON.1.C5ON.CK.C5
    大年毛竹IIOn-year P. edulis IION.2.A5ON.2.B5ON.2.C5
    大年毛竹IVOn-year P. edulis IVON.4.A5ON.4.B5ON.4.C5
    小年毛竹IOff-year P. edulis IOF.1.A5OF.1.B5OF.1.C5OF.CK.C5
    小年毛竹IIOff-year P. edulis IIOF.2.A5OF.2.B5OF.2.C5
    小年毛竹IVOff-year P. edulis IVOF.4.A5OF.4.B5OF.4.C5
    下载: 导出CSV

    表  2  各组样本的Alpha 多样性指数

    Table  2.   Alpha diversity index of samples

    样本Sample观测物种数/个Observed Species/piece丰度指数ACE香农指数Shannon谱系多样性指数PD whole Tree文库覆盖率Coverage/ %
    ON.1.A5 364487.0395.81472.57499.8
    OF.1.A510781121.4527.854395.73199.8
    ON.2.A510951222.2887.202176.93299.6
    OF.2.A5381533.3815.43676.42299.7
    ON.4.A5707792.527.308112.85799.8
    OF.4.A5507606.9246.0466.15999.8
    ON.1.B512431312.3727.76399.03899.7
    OF.1.B5327443.3585.56438.9599.8
    ON.2.B513001399.9417.863113.51499.7
    OF.2.B514621635.7527.565145.07399.5
    ON.4.B517902110.0687.489158.79599.1
    OF.4.B514471561.347.769334.92199.6
    ON.1.C511131277.25.88494.13599.5
    OF.1.C513971626.9685.974155.0899.3
    ON.2.C512531460.2435.924194.70499.4
    OF.2.C510111129.535.889115.28199.6
    ON.4.C510451227.5665.47395.28699.5
    OF.4.C512291409.5375.54109.60399.5
    ON.CK.C57567565.77695.302100
    OF.CK.C5769877.0765.08267.32799.7
    下载: 导出CSV
  • [1] PENG Z H, LU Y, LI L B, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla) [J]. Nature Genetics, 2013, 45(4): 456−461. doi: 10.1038/ng.2569
    [2] LONGWEI, LI N, LU D S, et al. Mapping Moso bamboo forest and its on-year and off-year distribution in a subtropical region using time-series Sentinel-2 and Landsat 8 data [J]. Remote Sensing of Environment, 2019, 231: 111265. doi: 10.1016/j.rse.2019.111265
    [3] ZHOU Y F, ZHOU G M, DU H Q, et al. Biotic and abiotic influences on monthly variation in carbon fluxes in on-year and off-year Moso bamboo forest [J]. Trees, 2019, 33(1): 153−169. doi: 10.1007/s00468-018-1765-1
    [4] SHELAKE R M, PRAMANIK D, KIM J Y. Exploration of plant-microbe interactions for sustainable agriculture in CRISPR era [J]. Microorganisms, 2019, 7(8): 269. doi: 10.3390/microorganisms7080269
    [5] MÜLLER D B, VOGEL C, BAI Y, et al. The plant microbiota: Systems-level insights and perspectives [J]. Annual Review of Genetics, 2016, 50: 211−234. doi: 10.1146/annurev-genet-120215-034952
    [6] MA B, WANG H Z, DSOUZA M, et al. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in Eastern China [J]. The ISME Journal, 2016, 10(8): 1891−1901. doi: 10.1038/ismej.2015.261
    [7] KLOEPPER J W, LEONG J, TEINTZE M, et al . Enhanced plant growth by siderophores produced by plant growth -promothing rhizobacteria [J]. Nature, 1980, 286 (5776): 885−886 . doi: 10.1038/286885a0
    [8] BULGARELLI D, SCHLAEPPI K, SPAEPEN S, et al . Sturcture and functions of the bacterial microbiota of plant [J]. Annual Review of Plant Biology, 2013, 64 : 807−838. doi: 10.1146/annurev-arplant-050312-120106
    [9] 吴良如,萧江华. 大小年毛竹林中内源激素节律变化特征的研究 [J]. 竹子研究汇刊,1998, 1998, 17(1):24−30.

