Grain Shape and Quality of Premium Rice Restorer Fuhui 676
-
摘要:
目的 福恢676是福建省农业科学院水稻研究所在“丰产性、抗逆性、优质性及适应性”水稻育种策略指导下育成的强优势恢复系。对福恢676的粒形和米质进行相关研究,可以为该恢复系更好地应用于育种生产提供理论依据。 方法 将福恢676、亲本明恢63和蜀恢527、恢复系明恢86和福恢673种植于福州、泉州及三明试验基地,收获成熟种子,自然晒干。测量各恢复系的谷粒长、宽及厚度,称取千粒重,测定各恢复系的米质,并进行比较分析。采用CTAB法提取水稻基因组DNA,PCR扩增Wx基因片段,采用限制性内切酶Acc I对PCR产物进行酶切分析,根据琼脂糖电泳结果及测序分析确定Wx基因第一内含子+1位碱基类型。采用Trizol法提取水稻种子总RNA,进一步采用SYBR Green I荧光定量PCR(qRT-PCR)分析灌浆不同时期控制粒形和米质相关基因的表达情况。 结果 福恢676的谷粒长大多为10.0~11.0 mm,宽约2.70 mm,厚约2.00 mm,千粒重27.0~31.0 g。福恢676的糙米率大于81.0%,胶稠度大于60.0 mm,直链淀粉含量在13.0%~18.0%,达到一级米标准;福恢676的整精米率高于其他4个恢复系,垩白率和垩白度高于亲本明恢63与蜀恢527,低于明恢86和福恢673。福恢676和其他4个恢复系中Wx基因第一内含子+1位碱基均为T,即Wx基因型为Wxb。福恢676中控制粒形相关基因GL7的表达在灌浆11 d时明显下降; GS3、SGL和GIF1的表达先升高后降低,且在灌浆7 d时表达量最高;GW8的表达先降低后升高,且在灌浆11 d时表达量最高。福恢676中控制米质相关基因Chalk5的表达量在灌浆7 d时最高,而在11 d时几乎不表达;ALK、OsSSI、OsBEIIb的表达先升高后降低,在灌浆7 d时表达量最高,且表达模式与其他4个恢复系中的完全不同。 结论 福恢676的谷粒较长,整精米率较高,糙米率、胶稠度和直链淀粉含量达到一级米标准,Wx基因型为Wxb,福恢676中控制粒形基因GL7、GS3和米质基因ALK、OsSSI 、OsBEIIb的表达模式与其他4个恢复系中有明显不同。 Abstract:Objective Shape and quality of the grains of Fuhui 676, a premium high-yield, high-quality, stress resistant, highly adaptable restorer of rice, were studied for further improvements. Method Along with Fuhui 676, which was previously bred by the Rice Research Institute at Fujian Academy of Agricultural Sciences, Minghui 63, Shuhui 527, Minghui 86, and Fuhui 673 were planted at the experimental stations in Fuzhou, Quanzhou, and Sanming. At maturation, grains were harvested and sun-dried to measure the length, width, thickness, 1000-grain weight, and quality. Genomic DNA of the plants was extracted by CTAB method; Wx fragments amplified by PCR; restriction enzymes analyzed by means of Acc I digestion; polymorphism of the first base of Wx gene intron 1 determined by agarose gel electrophoresis and sequence analysis; total RNA of the grains extracted by Trizol method; and expressions of the grain-shape-and-quality-related genes at different grain-filling stages analyzed by SYBR Green I fluorescent quantitative PCR (qRT-PCR). Result In general, the Fuhui 676 grains measured 10–11 mm long, 2.70 mm wide, 2.00 mm thick, and 27.0–31.0 g per 1000-grains. After dehulling, they yielded more than 81% brown rice with a gel consistency of more than 60.0 mm and an amylose content in the range of 13%–18%, which met the 1st grade standard. The grains had a higher head rice rate than those of the other 4 restorer lines; and the chalkiness rate and degree higher than those of the parents, Minghui 63 and Shuhui 527, but lower than those of Minghui 86 and Fuhui 