Fertilization for Cultivating Bambusa tuldoides on Coastal Sandy Land
-
摘要:
目的 探究生物炭与氮肥配施条件下沿海沙地鼓节竹的生长发育潜能和适应能力,为沿海沙地防护树种的栽培提供参考。 方法 以福建省漳州市赤山林场试验地选取的4年生鼓节竹为研究对象,采用生物炭种类(A)、生物炭量(B)和氮肥量(C)3因素3水平正交试验进行施肥管理,测定叶片热值和生物量建成成本,分析鼓节竹在不同施肥条件下相同时期的能量利用策略和适应能力的差异。 结果 生物炭和氮肥配施能提高鼓节竹叶片碳、氮含量,提高鼓节竹叶片去灰分热值(AFCV)、叶片生物量建成成本(CCarea)及产量。相较于对照组(CK),处理5(小麦秸秆生物炭、400 g·丛−1生物炭量、900 g·丛−1施氮肥量)的碳含量提高了28.83%,出笋量提高了106.38%,叶片单位面积建成成本(CCarea)提高了50.07%,灰分含量(AC)降低了67.63%,去灰分热值(AFCV)处理5最佳。相关分析结果表明,鼓节竹叶片生物量建成成本与去灰分热值(AFCV)、碳含量极显著正相关(P<0.01),与氮含量、灰分含量(AC)显著负相关(P<0.05)。极差结果表明,氮肥用量是影响鼓节竹叶片建成成本的首要因素。 结论 隶属函数结果显示,处理5的作用效果最佳,即400 g·丛−1的小麦生物炭配施900 g·丛−1的氮肥,不仅显著影响鼓节竹的叶片生长及适应性,也对鼓节竹产量产生影响,可以应用于沿海沙地鼓节竹栽培。 Abstract:Objective Growth promotion and adaptability enhancement of Bambusa tuldoides on coastal sandy land in Fujian by application of biochar and nitrogen fertilizer were evaluated. Method Four-year-oldB. tuldoides plants obtained from the Chishan Mountain Farm were used in a 3 factors 3 levels orthogonal experimentation with variables that included applying biochar of different types (A), biochar in different amounts (B), and nitrogen fertilization (C). Calorific value of leaves (AFCV), cost of unit area of biomass (CCarea), and adaptability of the plants were the criteria for economic evaluation and fertilization selection. Result The combined use of biochar and nitrogen fertilizer in cultivating B. tuldoides significantly elevated the carbon, nitrogen, AFCV, cost, and yield of the tree leaves. Treatment No. 5, which applied wheat straw biochar at 400g·plant−1 along with a nitrogen fertilizer at 900g·plant−1, rosed the carbon content in leaves by 28.83%, the number of bamboo shoots by 106.38%, and the CCarea by 50.07%, while lowered the ash content (AC) by 67.63%, over control. In addition, it achieved the highest AFCV among all treatments. An extremely significant correlation was found between the biomass cost and AFCV or carbon content (p<0.01), whereas a significant negative correlation between that and nitrogen or AC (p<0.05). Nitrogen fertilization was the primary factor affecting the cost of B. tuldoides biomass. Conclusion Treatment No. 5, which combined the applications of 400g of wheat biochar and 900g of nitrogen fertilizer per plant, significantly enhanced the leaf growth, biomass production, and plant adaptability of B. tuldoides. It was considered the choice fertilization for building the ecologically beneficial forest on the coastal sandy land in the province. -
Key words:
- Bambusa tuldoides /
- fertilization /
- calorific value /
- construction cost
-
表 1 试验因素与水平
Table 1. Factors and levels of experimental design
水平
Level因素 Factor 生物炭种类
Biochar species生物炭量
Amount of biocha/(g·丛−1)氮肥量
Amount of nitrogen/(g·丛−1)1 玉米秸秆生物炭 Corn straw biochar(A1) 100(B1) 300(C1) 2 小麦秸秆生物炭 Wheat straw biochar(A2) 400(B2) 600(C2) 3 水稻秸秆生物炭 Rice straw biochar(A3) 1000(B3) 900(C3) 表 2 鼓节竹的施肥组合
