Complete Chloroplast Genome of Endangered Impatiens omeiana
-
摘要:
目的 对峨眉凤仙花(Impatiens omeiana Hook.f.)叶绿体基因组的结构特征及系统发育进行研究,为其资源保护及开发利用提供理论依据。 方法 基于峨眉凤仙花叶绿体基因组序列,利用生物信息学软件,对叶绿体基因组进行组装、注释、基因特征、序列重复和系统发育分析。 结果 峨眉凤仙花完整的叶绿体基因组长度为152527 bp,共有130个基因,包括86个蛋白质编码基因、8个rRNA基因和36个tRNA基因,GC含量为37%,且具有保守的四分体结构,包括大单拷贝区、小单拷贝区各1个和2个相同的反向重复区域,其长度分别为83150、17903、25 737 bp,其中13个基因有1个内含子,2个基因有2个内含子。特征分析表明:峨眉凤仙花叶绿体全基因组中共检测到76个SSR序列,且多以A/T单核苷酸序列为主,其长度为10~91 bp;检测到50842个密码子,其中以亮氨酸(Leu)最多,色氨酸(Tyr)最少;密码子偏好性分析显示33个RSCU≥1的密码子多数以A/U结尾。通过邻接法(NJ)构建系统发育树发现,峨眉凤仙花与贵州凤仙花亲缘关系最近,均属于棒凤仙花亚属植物。 结论 峨眉凤仙花叶绿体基因组呈典型的四分体结构,SSR序列以A/T单碱基为主;系统发育分析结果将其归为棒凤仙花亚属,上述结果为峨眉凤仙花系统发育学地位及物种鉴定工作提供了重要的分子信息。 Abstract:Objective Chloroplast genome structure and phylogeny of the endangered Impatiens omeiana Hook.f. endemic species in China were studied. Method Gene assembly, annotation, characteristics, sequence duplication, and phylogenetics of I. omeiana were analyzed based on the chloroplast genome sequence using bioinformatic software. Results The genome was 152527 bp consisting of 130 gene, including 86 protein-coding, 8 rRNA, and 36 tRNA genes. It had a GC content of 37% and a conservative tetrad structure with regions of a large single-copy of 83150 bp, a small single-copy of 17903 bp, and two identical reverse repeats of 25 737 bp. Thirteen of the genes had one intron, and two had two. There were 76 SSR sequences detected in the genome mainly of A/T single nucleotides with a length ranging from 10 bp to 91 bp. A total of 50842 codons were found in the entire genome. Among the amino acids, leucine (Leu) was the most numerous and tryptophan (Tyr) the least. A codon bias analysis showed those of 33 RSCU>1 had A/U on their ends. Using the Neighbor Joining method (NJ), a phylogenetic tree was constructed based on the chloroplast genomes from different plants to show a close relationship of I. omeiana with I. guizhouensis belonging to the subgenus Clavicarpa. Conclusion The chloroplast genome of I. omeiana had a typical tetrad structure of many SSR repeated sequences with A/T single base. Phylogenetically, I. omeiana was a Clavicarpa subgenus. These results provide important molecular information for the phylogenetic status and species identification of I. omeiana. -
表 1 峨眉凤仙花叶绿体基因组基因信息
Table 1. Information on chloroplast genome of I. omeiana
