Condition Optimization for Leucaena leucocephala Seedling Growth in Factory
-
摘要:
目的 探明银合欢幼苗在植物工厂中水培的最优生长条件,为生产优质的银合欢苗奠定基础。 方法 分析不同光照时长(12、16、20、24 h·d−1)、光照强度(100、200、300、400 μmol·m−2·s−1)、营养液盐度(7‰、15‰、20‰、25‰)、氮浓度(7.5、15、30、60 mmol·L−1)和磷浓度(0.5、1、2、4 mmol·L−1)下银合欢幼苗的形态和生理指标,优化银合欢幼苗的生长条件。 结果 单因素试验结果表明,随着光照时长、光照强度、氮浓度或磷浓度的增加,银合欢幼苗的形态指标呈现先增后降的趋势。幼苗定植35 d后,在光照时长20 h·d−1下幼苗鲜重(5.61±0.11) g·株−1,比12、24 h·d−1分别增加60.0%和14.6%;光强200 μmol·m−2·s−1下鲜重(6.55±0.10) g·株−1,比100、400 μmol·m−2·s−1分别增加21.5%和62.1%;氮浓度15 mmol·L−1下鲜重(4.32±0.10) g·株−1,比7.5、60 mmol·L−1分别增加6.1%和108.6%;磷浓度1 mmol·L−1下鲜重(5.65±0.21) g·株−1,比0.5、4 mmol·L−1分别增加40.9%和64.7%。银合欢幼苗的叶绿素含量、叶绿素荧光参数和抗氧化酶活性也表现出相似的规律。相比之下,随着营养液盐度的增加,银合欢幼苗的形态指标、叶绿素含量、叶绿素荧光参数和抗氧化酶活性均呈现下降趋势。在盐度7‰时鲜重、干重、株高、根长和总叶绿素含量均达到最大值,分别为(8.95±0.05) g·株−1、(2.16±0.16) g·株−1、(31.17±1.67) cm、(60.67±0.93) cm、(1.72±0.06) mg·g−1。7‰盐度下幼苗的叶绿素荧光参数和抗氧化酶活性指标也较好。 结论 银合欢幼苗在光照时长20 h·d−1、光强200 μmol·m−2·s−1、盐度7‰、氮浓度15 mmol·L−1、磷浓度1 mmol·L−1 的条件下,其形态指标、叶绿素含量、抗氧化酶活性及叶绿素荧光参数等指标较优,最适合银合欢幼苗生长。 Abstract:Objective Optimal conditions for the growth of Leucaena leucocephala seedlings in an indoor facility were studied. Methods Selected morphological and physiological indices of L. leucocephala seedlings were monitored for the optimization in a chamber under varied light exposures (i.e., 12, 16, 20, and 24 h·d−1) with the intensity of 100, 200, 300, or 400 μmol·m−2·s−1 in a nutrient solution of a salinity of 7‰, 15‰, 20‰, or 25‰, a N concentration of 7.5, 15, 30, or 60 mmol·L−1, and a P concentration of 0.5, 1, 2, or 4 mmol·L−1. Results The single factor experiment showed the seedling morphological indices increased at first and then decreased with increasing light exposure, light intensity, N or P concentration. After 35 d of cultivation, the average fresh weight of an individual seedling exposed to 20 h·d−1 of light reached (5.61±0.11) g, which was 60.0% higher than that exposed to 12 h·d−1 or 14.6% higher than that exposed to 24 h·d−1. The intensity of light at 200 μmol·m−2·s−1 resulted in a (6.55±0.10) g·plant−1 of fresh seedling, which was 21.5% or 62.1% higher than at 100 μmol·m−2·s−1 or 400 μmol·m−2·s−1, respectively. The nutrient solution containing 15 mmol·L−1 N yielded a fresh seedling weight of (4.32±0.10) g·plant−1, which was 6.1% and 108.6% higher than those at 7.5 and 60 mmol·L−1, respectively, in concentration. Whereas P at 1 mmol·L−1, the fresh seedling weight was (5.65±0.21) g·plant−1, which was 40.9% and 64.7% higher than P at 0.5 mmol·L−1 and 4 mmol·L−1, respectively. And the seedlings exhibited similar patterns under those conditions on chlorophyll content, chlorophyll fluorescence parameters, and antioxidant enzyme activities. On the other hand, the