673. The first base of Wx gene intron 1 in the restorers was T, i.e., of the Wxb genotype. The expression of GL7 related to grain shape in Fuhui 676 decreased significantly on the 11 d of grain-filling, while those of GS3, SGL, and GIF1 increased initially and then decreased with a peak appeared on the 7 d; that of GW8 decreased at first and then increased to the highest level on the 11 d; that of the quality-related Chalk5 reached the maximum on the 7 d but nearly dissipated on the 11 d; and those of ALK, OsSSI, and OsBEIIb rose to a peak on the 7 d and followed by a decline. The expression patterns of those genes in Fuhui 676 were completely different from those in the other 4 restorers. Conclusion Fuhui 676 produced long grains of high head milled rice rate, brown rice rate, gel consistency, and amylose content of 1st grade rice. The Wx genotype of Fuhui 676 was Wxb. The expression patterns of GL7, GS3 and ALK, OsSSI, OsBEIIb related to grain shape and quality in Fuhui 676 were distinctively different from those of the other tested restorer lines. -
Key words:
- Fuhui 676 /
- grain shape /
- grain quality /
- Wx gene /
- gene expression
-
图 2 Wx基因片段的PCR扩增及限制性酶切分析
A为PCR扩增,B为限制性酶切分析;M为Marker 2000,1为对照广恢128,2为明恢86,3为明恢63,4为福恢676,5为福恢673,6为蜀恢527。
Figure 2. PCR amplification and restriction enzyme analysis of Wx gene fragment
A: PCR amplification; B: restriction enzyme analysis; M: Marker 2000 bp; 1: Guanghui128 as control; 2: Minghui86; 3: Minghui63; 4: Fuhui676; 5: Fuhui673; 6: Shuhui527.
表 1 qRT-PCR引物
Table 1. Primers for qRT-PCR
基因名称Gene names 引物序列(5′-3′)Primer sequence(5′-3′) GL7 F: AAGGACTTCAGGGCTCTCAGGATAC R: GCTGGAAGTGTCTGGAACTGGTGTT GS3 F: GGGTGAAATAAATTCAATCGAAGGG R: GCACAAACAGCGAAACTTCTTCAAG GW8 F: AGGAGTTTGATGAGGCCAAG R: GCGTGTAGTATGGGCTCTCC SGL F: CTCTTCTATGGAACCTGACAG R: CTGAGAAGCTGAAGCAGATG GIF1 F: TTGGTAGTAGGGTCGCTTGGGC R: CCAGTCCGGAGCTCAGAGTCGA Chalk5 F: GCCGTCACCTTCCTCTCCCTCC R: CGTAAGCATTGCTCGTGAAGTACTCG ALK F: CCTATTCCTGCGGTAGAAGA R: CCGAATCGTCATCCTGGT OsSSI F: GTGAGCAGGAGTCTGAGAT R: TGACCACGAAGAGCAAGA OsBEIIb F: CGGTTTCAGCAGGTTCAGA R: CTCCAGATGACTCAATCTCAACTT Actin150 F: AGTGTCTGGATTGGAGGAT R: TCTTGGCTTAGCATTCTTG 表 2 稻谷粒形和千粒重分析
Table 2. Grain shape and 1000-grain weight of rice restorers