    LIANGU W, JIANGHUA XIAO. Study on Dynamic Characteristics of Eudogenous Phytohormone in On-and-Off Year Bamboo (Phyllost achys Heterocycles Var. Pubescens) Grove [J]. Journal of Bamboo Research, 1998, 17(1): 24−30.(in Chinese)
    [10] EDGAR R C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads [J]. Nature Methods, 2013, 10(10): 996−998. doi: 10.1038/nmeth.2604
    [11] LIN X C, CHOW T Y, CHEN H H, et al. Understanding bamboo flowering based on large-scale analysis of expressed sequence tags [J]. Genetics and Molecular Research:GMR, 2010, 9(2): 1085−1093. doi: 10.4238/vol9-2gmr804
    [12] SCHLOSS P D, WESTCOTT S L, RYABIN T, et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities [J]. Applied and Environmental Microbiology, 2009, 75(23): 7537−7541. doi: 10.1128/AEM.01541-09
    [13] ISAGI Y, SHIMADA K, KUSHIMA H, et al. Clonal structure and flowering traits of a bamboo[Phyllostachys pubescens (Mazel) Ohwi]stand grown from a simultaneous flowering as revealed by AFLP analysis [J]. Molecular Ecology, 2004, 13(7): 2017−2021. doi: 10.1111/j.1365-294X.2004.02197.x
    [14] BAIS H P, WEIR T L, PERRY L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms [J]. Annual Review of Plant Biology, 2006, 57: 233−266. doi: 10.1146/annurev.arplant.57.032905.105159
    [15] REINHOLD-HUREK B, BÜNGER W, BURBANO C S, et al. Roots shaping their microbiome: Global hotspots for microbial activity [J]. Annual Review of Phytopathology, 2015, 53: 403−424. doi: 10.1146/annurev-phyto-082712-102342
    [16] COLEMAN-DERR D, DESGARENNES D, FONSECA-GARCIA C, et al. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species [J]. The New Phytologist, 2016, 209(2): 798−811. doi: 10.1111/nph.13697
    [17] XUAN D T, GUONG V T, ROSLING A, et al. Different crop rotation systems as drivers of change in soil bacterial community structure and yield of rice, Oryza sativa [J]. Biology and Fertility of Soils, 2012, 48(2): 217−225. doi: 10.1007/s00374-011-0618-5
    [18] XIANGZHEN, LI,. Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar [J]. Soil Biology and Biochemistry, 2014, 68: 392−401. doi: 10.1016/j.soilbio.2013.10.017
    [19] SHI Y H, PAN Y S, XIANG L, et al. Assembly of rhizosphere microbial communities in Artemisia annua: Recruitment of plant growth-promoting microorganisms and inter-Kingdom interactions between bacteria and fungi [J]. Plant and Soil, 2022, 470(1): 127−139.
    [20] BERENDSEN R L, PIETERSE C M J, BAKKER P A H M. The rhizosphere microbiome and plant health [J]. Trends in Plant Science, 2012, 17(8): 478−486. doi: 10.1016/j.tplants.2012.04.001
    [21] HENNING S M, YANG J P, SHAO P, et al. Health benefit of vegetable/fruit juice-based diet: Role of microbiome [J]. Scientific Reports, 2017, 7: 2167. doi: 10.1038/s41598-017-02200-6
    [22] PENG G X, ZHANG W, LUO H F, et al. Enterobacter oryzae sp. nov. , a nitrogen-fixing bacterium isolated from the wild rice species Oryza latifolia[J]. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(Pt 7): 1650-1655.
    [23] BOTHE H. Biology of the Nitrogen Cycle[M]. Amsterdam: Elsevier Science Ltd, 2007: 147-163.
    [24] OROZCO-MOSQUEDA M D C, ROCHA-GRANADOS M D C, GLICK B R, et al. Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms [J]. Microbiological Research, 2018, 208: 25−31. doi: 10.1016/j.micres.2018.01.005
    [25] STÉPHANE, COMPANT C, SESSITSCH A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization [J]. Soil Biology and Biochemistry, 2010, 42(5): 669−678. doi: 10.1016/j.soilbio.2009.11.024
    [26] 张爱梅, 殷一然, 孙坤. 沙棘属植物弗兰克氏菌研究进展 [J]. 微生物学通报, 2020, 47(11):3933−3944. doi: 10.13344/j.microbiol.china.200427

    ZHANG A M, YIN Y R, SUN K. Research progress in Frankia spp. associated with Hippophae L [J]. Microbiology China, 2020, 47(11): 3933−3944.(in Chinese) doi: 10.13344/j.microbiol.china.200427
    [27] DIAGNE N, ARUMUGAM K, NGOM M, et al. Use of Frankia and actinorhizal plants for degraded lands reclamation [J]. BioMed Research International, 2013, 2013: 948258.
    [28] 黄瑞林, 张娜, 孙波, 等. 典型农田根际土壤伯克霍尔德氏菌群落结构及其多样性 [J]. 土壤学报, 2020, 57(4):975−985. doi: 10.11766/trxb201901040008

    HUANG R L, ZHANG N, SUN B, et al. Community structure of burkholderiales and its diversity in typical maize rhizosphere soil [J]. Acta Pedologica Sinica, 2020, 57(4): 975−985.(in Chinese) doi: 10.11766/trxb201901040008
    [29] SIJAM K, DIKIN A. Biochemical and physiological characterization of Burkholderia cepacia as biological control agent [J]. International Journal of Agriculture & Biology, 2005, 7(3): 385−388.
    [30] HARDOIM P R, VAN OVERBEEK L S, ELSAS J D. Properties of bacterial endophytes and their proposed role in plant growth [J]. Trends in Microbiology, 2008, 16(10): 463−471. doi: 10.1016/j.tim.2008.07.008
    [31] LEBEIS S L. The potential for give and take in plant-microbiome relationships [J]. Frontiers in Plant Science, 2014, 5: 287.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  300
  • HTML全文浏览量:  84
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-09
  • 修回日期:  2022-12-21
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回