seedlings growing under an increasing salinity displayed decreasing trends on the morphological indices, chlorophyll content, chlorophyll fluorescence parameters, and antioxidant enzyme activities. At 7‰ salinity, the greatest fresh seedling weight of (8.95±0.05) g·plant−1, dry weight of (2.16±0.16) g·plant−1, plant height of (31.17±1.67) cm, root length of (60.67±0.93) cm, and total chlorophyll content of (1.72±0.06) mg·g−1 were recorded. In contrast, the chlorophyll fluorescence parameters and antioxidant enzyme activities were improved. Conclusion Under 20 h·d−1 of 200 μmol·m−2·s−1 light exposure, the growth of L. leucocephala seedlings in a nutrient solution of 7‰ salinity that contained 15 mmol·L−1 N and 1 mmol·L−1 P rendered the morphological indices, antioxidant enzyme activities, and chlorophyll fluorescence parameters superior to the other tested conditions in a nursery. -
Key words:
- L. leucocephala /
- plant factory /
- light /
- salinity /
- nitrogen and phosphorus
-
表 1 银合欢在不同光照时长下的表观生长指标和生理指标
Table 1. Growth and physiological indices of Leucaena leucocephala under different light duration
参数 Parameters 光照时长 Duration of light/(h·d−1) 12 16 20 24 鲜重 Fresh weight/(g·株−1) 3.54±0.22 d 4.14±0.06 c 5.66±0.11 a 4.94±0.13 b 干重 Dry weight/(g·株−1) 0.57±0.05 c 0.81±0.03 b 1.13±0.06 a 0.92±0.08 b 株高 Shoot height/(cm·株−1) 17.00±0.58 a 13.33±0.60 b 11.17±0.44 c 10.43±0.09 c 根长 Root length/(cm·株−1) 23.00±1.00 c 38.50±0.29 a 30.50±0.50 b 24.50±0.76 c 总叶绿素 Total chlorophyll/ (mg·g−1) 0.94±0.08 b 1.09±0.14 ab 1.30±0.06 a 1.26±0.09 a 叶绿素a Chlorophyll a/(mg·g−1) 0.76±0.07 b 0.89±0.08 ab 1.04±0.08 a 1.01±0.07 a 叶绿素b Chlorophyll b/(mg·g−1) 0.18±0.01 a 0.19±0.07 a 0.26±0.01 a 0.25±0.01 a 超氧化物歧化酶 SOD/(U·g−1) 564.7±1.6 c 572.9±3.5 c 582.7±1.4 b 590.2±1.6 a 过氧化物酶 POD/(U·g−1) 242.5±6.6 c 600.1±30.5 b 680.3±20.8 b 823.7±39.8 a 丙二醛 MDA/(nmol·g−1) 12.63±0.69 b 12.49±1.36 b 12.44±0.93 b 16.69±1.34 a 非光化学淬灭系数 NPQ 0.21±0.05 b 0.20±0.02 b 0.21±0.03 b 0.50±0.03 a 光化学效率 Fv/Fm 0.68±0.01 c 0.75±0.01 a 0.71±0.01 b 0.61±0.01 d 光化学淬灭系数 qP 0.78±0.02 b 0.88±0.02 a 0.88±0.01 a 0.79±0.03 b 电子传递速率 ETR 37.40±0.68 ab 41.10±0.43 a 39.62±1.19 a 33.97±2.22 b 同行不同小写字母代表不同处理之间显著差异(P <0.05),下同。Datas with different lowercase letters on the same row represent significant differences between treatments (P < 0.05). Same for below. 表 2 银合欢在不同光照强度下的表观生长指标和生理指标
Table 2. Growth and physiological indices of L. leucocephala under different light intensities