基因类别Category of genes 基因分类Group of genes 基因名称Name of gene 自我复制Self-replication 核糖体的小亚基Small subunit of ribosome rps11、rps14、rps15、rps16、rps18、rps2、rps3、rps4、rps8、rps7(×2)、rps12(×2)、rps19(×2) 核糖体的大亚基Large subunit of ribosome rpl14、rpl16、rpl20、rpl22、rpl33、rpl36、rpl2(×2)、rpl23(×2) 依赖于DNA的RNA聚合酶DNA dependent RNA polymerase rpoA、rpoB、rpoC1、rpoC2 光合作用Photosynthesis 光系统I亚基Subunits of photosystem I psaA、psaB、psaC、psaI、psaJ 光系统II亚基Subunits of photosystem II psbA、psbB、psbC、psbD、psbE、psbF、psbI、psbJ、psbK、psbL、psbM、psbN、psbT、psbZ、ycf3 NADH脱氢酶亚基Subunits of NADH-dehydrogenase ndhA、ndhC、ndhD、ndhE、ndhF、ndhG、ndhH、ndhI、ndhJ、ndhK、ndhB(×2) 细胞色素b/f复合体Subunits of cytochrome b/f complex petA、petB、petD、petG、petL、petN ATP合酶亚基Subunits of ATP synthase atpA、atpB、atpE、atpF、atpH、atpI 二磷酸核酮糖羧化酶Subunit of rubisco rbcL rRNA rRNA 基因rRNA genes rrn5S(×2)、rrn16S(×2)、rrn4.5S(×2)、rrn23S(×2) tRNA tRNA基因tRNA genes 36 trn 基因(5 个内含子) 其他Others 乙酰辅酶A羧化酶亚基Subunit of Acetyl-CoA-carboxylase accD C型细胞色素合成酶c-type cytochrom synthesis gene ccsA 外膜蛋白Envelop membrane protein cemA 蛋白酶Protease clpP 翻译起始因子Translational initiation factor infA 成熟酶Maturase matK 未知功能Unknown 保守的开放阅读框Conserved open reading frames ycf1、ycf4、ycf2(×2) 表 2 峨眉凤仙花叶绿体基因组中内含子和外显子位置及长度
Table 2. Positions and lengths of introns and exons in chloroplast genome of I. omeiana
基因名称Gene name 起始位置Start/bp 终点位置End/bp 序列长度Length of sequence/bp 第一外显子Exon I 第一内含子Intron I 第二外显子Exon II 第二内含子Intron II 第三外显子Exon III trnK-UUU 1642 4242 37 2528 36 rps16 4905 5950 40 809 197 atpF 10711 11913 145 648 410 rpoC1 19925 22723 432 750 1617 ycf3 41988 43909 124 711 230 704 153 trnL-UAA 46816 47428 35 528 50 trnV-UAC 50658 51332 38 602 35 accD 56549 58045 648 33 816 clpP 69103 71130 71 795 294 645 223 rpl2 83406 84895 391 665 434 ndhB 93523 95728 775 673 758 trnE-UUC 101206 102209 32 932 40 trnA-UGC 102273 103146 37 801 36 ndhA 118162 120335 547 1088 539 ycf1 122240 127192 1642 30 3281 trnA-UGC 132532 133405 37 801 36 trnE-UUC 133469 134472 32 932 40 ndhB 139950 142155 775 673 758 rpl2 150783 152272 391 665 434 表 3 峨眉凤仙花叶绿体基因组SSR类型及分布
Table 3. SSR types and distribution of chloroplast genome of I. omeiana
重复类型Repeat type 重复单元Repeat unit 重复频率Repetition frequency 数量Number 不同类型SSR的分布起始位点Distribution initiation loci of different SSR types/bp 单核苷酸Mononucleotides A 10 15 5313,6149,7515,7680,7924,31792,44011,46201,50989, 55996,70336,80231,108748,133991,137883 A 11 3 7807,44377,69853 A 12 5 1803,11479,29832,108859,111109 A 13 1 111913 A 14 1 60218 T 10 14 7133,25317,26410,30416,31579,47674,48233,49787,97786,101678,113939, 126921,69853,126569 T 11 14 7300,10671,13405,17614,34889,45803,75910,81044,113373,116058,118964,124837,124972,125993 T 12 8 11343,26853,29527,53623,59969,81205,124351,126808 T 13 3 77265,79172,109650 T 14 2 2906,77053 T 17 1 64052 二核苷酸Dinucleotides AT 6 2 46389,53926 TA 7 2 96020,139645 三核苷酸Trinucleotides ATT 4 2 65188,119570 四核苷酸Tetranucleotides AATA 3 1 114206 AATT 3 1 62783 TTCT 3 1 56243 表 4 峨眉凤仙花叶绿体基因组密码子RSCU分布情况
