Expressions and Responses to Abiotic Stresses and Plant Growth Regulator of Tomato GT-1
-
摘要:
目的 完善番茄GT-1亚家族基因的相关功能信息,为进一步研究Trihelix转录因子调控植物生长发育过程、提高植物非生物胁迫的抗性能力提供参考。 方法 利用生物信息学方法对GT-1基因进行生物进化分析,利用RT-PCR技术鉴定GT-1基因对非生物胁迫和植物生长调节剂的响应。 结果 (1)番茄中包含3个GT-1基因,即SlGT-21、SlGT-24和SlGT-35,进化分析表明番茄GT-1基因存在功能分化。(2)表达模式分析发现,3个基因于番茄所有组织中均表达,特别是果实发育阶段,推测SlGT-21、SlGT-35有部分类似功能。(3)3个GT-1基因受干旱抑制,但SlGT-24受抑制更明显;3个基因均响应盐胁迫,SlGT-21、SlGT-35基因被较明显抑制。(4)3个基因受植物生长调节剂GA(赤霉素)、EBR(表油菜素内酯)、MeJA(茉莉酸甲酯)抑制,但SlGT-24、SlGT-35受ABA(脱落酸)诱导,而SlGT-24还受ACC(1-氨基环丙烷羧酸)诱导。 结论 番茄GT-1亚家族3个基因受盐、干旱的调控,且对植物生长调节剂的响应明显。该研究为深入探究GT-1亚家族成员的生物功能提供了重要参考。 Abstract:Objective Genetic information and functions of trihelix factors in GT-1 critical to the growth, development, and resistance to abiotic stresses and plant growth regulator of tomato plants were investigated. Method Bioinformatic techniques were applied to decipher the bio-evolutionary of GT-1 in tomato. RT-PCR was used to determine the expressions and responses to abiotic stresses and plant growth regulator of the gene. Result (1) In tomato, GT-1 had 3 subfamily members, i.e., SlGT-21, SlGT-24, and SlGT-35. The evolutionary analysis indicated that those members differentiated functionally. (2) The 3 subfamily genes expressed in all tested tomato tissues with the highest level in the fruits, especially during the growing stage. It was speculated that SlGT-21 and SlGT-35 might share some common functionalities. (3) All 3 genes, particularly SlGT-24, could be suppressed by dehydration, and SlGT-21 and SlGT-35 more severely affected by salt stress. (4) The expressions of these genes were inhibited by GA(Gibberellin), EBR(Epihomobrassinolide), and MeJA (Methyl jasmonate); but those of SlGT-24 induced by ABA (Abscisic acid) and ACC(1-Aminocyclopropanecarboxylic acid), and SlGT-35 by ABA. Conclusion Three GT-1 subfamily genes of tomato plants could be regulated by salt and/or dehydration stresses and were sensitive to hormonal stimulations. -
Key words:
- Solanum lycopersicom /
- GT-1 genes /
- expression /
- abiotic stress /
- Plant growth regulator treatments
-
图 3 番茄不同组织中GT-1基因的表达模式
R:根;ST:茎; YL:幼叶; ML:成熟叶;SL:老叶; F:花; IMG:未成熟果实; MG:成熟果实;B:破色期; B+4:破色后4 d;B+7:破色后7 d。不同小写字母表示不同番茄组织之间差异显著(P<0.05)。图4、5同。
Figure 3. Expressions of GT-1 genes in different tissues of AC++
RT: roots; ST: stems; YL: young leaves; ML: mature leaves; SL: senescent leaves; FL: flowers; IMG: immature green fruits; MG: mature green fruits; B: color break in fruits; B+4: 4d after color-break; B+7: 7d after color-break. Data with different lowercase letters represent significant differences at P<0.05. Same for Figs. 4 and 5.