参数 Parameters 光照强度 Light intensity/(μmol·m−2·s−1) 100 200 300 400 鲜重 Fresh weight/(g·株−1) 5.39±0.22 b 6.55±0.10 a 6.41±0.07 a 4.04±0.15 c 干重 Dry weight/(g·株−1) 1.16±0.08 bc 1.52±0.12 a 1.26±0.05 b 0.94±0.04 c 株高 Shoot height/(cm·株−1) 14.27±0.14 a 14.07±0.22 a 12.77±0.40 b 12.90±0.47 b 根长 Root length/(cm·株−1) 35.33±2.77 a 36.93±1.88 a 34.67±2.09 a 34.17±0.44 a 总叶绿素 Total chlorophyll/ (mg·g−1) 1.38±0.08 b 1.80±0.10 a 1.28±0.06 b 1.25±0.05 b 叶绿素a Chlorophyll a/ (mg·g−1) 1.12±0.06 b 1.44±0.08 a 1.03±0.03 b 0.97±0.07 b 叶绿素b Chlorophyll b/ (mg·g−1) 0.26±0.02 a 0.36±0.02 a 0.25±0.07 a 0.28±0.04 a 超氧化物歧化酶 SOD/(U·g−1) 562.6±6.9 a 559.5±3.1 a 560.4±4.9 a 569.4±2.2 a 过氧化物酶 POD/(U·g−1) 482.6±13.3 c 761.9±25.5 b 815.4±22.6 b 960.7±28.8 a 丙二醛 MDA/(nmol·g−1) 22.98±0.86 a 21.97±1.26 a 21.69±1.16 a 22.40±1.92 a 非光化学淬灭系数 NPQ 0.34±0.02 c 0.38±0.02 bc 0.42±0.01 ab 0.48±0.01 a 光化学效率 Fv/Fm 0.79±0.01 a 0.75±0.01 b 0.70±0.01 c 0.68±0.01 d 光化学淬灭系数 qP 0.87±0.01 a 0.80±0.01 b 0.79±0.02 b 0.51±0.01 c 电子传递速率 ETR 67.13±3.61 bc 76.51±3.13 ab 84.35±1.73 a 60.46±2.99 c 表 3 银合欢在不同盐度下的表观生长指标和生理指标
Table 3. Growth and physiological indices of L. leucocephala at different salinities
参数 Parameters 盐度 Salinity/‰ 7 15 20 25 鲜重 Fresh weight/(g·株−1) 8.95±0.05 a 7.94±0.14 b 4.44±0.38 c 2.33±0.15 d 干重 Dry weight/(g·株−1) 2.16±0.16 a 1.58±0.03 b 0.90±0.02 c 0.32±0.01 d 株高 Shoot height/(cm·株−1) 31.17±1.67 a 24.83±0.44 b 19.00±0.50 c 12.17±0.33 d 根长 Root length/(cm·株−1) 60.67±0.93 a 47.67±1.36 b 26.40±0.90 c 19.17±1.48 d 总叶绿素 Total chlorophyll/(mg·g−1) 1.72±0.06 a 1.64±0.11 ab 1.44±0.06 b 1.09±0.01 c 叶绿素a Chlorophyll a/(mg·g−1) 1.35±0.05 a 1.29±0.03 a 1.16±0.05 b 0.88±0.01 c 叶绿素b Chlorophyll b/(mg·g−1) 0.38±0.01 a 0.35±0.10 a 0.29±0.01 a 0.21±0.01 a 超氧化物歧化酶 SOD/(U·g−1) 584.3±4.0 a 578.8±9.3 a 576.0±8.7 a 565.1±7.4 a 过氧化物酶 POD/(U·g−1) 476.9±12.0 b 567.1±14.1 a 483.2±7.9 b 469.1±9.4 b 丙二醛 MDA/(nmol·g−1) 11.51±0.41 b 14.33±1.71 b 19.94±1.48 a 20.49±1.60 a 非光化学淬灭系数 NPQ 0.19±0.04 b 0.27±0.06 b 0.87±0.07 a 1.07±0.14 a 光化学效率 Fv/Fm 0.79±0.01 a 0.77±0.01 a 0.77±0.01 a 0.72±0.01 b 光化学淬灭系数 qP 0.87±0.04 a 0.80±0.01 a 0.80±0.03 a 0.79±0.02 a 电子传递速率 ETR 44.61±2.20 a 41.43±0.16 a 35.47±2.04 b 32.66±2.06 b 表 4 银合欢在不同氮浓度下的表观生长指标和生理指标
Table 4. Growth and physiological indices of L. leucocephala at different nitrogen concentrations
参数 Parameters 氮浓度 Nitrogen concentration/(mmol·L−1) 7.5 15 30 60 鲜重 Fresh weight/(g·株−1) 4.07±0.08 a 4.32±0.10 a 3.38±0.13 b 2.07±0.13 c 干重 Dry weight/(g·株−1) 0.66±0.01 b 0.84±0.05 a 0.56±0.05 b 0.38±0.02 c 株高 Shoot height/(cm·株−1) 15.13±0.23 b 21.73±0.89 a 15.83±0.17 b 10.67±0.84 c 根长 Root length/(cm·株−1) 27.17±1.09 a 27.67±0.44 a 27.00±4.31 a 24.73±0.62 a 总叶绿素 Total chlorophyll/(mg·g−1) 1.23±0.01 b 1.33±0.08 ab 1.46±0.03 a 1.28±0.03 b 叶绿素a Chlorophyll a/(mg·g−1) 0.99±0.01 b 1.07±0.07 ab 1.17±0.02 a 1.04±0.03 b 叶绿素b Chlorophyll b/(mg·g−1) 0.24±0.01 b 0.26±0.01 b 0.29±0.01 a 0.24±0.01 b 超氧化物歧化酶 SOD/(U·g−1) 534.8±4.3 a 