Table 4. RSCU distribution of chloroplast genome codons of I. omeiana
氨基酸Amino acid 密码子Codon 数量Number 密码子偏好性值RSCU 氨基酸Amino acid 密码子Codon 数量Number 密码子偏好性值RSCU 苯丙氨酸Phe UUU 2298 1.24 脯氨酸Pro CCU 649 1.10 UUC 1397 0.76 CCC 571 0.97 亮氨酸Leu UUA 1197 1.37 CCA 743 1.26 UUG 1013 1.16 CCG 388 0.66 CUU 1058 1.21 苏氨酸Thr ACU 645 1.22 CUC 659 0.76 ACC 512 0.97 CUA 838 0.96 ACA 649 1.22 CUG 469 0.54 ACG 316 0.60 异亮氨酸Ile AUU 1770 1.23 丙氨酸Ala GCU 522 1.32 AUC 1033 0.72 GCC 349 0.88 AUA 1507 1.05 GCA 474 1.20 蛋氨酸Met AUG 812 1.00 GCG 241 0.61 缬氨酸Val GUU 786 1.36 甘氨酸Gly GGU 538 0.95 GUC 409 0.71 GGC 344 0.61 GUA 709 1.22 GGA 866 1.53 GUG 413 0.71 GGG 513 0.91 续上表 氨基酸Amino acid 密码子Codon 数量Number 密码子偏好性值RSCU 氨基酸Amino acid 密码子Codon 数量Number 密码子偏好性值RSCU 丝氨酸Ser UCU 1130 1.47 组氨酸His CAU 836 1.39 UCC 854 1.11 CAC 365 0.61 UCA 1050 1.36 谷氨酰胺Gln CAA 1011 1.36 UCG 559 0.73 CAG 474 0.64 AGU 612 0.79 天冬酰胺Asn AAU 1657 1.40 AGC 421 0.55 AAC 705 0.60 络氨酸Tyr UAU 1346 1.37 赖氨酸Lys AAA 2241 1.38 UAC 618 0.63 AAG 1005 0.62 半胱氨酸Cys UGU 649 1.21 天冬氨酸Asp GAU 1070 1.46 UGC 425 0.79 GAC 397 0.54 末端TER UAA 1135 1.13 精氨酸Arg CGU 332 0.64 UAG 806 0.80 CGC 244 0.47 UGA 1072 1.07 CGA 603 1.17 谷氨酸Glu GAA 1323 1.39 CGG 340 0.66 GAG 585 0.61 AGA 1046 2.03 色氨酸Trp UGG 709 1.00 AGG 534 1.03. -
[1] 曾小华. 遮荫对野生峨眉凤仙花的影响[D]. 雅安: 四川农业大学, 2016.ZENG X H. Effects of shading on wild Impatiens omeiana hook. f. [D]. Yaan: Sichuan Agricultural University, 2016. (in Chinese) [2] 袁桃花, 李美君, 任柳伊, 等. 中国野生凤仙花属物种多样性和地理分布数据集 [J]. 生物多样性, 2022, 30(5):118−122.YUAN T H, LI M J, REN L Y, et al. A dataset on the diversity and geographical distributions of wild Impatiens in China [J]. Biodiversity Science, 2022, 30(5): 118−122.(in Chinese) [3] CHOI K S, CHUNG M G, PARK S. The complete chloroplast genome sequences of three veroniceae species (Plantaginaceae): Comparative analysis and highly divergent regions [J]. Frontiers in Plant Science, 2016, 7: 355. [4] 苏丹丹, 刘玉萍, 刘涛, 等. 苦马豆叶绿体基因组结构及其特征分析 [J]. 植物研究, 2022, 42(3):446−454.SU D D, LIU Y P, LIU T, et al. Structure of chloroplast genome and its characteristics of Sphaerophysa salsula [J]. Bulletin of Botanical Research, 2022, 42(3): 446−454.(in Chinese) [5] 相银龙. 川西南凤仙花属Impatiens L. 植物区系及亲缘关系研究[D]. 长沙: 湖南师范大学, 2011.XIANG Y L. Study on the flora and phylogeny of Impatiens L. in Southwest Sichuan[D]. Changsha: Hunan Normal University, 2011. (in Chinese) [6] WERNEGREEN J J. Endosymbiont evolution: Predictions from theory and surprises from genomes [J]. Annals of the New York Academy of Sciences, 2015, 1360(1): 16−35. doi: 10.1111/nyas.12740 [7] 陈新露, 赵祥云, WHITE B N, 等. 