表 1 研究中所用引物信息
Table 1. Primers applied
引物名称Primer names 序列(5′ - 3′)Sequences(5′ -3′) qSlCAC-F CCTCCGTTGTGATGTAACTGG qSlCAC-R ATTGGTGGAAAGTAACATCATCG qSlEF1α-F TACTGGTGGTTTTGAAGCTG qSlEF1α-R AACTTCCTTCACGATTTCATCATA qSlGT-21-F GCAATTCGAGGTGAGCTTGAG qSlGT-21-R TGTTTCCTTACCCTTGTAACGATT qSlGT-24-F TGGAGGTGTTAATATTGGAGGAGG qSlGT-24-R TGCATTTACACTGTTCTGGGC qSlGT-35-F ACATGGAACCGGTGAGCC qSlGT-35-R TGCACGCTTTGTCCTTAATCG -
[1] YU C Y, CAI X F, YE Z B, et al. Genome-wide identification and expression profiling analysis of trihelix gene family in tomato [J]. Biochemical and Biophysical Research Communications, 2015, 468(4): 653−659. doi: 10.1016/j.bbrc.2015.11.010 [2] KAPLAN-LEVY R N, BREWER P B, QUON T, et al. The trihelix family of transcription factors–light, stress and development [J]. Trends in Plant Science, 2012, 17(3): 163−171. doi: 10.1016/j.tplants.2011.12.002 [3] FLUHR R, KUHLEMEIER C, NAGY F, et al. Organ-specific and light-induced expression of plant genes [J]. Science, 1986, 232(4754): 1106−1112. doi: 10.1126/science.232.4754.1106 [4] LIU W, ZHANG Y W, LI W, et al. Genome-wide characterization and expression analysis of soybean trihelix gene family [J]. PeerJ, 2020, 8: e8753. doi: 10.7717/peerj.8753 [5] HARRISON M J, LAWTON M A, LAMB C J, et al. Characterization of a nuclear protein that binds to three elements within the silencer region of a bean chalcone synthase gene promoter [J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(6): 2515−2519. doi: 10.1073/pnas.88.6.2515 [6] CHATTOPADHYAY S, PUENTE P, DENG X W, et al. Combinatorial interaction of light-responsive elements plays a critical role in determining the response characteristics of light-regulated promoters in Arabidopsis [J]. The Plant Journal:for Cell and Molecular Biology, 1998, 15(1): 69−77. doi: 10.1046/j.1365-313X.1998.00180.x [7] LAM E. Domain analysis of the plant DNA-binding protein GT1a: Requirement of four putative alpha-helices for DNA binding and identification of a novel oligomerization region [J]. Molecular and Cellular Biology, 1995, 15(2): 1014−1020. doi: 10.1128/MCB.15.2.1014 [8] LE GOURRIEREC J, LI Y F, ZHOU D X. Transcriptional activation by Arabidopsis GT-1 may be through interaction with TFIIA-TBP-TATA complex [J]. The Plant Journal:for Cell and Molecular Biology, 1999, 18(6): 663−668. doi: 10.1046/j.1365-313x.1999.00482.x [9] HIRATSUKA K, WU X, FUKUZAWA H, et al. Molecular dissection of GT-1 from Arabidopsis [J]. The Plant Cell, 1994, 6(12): 1805−1813. [10] LIU X Q, ZHANG H, MA L, et al. Genome-wide identification and expression profiling analysis of the trihelix gene family under abiotic stresses in Medicago truncatula [J]. Genes, 2020, 11(11): 1389. doi: 10.3390/genes11111389 [11] WANG W L, WU P, LIU T K, et al. Genome-wide analysis and expression divergence of the trihelix family in Brassica rapa: Insight into the evolutionary patterns in plants [J]. Scientific Reports, 2017, 7(1): 1−15. doi: 10.1038/s41598-016-0028-x [12] LI K Y, DUAN L L, ZHANG Y B, et al. Genome-wide identification and expression profile analysis of trihelix transcription factor family genes in response to abiotic stress in Sorghum[Sorghum bicolor (L. ) Moench [J]. BMC Genomics, 2021, 22(1): 738. doi: 10.1186/s12864-021-08000-7 [13] MARÉCHAL E, HIRATSUKA K, DELGADO J, et al. Modulation of GT-1 DNA-binding activity by calcium-dependent phosphorylation [J]. Plant Molecular Biology, 1999, 40(3): 373−386. doi: 10.1023/A:1006131330930 [14] WANG R, HONG G F, HAN B. Transcript abundance of rml1, encoding a putative GT1-like factor in rice, is up-regulated by Magnaporthe grisea and down-regulated by light [J]. Gene, 2004, 324: 105−115. doi: 10.1016/j.gene.2003.09.008 [15] PARK H C, KIM M L, KANG Y H, et al. Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor [J]. Plant Physiology, 2004, 135(4): 2150−2161. doi: 10.1104/pp.104.041442 [16] LI N, WEI S T, CHEN J, et al. OsASR2 regulates the expression of a defence-related gene, Os2H16, by targeting the GT-1 cis-element [J]. Plant Biotechnology Journal, 2018, 16(3): 771−783. doi: 10.1111/pbi.12827 [17] YU C Y, SONG L L, SONG J W, et al. ShCIGT, a Trihelix family gene, mediates cold and drought tolerance by interacting with SnRK1 in tomato [J]. Plant Science, 2018, 270: 140−149. doi: 10.1016/j.plantsci.2018.02.012 [18] ZHU M K, CHEN G P, ZHANG J L, et al. The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum) [J]. Plant Cell Reports, 2014, 33(11): 1851−1863. doi: 10.1007/s00299-014-1662-z [19] KOU E F, HUANG X M, ZHU Y N, et al. Crosstalk between auxin and gibberellin during stalk elongation in flowering Chinese cabbage [J]. Scientific Reports, 2021, 11(1): 1−9. doi: 10.1038/s41598-020-79139-8 [20] YANG Y J, MAO L C, GUAN W L, et al. Exogenous 24-epibrassinolide activates detoxification enzymes to promote degradation of boscalid in cherry tomatoes [J]. Journal of the Science of Food and Agriculture, 2021, 101(6): 2210−2217. doi: 10.1002/jsfa.10840 [21] CALLEBAUT I, MOSHOUS D, MORNON J, et al. Metallo‐β‐lactamase fold within nucleic acids processing enzymes: The β‐CASP family [J]. Nucleic Acids Research, 2002, 30(16): 3592−3601. doi: 10.1093/nar/gkf470