555.0±3.8 a 534.2±7.4 a 530.2±13.4 a 过氧化物酶 POD/(U·g−1) 529.3±4.9 b 487.7±12.6 bc 468.9±3.9 c 591.2±25.8 a 丙二醛 MDA/(nmol·g−1) 14.21±1.31 a 13.92±1.01 a 16.19±1.31 a 16.12±0.09 a 非光化学淬灭系数 NPQ 0.52±0.03 a 0.38±0.02 b 0.51±0.02 a 0.51±0.04 a 光化学效率 Fv/Fm 0.70±0.01 b 0.76±0.01 a 0.69±0.01 b 0.68±0.01 c 光化学淬灭系数 qP 0.91±0.01 a 0.92±0.01 a 0.70±0.02 c 0.77±0.02 b 电子传递速率 ETR 38.30±0.71 c 60.67±0.29 a 39.60±0.30 c 42.71±1.28 b 表 5 银合欢在不同磷浓度下的表观生长指标和生理指标
Table 5. Growth and physiological indices of L. leucocephala at different phosphorus concentrations
参数Parameters 磷浓度 Phosphorus concentration/(mmol·L−1) 0.5 1 2 4 鲜重 Fresh weight/(g·株−1) 4.01±0.24 b 5.65±0.21 a 4.04±0.16 b 3.43±0.22 b 干重 Dry weight/(g·株−1) 0.71±0.05 b 0.98±0.05 a 0.69±0.05 bc 0.54±0.05 c 株高 Shoot height/(cm·株−1) 13.33±0.84 b 15.63±0.58 a 15.27±0.39 ab 11.07±0.58 c 根长 Root length/(cm·株−1) 36.20±0.35 a 37.57±1.10 a 32.50±0.58 b 32.47±1.50 b 总叶绿素 Total chlorophyll/(mg·g−1) 1.53±0.07 b 1.87±0.11 a 1.58±0.07 b 1.56±0.05 b 叶绿素a Chlorophyll a/(mg·g−1) 1.23±0.05 b 1.44±0.05 a 1.25±0.04 b 1.23±0.04 b 叶绿素b Chlorophyll b/(mg·g−1) 0.29±0.04 a 0.42±0.08 a 0.33±0.05 a 0.34±0.01 a 超氧化物歧化酶 SOD/(U·g−1) 554.0±8.22 a 571.2±8.80 a 573.8±6.22 a 567.6±6.35 a 过氧化物酶POD/(U·g−1) 661.0±6.9 b 807.2±16.5 a 828.2±34.8 a 604.6±12.0 b 丙二醛 MDA/(nmol·g−1) 17.96±0.6 a 18.68±0.4 a 18.70±1.6 a 19.17±0.2 a 非光化学淬灭系数 NPQ 0.56±0.05 b 0.38±0.02 c 0.56±0.04 b 1.25±0.08 a 光化学效率 Fv/Fm 0.76±0.01 a 0.77±0.01 a 0.70±0.01 b 0.46±0.01 c 光化学淬灭系数 qP 0.71±0.03 b 0.84±0.01 a 0.62±0.02 c 0.76±0.01 b 电子传递速率 ETR 39.91±2.69 b 54.09±0.60 a 37.11±2.43 b 24.20±0.62 c -
[1] 赵英, 陈小斌, 蒋昌顺. 我国银合欢研究进展 [J]. 热带农业科学, 2006, 26(4):55−58,63. doi: 10.3969/j.issn.1009-2196.2006.04.019ZHAO Y, CHEN X B, JIANG C S. Advances on studies of Leucaena Bentham in China [J]. Chinese Journal of Tropical Agriculture, 2006, 26(4): 55−58,63.(in Chinese) doi: 10.3969/j.issn.1009-2196.2006.04.019 [2] GRAAMANS L, BAEZA E, VAN DEN DOBBELSTEEN A, et al. Plant factories versus greenhouses: Comparison of resource use efficiency [J]. Agricultural Systems, 2018, 160: 31−43. doi: 10.1016/j.agsy.2017.11.003 [3] 崔羽, 严思维, 吴建召, 等. 不同林龄银合欢生长季土壤呼吸影响因素分析 [J]. 武夷学院学报, 2018, 37(9):31−38.CUI Y, YAN S W, WU J Z, et al. Analyzing the factors that affect soil respiration during the growing season in Leucaena leucocephala (Lam.) de wit [J]. Journal of Wuyi University, 2018, 37(9): 31−38.(in Chinese) [4] 徐文栋, 李春兰. 密闭式植物工厂内大黄育苗技术研究 [J]. 南方农机, 2022, 53(12):25−27,31.XU W D, LI C L. Study on seedling raising technology of Dahuang in closed plant factory [J]. South Agricultural Machinery, 2022, 53(12): 25−27,31.(in Chinese) [5] 黄思杰. 植物工厂条件下不同基质对番茄产量和品质的影响[D]. 