种植地区Growing areas 恢复系Restorer lines 谷粒长Grain length/mm 谷粒宽Grain width/mm 长宽比Length-width ratio 谷粒厚Grain thickness/mm 千粒重1000-grain weight/g 福州 Fuzhou 福恢676 Fuhui676 10.57±0.33 2.72±0.10 3.90±0.18 2.09±0.07 27.66±0.47 明恢63 Minghui63 9.98±0.27* 2.72±0.09 3.67±0.15* 1.99±0.05* 26.82±0.17* 蜀恢527 Shuhui527 11.28±0.34* 2.73±0.11 4.14±0.19* 2.08±0.06 29.40±0.13* 明恢86 Minghui86 9.91±0.24* 2.75±0.09 3.60±0.11* 1.94±0.10* 26.60±0.20* 福恢673 Fuhui673 10.15±0.36* 2.74±0.08 3.70±0.13* 2.00±0.07* 26.42±0.26* 泉州 Quanzhou 福恢676 Fuhui676 10.80±0.40 2.76±0.07 3.92±0.15 2.04±0.09 30.31±0.02 明恢63 Minghui63 10.51±0.25* 2.79±0.07 3.77±0.10* 2.00±0.07 30.17±0.13 蜀恢527 Shuhui527 11.54±0.39* 2.79±0.09 4.14±0.15* 2.00±0.09 31.82±0.01* 明恢86 Minghui86 9.98±0.28* 2.78±0.10 3.60±0.14* 2.06±0.07 29.44±0.38* 福恢673 Fuhui673 10.31±0.42* 2.74±0.11 3.77±0.22* 2.08±0.06 30.35±0.29 三明 Sanming 福恢676 Fuhui676 10.36±0.46 2.79±0.09 3.72±0.21 2.07±0.05 29.13±0.17 明恢63 Minghui63 9.84±0.33* 2.80±0.09 3.52±0.18* 1.99±0.08* 28.52±0.14* 蜀恢527 Shuhui527 10.85±0.32* 2.79±0.09 3.90±0.19* 2.01±0.08* 30.87±0.20* 明恢86 Minghui86 9.44±0.29* 2.85±0.12 3.32±0.19* 1.94±0.08* 27.88±0.48* 福恢673 Fuhui673 9.99±0.40* 2.86±0.10* 3.49±0.16* 1.97±0.11* 26.89±0.38* *表示差异达显著水平(P≤ 0.05),没有标注*表示没有显著差异。下表同。*indicate significant differences at P≤0.05. Same for below. 表 3 米质分析
Table 3. Analysis of grain quality
种植地区Growing Areas 恢复系Restorer lines 糙米率Brown rice rate/% 精米率Milled rice rate/% 整精米率Head rice rate/% 长Length/mm 宽Width/mm 长宽比Length to width 垩白率Chalkiness ratio/% 垩白度Chalkiness degree/% 透明度Transparency 碱消值Alkali value 直链淀粉含量Amylose content/% 胶稠度Gel consistency/mm 福州Fuzhou 福恢676 Fuhui676 81.40±0.13 69.60±0.28 44.10±0.59 6.39±0.11 2.23±0.09 2.88±0.02 28.13±0.97 6.23±0.87 3.00±0.00 4.53±0.12 14.20±0.33 91.97±0.29 明恢63 Minghui63 81.80±0.26 69.80±0.96 38.27±1.06* 6.39±0.19 2.30±0.02 2.80±0.04* 18.83±1.30* 3.70±0.50* 3.00±0.00 4.30±0.10 11.97±0.31* 90.97±1.16 蜀恢527 Shuhui527 81.87±0.64 69.30±0.79 35.10±0.56* 6.95±0.25* 2.30±0.06 3.12±0.07* 16.87±0.38* 3.23±0.15* 2.00±0.00 4.43±0.06 12.47±0.12* 86.00±0.80* 明恢86 Minghui86 82.13±0.15* 68.37±0.50* 43.10±0.79 6.19±0.12* 2.32±0.09 2.70±0.06* 35.97±1.22* 9.93±0.38* 2.00±0.00 6.83±0.12* 13.50±0.17* 83.00±0.60* 福恢673 Fuhui673 82.23±0.15* 68.10±0.44* 41.60±0.90* 6.23±0.13 2.29±0.02 2.74±0.01* 49.57±1.76* 10.10±0.26* 3.00±0.00 4.27±0.15 12.17±0.12* 95.00±0.30* 泉州Quanzhou 福恢676 Fuhui676 81.80±0.15 71.23±0.31 55.43±0.90 6.71±0.15 2.27±0.07 2.98±0.07 16.30±0.82 3.60±0.46 2.00±0.00 4.33±0.21 15.40±0.53 88.00±0.61 明恢63 Minghui63 82.80±0.15* 71.37±0.51 40.60±0.30* 6.83±0.10 2.38±0.05 2.90±0.04 14.13±0.76* 2.57±0.31* 3.00±0.00 4.37±0.21 13.00±0.20* 90.03±0.06* 蜀恢527 Shuhui527 81.8±0.17 70.77±0.23 42.67±0.21* 7.23±0.21* 2.27±0.06 3.21±0.04* 11.60±0.61* 1.83±0.31* 2.00±0.00 4.30±0.26 14.23±0.38* 86.00±0.75* 明恢86 Minghui86 82.60±0.15* 70.63±0.15* 36.80±0.17* 