应用RAPD技术评价丁香品种间遗传关系 [J]. 园艺学报, 1995, 22(2):171−175. doi: 10.3321/j.issn:0513-353X.1995.02.022CHEN X L, ZHAO X Y, WHITE B N, et al. Analysis of genetic relationship among lilacs(Syringa)by RAPD [J]. Acta Horticulturae Sinica, 1995, 22(2): 171−175.(in Chinese) doi: 10.3321/j.issn:0513-353X.1995.02.022 [8] LI Z Z, SAINA J K, GICHIRA A W, et al. Comparative genomics of the Balsaminaceae sister Genera Hydrocera triflora and Impatiens pinfanensis [J]. International Journal of Molecular Sciences, 2018, 19(1): 319. doi: 10.3390/ijms19010319 [9] SHINOZAKI K, OHME M, TANAKA M, et al. The complete nucleotide sequence of the tobacco chloroplast genome [J]. Plant Molecular Biology Reporter, 1986, 4(3): 111−148. doi: 10.1007/BF02669253 [10] YU S X, JANSSENS S B, ZHU X Y, et al. Phylogeny of Impatiens (Balsaminaceae): Integrating molecular and morphological evidence into a new classification [J]. Cladistics:the International Journal of the Willi Hennig Society, 2016, 32(2): 179−197. doi: 10.1111/cla.12119 [11] 夏常英. 凤仙花属(Impatiens)棒凤仙花亚属(subg. Clavicarpa)的系统学研究及分类修订[D]. 重庆: 西南大学, 2020.XIA C Y. Phylogeny study and taxonomic revision of Impatiens subg. clavicarpa[D]. Chongqing: Southwest University, 2020. (in Chinese) [12] JANSSENS S B, KNOX E B, DESSEIN S, et al. Impatiens msisimwanensis (Balsaminaceae): Description, pollen morphology and phylogenetic position of a new East African species [J]. South African Journal of Botany, 2009, 75(1): 104−109. doi: 10.1016/j.sajb.2008.08.003 [13] 李祥军, 唐文秀, 黄仕训. 桂林大旗瓣凤仙花遗传多样性的ISSR分析 [J]. 广东农业科学, 2013, 40(13):142−144. doi: 10.3969/j.issn.1004-874X.2013.13.044LI X J, TANG W X, HUANG S X. ISSR analysis for genetic diversity of Impatiens macrovexilla in Guilin [J]. Guangdong Agricultural Sciences, 2013, 40(13): 142−144.(in Chinese) doi: 10.3969/j.issn.1004-874X.2013.13.044 [14] YUAN Y M, YI S, GE X. Impatiens qingchengshanica (Balsaminaceae), a unique new species from China and its phylogenetic position [J]. Botanical Studies, 2011, 52: 225−230. [15] 蔡秀珍. 中国凤仙花属Impatiens L. 一些系统学问题的研究[D]. 长沙: 湖南师范大学, 2008.CAI X Z. Study on some phylogenetic problems in Impatiens L. of China[D]. Changsha: Hunan Normal University, 2008. (in Chinese) [16] JIN J J, YU W B, YANG J B, et al. GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes [J]. Genome Biology, 2020, 21(1): 241. doi: 10.1186/s13059-020-02154-5 [17] SHI L C, CHEN H M, JIANG M, et al. CPGAVAS2, an integrated plastome sequence annotator and analyzer [J]. Nucleic Acids Research, 2019, 47(W1): W65−W73. doi: 10.1093/nar/gkz345 [18] ZHENG S Y, POCZAI P, HYVÖNEN J, et al. Chloroplot: An online program for the versatile plotting of organelle genomes [J]. Frontiers in Genetics, 2020, 11: 576124. doi: 10.3389/fgene.2020.576124 [19] THIEL T, MICHALEK W, VARSHNEY R, et al. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L. ) [J]. Theoretical and Applied Genetics, 2003, 106(3): 411−422. doi: 10.1007/s00122-002-1031-0 [20] LANGMEAD B, TRAPNELL C, POP M, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome [J]. Genome Biology, 2009, 10(3): R25. doi: 10.1186/gb-2009-10-3-r25 [21] KATOH K, STANDLEY D M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability [J]. Molecular Biology and Evolution, 2013, 30(4): 772−780. doi: 10.1093/molbev/mst010 [22] KUMAR S, STECHER G, LI M, et al. MEGA X: Molecular evolutionary genetics analysis across computing platforms [J]. Molecular Biology and Evolution, 2018, 35(6): 1547−1549. doi: 10.1093/molbev/msy096 [23] WEN F, WU X Z, LI T J, et al. The complete chloroplast genome of Stauntonia chinensis and compared analysis revealed adaptive evolution of subfamily Lardizabaloideae species in China [J]. BMC Genomics, 2021, 22(1): 161. doi: 10.1186/s12864-021-07484-7 [24] 富贵, 刘晶, 李军乔. 密花香薷叶绿体基因组结构及系统进化分析 [J]. 中草药, 2022, 53(6):1844−1853.FU G, LIU J, LI J Q. Characterization of chloroplast genome structure and phyletic evolution of Elsholtzia densa [J]. Chinese Traditional and Herbal Drugs, 2022, 53(6): 1844−1853.(in Chinese) [25] WANG Q, LI W Q, DING B, et al. Characterization of the complete chloroplast genome sequence of Impatiens pritzelii (Balsaminaceae): An endemic species from China [J]. Mitochondrial DNA Part B, 2019, 4(2): 4073−4074. doi: 10.1080/23802359.2019.1689862 [26] LI B Z, LI Y, LI Z F, et al. The complete chloroplast genome of Impatiens mengtszeana (Balsaminaceae), an endemic species in China [J]. Mitochondrial DNA Part B, 2022, 7(2): 367−369. doi: 10.1080/23802359.2021.1994894 [27] LUO C, HUANG W L, ZHU J P, et al. The complete chloroplast genome of Impatiens uliginosa Franch., an endemic species in Southwest China [J]. Mitochondrial DNA Part B, 2019, 4(2): 3846−3847. doi: 10.1080/23802359.2019.1687024 [28] 赵容, 尹舒悦, 姜诚淏, 等. 马兜铃科药用植物叶绿体基因组比较分析 [J]. 中国中药杂志, 2022, 47(11):2932−2937.ZHAO R, YIN S Y, JIANG C H, et al. Comparison of chloroplast genomes of medicinal plants in Aristolochiaceae [J]. China Journal of Chinese Materia Medica, 2022, 47(11): 2932−2937.