南京: 南京农业大学, 2013.HUANG S J. Effects of different substrates on yield and quality of tomato cultivated in plant factory[D]. Nanjing: Nanjing Agricultural University, 2013. (in Chinese) [6] 苗妍秀, 曲梅, 李伟, 等. 植物工厂中不同供液方式对辣椒育苗的影响 [J]. 长江蔬菜, 2012(6):33−36. doi: 10.3865/j.issn.1001-3547.2012.06.010MIAO Y X, QU M, LI W, et al. Effects of different irrigation systems on pepper seedling in plant factory [J]. Journal of Changjiang Vegetables, 2012(6): 33−36.(in Chinese) doi: 10.3865/j.issn.1001-3547.2012.06.010 [7] 陈永快, 王涛, 兰婕, 等. 植物工厂内LED光调控在作物栽培中的研究进展 [J]. 江苏农业科学, 2020, 48(23):40−46.CHEN Y K, WANG T, LAN J, et al. Research progress of LED light regulation in plant factories in crop cultivation [J]. Jiangsu Agricultural Sciences, 2020, 48(23): 40−46.(in Chinese) [8] 刘文科, 吴启保, 查凌雁. LED连续光照的植物生理作用及植物工厂应用策略 [J]. 照明工程学报, 2020, 31(5):5−8,21. doi: 10.3969/j.issn.1004-440X.2020.05.002LIU W K, WU Q B, ZHA L Y. Application strategies and physiological mechanisms of LED continuous light for plant factory with artificial light [J]. China Illuminating Engineering Journal, 2020, 31(5): 5−8,21.(in Chinese) doi: 10.3969/j.issn.1004-440X.2020.05.002 [9] 季延海. 韭菜营养液栽培的关键技术[D]. 南京: 南京农业大学, 2014.JI Y H. The key technology of nutrient solutions cultivation of Chinese chives[D]. Nanjing: Nanjing Agricultural University, 2014. (in Chinese) [10] 刘青. 营养液配方对盆栽水芹生长和品质的影响[D]. 扬州: 扬州大学, 2020.LIU Q. Effect of nutrient solution formula on growth and quality of the potted water dropwort (Oenanthe javanica (Roxb) Wall. )[D]. Yangzhou: Yangzhou University, 2020. (in Chinese) [11] 乔源. 氮磷钾供应对水培芹菜产量、品质及元素利用效率影响的研究[D]. 杨凌: 西北农林科技大学, 2016.QIAO Y. Effects of NPK on yield, quality and element utilization efficiency of hydroponic celery[D]. Yangling: Northwest A & F University, 2016. (in Chinese) [12] 李莉萍, 应东山, 王琴飞, 等. 银合欢种子研究进展 [J]. 热带农业科学, 2014, 34(2):21−26.LI L P, YING D S, WANG Q F, et al. Research progress of Leucaena seeds [J]. Chinese Journal of Tropical Agriculture, 2014, 34(2): 21−26.(in Chinese) [13] 蔡克强, 黄维南. 银合欢幼苗根瘤固氮特性研究 [J]. 植物生理学通讯, 1986(3):35−37.CAI K Q, HUANG W N. Nitrogen fixation characteristics of nodules of Acacia seedlings [J]. Plant Physiology Communications, 1986(3): 35−37.(in Chinese) [14] 杨韡韡. 矿山废弃地生态修复技术与效应研究——以河南省鲁山县某铁矿区为例[D]. 郑州: 华北水利水电学院, 2012.YANG W W. Ecological restoration technology and effect research of abandoned mines ——Take an iron mining area in Lushan Countyof Henan Province for example[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2012. (in Chinese) [15] 过聪, 关伟, 曾祥国, 等. 不同营养液配方对水培白蝴蝶合果芋的影响 [J]. 湖北农业科学, 2020, 59(23):87−93.GUO C, GUAN W, ZENG X G, et al. Influence of different nutrient solution formulations on hydroponic Syngonium podoopphyllum cv. White Butterfly [J]. Hubei Agricultural Sciences, 2020, 59(23): 87−93.