6.62±0.15 2.40±0.04* 2.79±0.07* 38.63±0.49* 9.07±0.70* 2.00±0.00 6.47±0.29* 15.16±0.55 78.00±0.72* 福恢673 Fuhui673 81.70±0.20 70.60±0.20* 42.33±0.47* 6.83±0.25 2.34±0.07 2.94±0.05 50.93±3.23* 10.23±0.83* 3.00±0.00 4.20±0.10 13.57±0.21* 93.03±0.21* 三明Sanming 福恢676 Fuhui676 82.70±0.10 73.37±0.21 51.80±0.70 6.63±0.10 2.28±0.05 2.92±0.06 17.9±1.42 3.67±0.31 2.00±0.00 4.43±0.15 16.67±0.32 92.00±0.50 明恢63 Minghui63 81.90±0.06* 71.63±0.15* 44.30±0.44* 6.75±0.19 2.41±0.08 2.81±0.07 9.20±0.56* 1.73±0.49* 2.00±0.00 4.83±0.06* 16.17±0.15 86.03±0.74* 蜀恢527 Shuhui527 81.90±0.35* 72.10±0.40* 34.10±0.44* 7.23±0.21* 2.36±0.05 3.14±0.09* 12.80±2.26* 2.83±0.55 3.00±0.00 4.43±0.32 15.83±0.06* 91.97±1.25 明恢86 Minghui86 83.20±0.26* 74.07±0.23* 38.67±1.26* 6.32±0.12* 2.39±0.10 2.65±0.05* 18.30±1.87 5.43±0.25* 2.00±0.00 6.83±0.21* 16.07±0.51 81.97±0.64* 福恢673 Fuhui673 82.40±0.10* 71.03±0.21* 49.20±0.61* 6.48±0.07* 2.34±0.08 2.79±0.02* 29.73±0.80* 6.53±0.55* 3.00±0.00 4.33±0.25 14.43±0.31* 92.00±0.40 -
[1] 王跃星, 魏祥进, 徐春春, 等. 我国水稻种业发展现状与对策浅析 [J]. 中国稻米, 2022, 28(5):62−65. doi: 10.3969/j.issn.1006-8082.2022.05.010WANG Y X, WEI X J, XU C C, et al. Current situation and countermeasures of rice breeding and seed industry development in China [J]. China Rice, 2022, 28(5): 62−65.(in Chinese) doi: 10.3969/j.issn.1006-8082.2022.05.010 [2] 阳峰萍, 胡志萍, 刘海林, 等. 籼型杂交水稻恢复系的选育研究进展 [J]. 杂交水稻, 2007, 22(2):6−10. doi: 10.3969/j.issn.1005-3956.2007.02.002YANG F P, HU Z P, LIU H L, et al. Progresses in breeding restorer lines of indica hybrid rice [J]. Hybrid Rice, 2007, 22(2): 6−10.(in Chinese) doi: 10.3969/j.issn.1005-3956.2007.02.002 [3] 何道根, 潘晓飚, 屈为栋. 杂交早稻亲本遗传差异及其与杂种优势的关系 [J]. 杂交水稻, 2000, 15(5):34−36. doi: 10.3969/j.issn.1005-3956.2000.05.017HE D G, PAN X B, QU W D. Genetic differences of parents and its relation to heterosis in early hybrid rice [J]. Hybrid Rice, 2000, 15(5): 34−36.(in Chinese) doi: 10.3969/j.issn.1005-3956.2000.05.017 [4] XING Y Z, ZHANG Q F. Genetic and molecular bases of rice yield [J]. Annual Review of Plant Biology, 2010, 61: 421−442. doi: 10.1146/annurev-arplant-042809-112209 [5] CALINGACION M, LABORTE A, NELSON A, et al. Diversity of global rice markets and the science required for consumer-targeted rice breeding [J]. PLoS One, 2014, 9(1): e85106. doi: 10.1371/journal.pone.0085106 [6] 莫惠栋. 我国稻米品质的改良 [J]. 中国农业科学, 1993, 26(4):8−14.MO H D. Quality improvement of rice grain in China [J]. Scientia Agricultura Sinica, 1993, 26(4): 8−14.(in Chinese) [7] 杨维丰, 詹鹏麟, 林少俊, 等. 水稻粒形的遗传研究进展 [J]. 