(in Chinese) [29] LUO C, LI Y, BUDHATHOKI R, et al. Complete chloroplast genomes of Impatiens cyanantha and Impatiens monticola: Insights into genome structures, mutational hotspots, comparative and phylogenetic analysis with its congeneric species [J]. PLoS One, 2021, 16(4): e0248182. doi: 10.1371/journal.pone.0248182 [30] 王仕奇, 王倩倩, 许晓晨, 等. 龙船花叶绿体基因组结构与特征分析[J/OL]. 分子植物育种, 2022: 1-14. (2022-02-25).https://kns.cnki.net/kcms/detail/46.1068.S.20220223.1836.019.html.WANG S Q, WANG Q Q, XU X C, et al. Chloroplast genome structure and characterization of Ixora chinensis[J/OL]. Molecular Plant Breeding, 2022: 1-14. (2022-02-25).https://kns.cnki.net/kcms/detail/46.1068.S.20220223.1836.019.html.(in Chinese) [31] 钱方, 高作敏, 胡利娟, 等. 海甘蓝(Crambe abyssinica)叶绿体基因组特征及其系统发育研究 [J]. 生物技术通报, 2022, 38(6):174−186.QIAN F, GAO Z M, HU L J, et al. Characteristics of Crambe abyssinica chloroplast genome and its phylogenetic relationship in Brassicaceae [J]. Biotechnology Bulletin, 2022, 38(6): 174−186.(in Chinese) [32] LUO C, HUANG W L, SUN H Y, et al. Comparative chloroplast genome analysis of Impatiens species (Balsaminaceae) in the Karst area of China: Insights into genome evolution and phylogenomic implications [J]. BMC Genomics, 2021, 22(1): 571. doi: 10.1186/s12864-021-07807-8 [33] 吴林世, 廖菊阳, 刘艳, 等. 基于高通量测序的羊踯躅叶绿体基因组及SSR序列分析 [J]. 经济林研究, 2022, 40(1):123−131. doi: 10.14067/j.cnki.1003-8981.2022.01.014WU L S, LIAO J Y, LIU Y, et al. Chloroplast genome and SSR sequence analysis of Rhododendron molle based on high throughput sequencing [J]. Non-Wood Forest Research, 2022, 40(1): 123−131.(in Chinese) doi: 10.14067/j.cnki.1003-8981.2022.01.014 [34] 杨祥燕, 蔡元保, 谭秦亮, 等. 菠萝叶绿体基因组密码子偏好性分析 [J]. 热带作物学报, 2022, 43(3):439−446. doi: 10.3969/j.issn.1000-2561.2022.03.001YANG X Y, CAI Y B, TAN Q L, et al. Analysis of Codon usage bias in the chloroplast genome of Ananas comosus [J]. Chinese Journal of Tropical Crops, 2022, 43(3): 439−446.(in Chinese) doi: 10.3969/j.issn.1000-2561.2022.03.001 [35] 汤晨茜, 仇志欣, 檀超, 等. 陕甘花楸叶绿体基因组及其与爪瓣花楸的系统关系 [J]. 园艺学报, 2022, 49(3):641−654. doi: 10.16420/j.issn.0513-353x.2021-0040TANG C Q, QIU Z X, TAN C, et al. Sorbus koehneana(Rosaceae): Its complete chloroplast genome and phylogenetic relationship with S. unguiculata [J]. Acta Horticulturae Sinica, 2022, 49(3): 641−654.(in Chinese) doi: 10.16420/j.issn.0513-353x.2021-0040 [36] 方琰, 胡莎莎, 张冬群, 等. 球状轮藻叶绿体全基因组的组装与特征分析 [J]. 四川大学学报(自然科学版), 2021, 58(4):181−190. doi: 10.19907/j.0490-6756.2021.046004FANG Y, HU S S, ZHANG D Q, et al. Assembly and characteristic analysis of Chara globularis chloroplast whole genome [J]. Journal of Sichuan University (Natural Science Edition), 2021, 58(4): 181−190.(in Chinese) doi: 10.19907/j.0490-6756.2021.046004