(in Chinese) [16] LU T, YU H J, LI Q, et al. Improving plant growth and alleviating photosynthetic inhibition and oxidative stress from low-light stress with exogenous GR24 in tomato (Solanum lycopersicum L. ) seedlings [J]. Frontiers in Plant Science, 2019, 10: 490. doi: 10.3389/fpls.2019.00490 [17] VENISSE J S, PAULIN J P, RISSET M N. Mechanisms underlying disease and resistance in host plants of fire blight [J]. Acta Hortic, 2002, 590(72): 467−468. [18] LACAN D, BACCOU J C. High levels of antioxidant enzymes correlate with delayed senescence in nonnetted muskmelon fruits [J]. Planta, 1998, 204(3): 377−382. doi: 10.1007/s004250050269 [19] 王学奎. 植物生理生化实验原理和技术[M]. 2版. 北京: 高等教育出版社, 2006. [20] 刘杰, 胡笑涛, 王文娥, 等. 光强和光周期对水培生菜光合及叶绿素荧光特性的影响 [J]. 西南农业学报, 2019, 32(8):1784−1790.LIU J, HU X T, WANG W E, et al. Effects of light intensity and photoperiod on photosynthetic characteristics and chlorophyll fluorescence of hydroponic lettuce [J]. Southwest China Journal of Agricultural Sciences, 2019, 32(8): 1784−1790.(in Chinese) [21] 闫晓花, 郁继华. LED补光对温室黄瓜幼苗抗衰老及抗氧化酶系统的影响 [J]. 中国沙漠, 2016, 36(2):392−398.YAN X H, YU J H. Effects of supplemental LED light on photosynthetic pigment contents and antioxidant enzyme activities of cucumber seedling leaves [J]. Journal of Desert Research, 2016, 36(2): 392−398.(in Chinese) [22] HALLIDAY K J, MARTÍNEZ-GARCÍA J F, JOSSE E M. Integration of light and auxin signaling [J]. Cold Spring Harbor Perspectives in Biology, 2009, 1(6): a001586. [23] 张悦. 不同光质、光照强度及光周期对苦苣生长特性及营养品质的影响[D]. 武汉: 华中农业大学, 2021.ZHANG Y. Effects of different light quality, light intensity and photoperiod on growth characteristics and nutritional quality of chicory[D]. Wuhan: Huazhong Agricultural University, 2021. (in Chinese) [24] ALAM M, KHAN M A, IMTIAZ M, et al. Indole-3-Acetic Acid Rescues Plant Growth and Yield of Salinity Stressed Tomato (Lycopersicon esculentum L.) [J]. Gesunde Pflanzen, 2020, 72: 87−95. doi: 10.1007/s10343-019-00489-z [25] MADANI S M, PIRI S, SEDAGHATHOOR S. The response of three mandarin cultivars grafted on sour orange rootstock to salinity stress [J]. International Journal of Fruit Science, 2022, 22(1): 264−274. doi: 10.1080/15538362.2022.2036669 [26] BHUTTA T S, ZAFAR-UL-HYE M, SHAABAN M, et al. Influence of plant growth promoting rhizobacterial inoculation on wheat productivity under soil salinity stress [J]. Phyton, 2019, 88(2): 119. doi: 10.32604/phyton.2019.06570 [27] GERAMI M, MAJIDIAN P, GHORBANPOUR A, et al. Stevia rebaudiana Bertoni responses to salt stress and chitosan elicitor [J]. Physiology and Molecular Biology of Plants:an International Journal of Functional Plant Biology, 2020, 26(5): 965−974. doi: 