华南农业大学学报, 2019, 40(5):203−210. doi: 10.7671/j.issn.1001-411X.201905081YANG W F, ZHAN P L, LIN S J, et al. Research progress of grain shape genetics in rice [J]. Journal of South China Agricultural University, 2019, 40(5): 203−210.(in Chinese) doi: 10.7671/j.issn.1001-411X.201905081 [8] 杨联松, 白一松, 张培江, 等. 谷粒形状与稻米品质相关性研究 [J]. 杂交水稻, 2001, 16(4):48−50,54. doi: 10.3969/j.issn.1005-3956.2001.04.023YANG L S, BAI Y S, ZHANG P J, et al. Studies on the correlation between grain shape and grain quality in rice [J]. Hybrid Rice, 2001, 16(4): 48−50,54.(in Chinese) doi: 10.3969/j.issn.1005-3956.2001.04.023 [9] 刘倩, 张国豪, 车万均, 等. 杂交水稻重要亲本农艺性状配合力遗传力分析 [J]. 广东农业科学, 2020, 47(1):1−8.LIU Q, ZHANG G H, CHE W J, et al. Analysis on combining ability and heritability in agronomic traits of key parents of hybrid rice [J]. Guangdong Agricultural Sciences, 2020, 47(1): 1−8.(in Chinese) [10] WANG Y X, XIONG G S, HU J, et al. Copy number variation at the GL7 locus contributes to grain size diversity in rice [J]. Nature Genetics, 2015, 47(8): 944−948. doi: 10.1038/ng.3346 [11] MAO H L, SUN S Y, YAO J L, et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(45): 19579−19584. doi: 10.1073/pnas.1014419107 [12] WANG S K, WU K, YUAN Q B, et al. Control of grain size, shape and quality by OsSPL16 in rice [J]. Nature Genetics, 2012, 44(8): 950−954. doi: 10.1038/ng.2327 [13] WU T, SHEN Y Y, ZHENG M, et al. Gene SGL, encoding a kinesin-like protein with transactivation activity, is involved in grain length and plant height in rice [J]. Plant Cell Reports, 2014, 33(2): 235−244. doi: 10.1007/s00299-013-1524-0 [14] SUN L, YANG D L, KONG Y, et al. Sugar homeostasis mediated by cell wall invertase grain incomplete filling 1 (gif1) plays a role in pre-existing and induced defence in rice [J]. Molecular Plant Pathology, 2014, 15(2): 161−173. doi: 10.1111/mpp.12078 [15] 周勇, 汪莲爱, 宋国清, 等. 杂交水稻亲本对F2米质性状的影响 [J]. 湖北农业科学, 1996, 35(3):15−18.ZHOU Y, WANG L A, SONG G Q, et al. Effect of hybrid rice parents on F2 rice quality [J]. Hubei Agricultural Sciences, 1996, 35(3): 15−18.(in Chinese) [16] 李关土, 董世钧, 李春寿, 等. 杂交早稻产量与品质性状的配合力研究 [J]. 浙江农业学报, 1994, 6(2):71−75.LI G T, DONG S J, LI C S, et al. Combining ability for the characters of yield and grain quality in early indica hybrid rices: [J]. Acta Agriculturae Zhejiangensis, 1994, 6(2): 71−75.(in Chinese) [17] 敖雁, 徐辰武. 籼型杂种稻米品质性状的表现及其与亲本的关系 [J]. 江苏农学院学报, 1997, 18(4):23−27.AO Y, XU C W. Performance of quality characters in indica hybrid rice and the relationship with their parents [J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 1997, 18(4): 23−27.