10.1007/s12298-020-00788-0 [28] SAYYAD-AMIN P, JAHANSOOZ M R, BORZOUEI A, et al. Changes in photosynthetic pigments and chlorophyll-a fluorescence attributes of sweet-forage and grain sorghum cultivars under salt stress [J]. Journal of Biological Physics, 2016, 42(4): 601−620. doi: 10.1007/s10867-016-9428-1 [29] JAYAWARDENA D M, HECKATHORN S A, BOLDT J K. Effects of Elevated Carbon Dioxide and Chronic Warming on Nitrogen (N)-Uptake Rate, -Assimilation, and -Concentration of Wheat [J]. Plants (Basel)., 2020, 9(12): 1689. [30] CECHIN I, DE FÁTIMA F T. Effect of nitrogen supply on growth and photosynthesis of sunflower plants grown in the greenhouse [J]. Plant Science, 2004, 166(5): 1379−1385. doi: 10.1016/j.plantsci.2004.01.020 [31] CHEN J, LIU S D, ZHANG S P, et al. Nitrogen modulates cotton root morphology by affecting abscisic acid (ABA) and salicylic acid (SA) content [J]. Archives of Agronomy and Soil Science, 2021, 67(12): 1722−1738. doi: 10.1080/03650340.2020.1807518 [32] FORNARI E Z, GAVIRAGHI L, BASSO C J, et al. Relationship between photosynthetic pigments and corn production under nitrogen sources [J]. Pesquisa Agropecuária Tropical, 2020, 50: 1−9. [33] CHEN G, WANG L, FABRICE M R, et al. Physiological and nutritional responses of pear seedlings to nitrate concentrations [J]. Frontiers in Plant Science, 2018: 1679. [34] CRUZ J L, MOSQUIM P R, PELACANI C R, et al. Photosynthesis impairment in cassava leaves in response to nitrogen deficiency [J]. Plant and Soil, 2003, 257(2): 417−423. doi: 10.1023/A:1027353305250 [35] ZANGANI E, AFSAHI K, SHEKARI F. Nitrogen and Phosphorus Addition to Soil Improves Seed Yield, Foliar Stomatal Conductance, and the Photosynthetic Response of Rapeseed (Brassica napus L.) [J]. Agriculture., 2021, 11(6): 483. doi: 10.3390/agriculture11060483 [36] TU P F, DENG L S, LI J, et al. Effect of phosphorus on N, P, K, Mg accumulation and plant growth of different citrus rootstocks [J]. Applied Ecology and Environmental Research, 2018, 16(1): 819−836. doi: 10.15666/aeer/1601_819836 [37] JOHNSON N C. Responses of Salsola kali and Panicum virgatum to mycorrhizal fungi, phosphorus and soil organic matter: implications for reclamation [J]. Journal of Applied Ecology, 1998, 35: 86−94. doi: 10.1046/j.1365-2664.1998.00277.x [38] SOBCZAK A, KOWALCZYK K, GAJC-WOLSKA J, et al. Growth, yield and quality of sweet pepper fruits fertilized with polyphosphates in hydroponic cultivation with LED lighting [J]. Agronomy, 2020, 10(10): 1560. doi: 10.3390/agronomy10101560 [39] CETNER M D, KALAJI H M, BORUCKI W. Phosphorus deficiency affects the I-step of chlorophyll a fluorescence induction curve of radish [J]. Photosynthetica, 2020, 58(2): 671−681.