(in Chinese) [18] CAI X L, WANG Z Y, XING Y Y, et al. Aberrant splicing of intron 1 leads to the heterogeneous 5' UTR and decreased expression of waxy gene in rice cultivars of intermediate amylose content [J]. The Plant Journal:for Cell and Molecular Biology, 1998, 14(4): 459−465. doi: 10.1046/j.1365-313X.1998.00126.x [19] LI Y B, FAN C C, XING Y Z, et al. Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice [J]. Nature Genetics, 2014, 46(4): 398−404. doi: 10.1038/ng.2923 [20] GAO Z Y, ZENG D L, CUI X, et al. Map-based cloning of the ALK gene, which controls the gelatinization temperature of rice [J]. Science in China Series C:Life Sciences, 2003, 46(6): 661−668. doi: 10.1360/03yc0099 [21] FUJITA N, YOSHIDA M, ASAKURA N, et al. Function and characterization of starch synthase I using mutants in rice [J]. Plant Physiology, 2006, 140(3): 1070−1084. doi: 10.1104/pp.105.071845 [22] TANAKA N, FUJITA N, NISHI A, et al. The structure of starch can be manipulated by changing the expression levels of starch branching enzyme llb in rice endosperm [J]. Plant Biotechnology Journal, 2004, 2(6): 507−516. doi: 10.1111/j.1467-7652.2004.00097.x [23] 董瑞霞, 王洪飞, 郑长林, 等. 弱感光型杂交水稻新组合泰优676 [J]. 杂交水稻, 2017, 32(2):86−88. doi: 10.16267/j.cnki.1005-3956.201702023DONG R X, WANG H F, ZHENG C L, et al. Taiyou 676, a new weak photosensitive hybrid rice combination [J]. Hybrid Rice, 2017, 32(2): 86−88.(in Chinese) doi: 10.16267/j.cnki.1005-3956.201702023 [24] BLIGH H F J, TILL R I, JONES C A. A microsatellite sequence closely linked to the Waxy gene of Oryza sativa [J]. Euphytica, 1995, 86(2): 83−85. doi: 10.1007/BF00022012 [25] 连玲, 潘丽燕, 朱永生, 等. 杂交水稻骨干亲本Wx基因第一内含子+1位碱基多态性分析 [J]. 福建农业学报, 2019, 34(12):1355−1363.LIAN L, PAN L Y, ZHU Y S, et al. Polymorphisms on first base of wx gene intron 1 in parents of hybrid rice [J]. Fujian Journal of Agricultural Sciences, 2019, 34(12): 1355−1363.(in Chinese) [26] 康雪蒙, 马梦影, 巩文靓, 等. 水稻粒型基因研究进展及应用 [J]. 农学学报, 2020, 10(12):21−25. doi: 10.11923/j.issn.2095-4050.cjas20190900184KANG X M, MA M Y, GONG W J, et al. Rice grain shape genes: Research progress and application [J]. Journal of Agriculture, 2020, 10(12): 21−25.(in Chinese) doi: 10.11923/j.issn.2095-4050.cjas20190900184 [27] 王玉平, 李仕贵, 黎汉云, 等. 高配合力优质水稻恢复系蜀恢527的选育与利用 [J]. 杂交水稻, 2004, 19(4):12−14,29. doi: 10.3969/j.issn.1005-3956.2004.04.004WANG Y P, LI S G, LI H Y, et al. Breeding and utilization of restorer line Shuhui 527 with good grain quality and high combining ability in grain yield [J]. Hybrid Rice, 2004, 19(4): 12−14,29.(in Chinese) doi: 10.3969/j.issn.1005-3956.2004.04.004