Table 2. Fertilizations applied for B. tuldoides cultivation
处理
Treatment施肥组合 Fertilization combination A B C 1 A1 B1 C1 2 A1 B2 C2 3 A1 B3 C3 4 A2 B1 C2 5 A2 B2 C3 6 A2 B3 C1 7 A3 B1 C3 8 A3 B2 C1 9 A3 B3 C2 A:生物炭种类;B:生物炭量;C:氮肥量
A: Biochar of different types; B: Biochar in different amounts; C: Nitrogen fertilization表 3 不同处理对叶片碳、氮、灰分、比叶面积、去灰分热值的影响
Table 3. Effects of treatments on carbon, nitrogen, ash, specific leaf area, and AFCV of B. tuldoides leaves
处理
Treatment碳含量
Carbon content/%氮含量
Nitrogen content/%灰分含量
AC/%比叶面积
SLA/(m2·kg−1)去灰分热值
AFCV/(kJ·g−1)1 44.59±0.38 ab 2.69±0.46 ab 5.33±0.5 abc 6.99±2.14 b 20.23±0.08 ab 2 41.43±0.31 b 2.34±0.009 b 6.56±0.1 abc 6.72±0.81 b 19.13±0.22 cd 3 45.04±0.36 ab 2.51±0.01 ab 5.51±0.2 abc 6.88±0.51 b 19.21±0.21 cd 4 39.18 ±0.4 b 2.95±3.41 a 7.52±1.92 a 6.58±0.57 b 18.60±0.82 d 5 50.22±0.29 a 2.20±0.02 b 4.49±0.08 c 6.63±0.03 b 20.88±0.09 a 6 48.87±0. 32 a 2.55±0.78 ab 5.06±1.16 bc 7.45±0.91 b 20.39±0.09 ab 7 49.99±0.21 a 2.71±0.01 ab 4.51±0.97 c 7.40±1.81 b 20.13±0.43 ab 8 44.14±0.27 ab 2.49±0.01 ab 6.47±1.0 abc 7.73±1.21 b 20.78±0.42 a 9 41.21±0.11 b 2.22±0.004 b 6.98±1.78 ab 7.01±0.31 b 19.76±0.39 bc CK 38.98±0.15 b 1.96±0.002 b 7.56±0.98 a 12.61±0.22 a 19.11±0.11 cd 数值为平均值(±标准误),同一列含相同字母表示差异不显著(P>0.05),不含相同字母表示差异显著(P<0.05)。
Data are presented as mean±standard error; Those with same letter on same column indicate no significant difference at p>0.05; Those with different letters, significant difference at p<0.05.表 4 不同处理对叶片单位面积建成成本的影响
Table 4. Effects of treatments on CCarea
处理
Treatment施肥组合
Fertilization combination叶片单位
面积建成成本
CCarea/
(g·m−2)A B C 1 A1 B1 C1 202.14 ab 2 A1 B2 C2 210.57 ab 3 A1 B3 C3 206.22 ab 4 A2 B1 C2 209.18 ab 5 A2 B2 C3 237.15 a 6 A2 B3 C1 200.79 ab 7 A3 B1 C3 203.50 ab 8 A3 B2 C1 195.49 ab 9 A3 B3 C2 213.30 ab CK 158.03 K1 618.93 614.82 598.42 K2 647.12 643.21 633.05 K3 612.29 620.31 646.87 k1 206.31 204.94 199.47 k2 215.71 214.40 211.02 k3 204.10 206.77 215.62 R 9.40 9.46 16.15 最优组合
The best combinationA2 B2 C3 Ki:第i因素的量之和;ki:第i因素的平均含量;同列不同小写字母表示差异显著(P<0.05)。表5、表6同。
Ki: Sum of quantities of the ith factor; Ki:Average content of the ith factor. Different lowercase letters indicate significant differences among different stands (P<0.05). The same applied in Table 5 and table 6.表 5 不同处理对叶片单位质量建成成本的影响
Table 5. Effects of treatments on CCmass
处理
Treatment施肥组合
Fertilization combination叶片单位质量建成成本
CCmass/
(g·g−1)A B C 1 A1 B1 C1 1.45 abc 2 A1 B2 C2 1.44 cde 3 A1 B3 C3 1.42 cde 4 A2 B1 C2 1.39 de 5 A2 B2 C3 1.53 a 6 A2 B3 C1 1.47 ab 7 A3 B1 C3 1.46 ab 8 A3 B2 C1 1.41 cde 9 A3 B3 C2 1.43 bcd CK 1.38 K1 4.31 4.30 4.33 K2 4.39 4.38 4.27 K3 4.31 4.33 4.41 k1 1.44 1.43 1.44 k2 1.46 1.46 1.42 k3 1.44 1.44 1.47 R 0.02 0.03 0.05 最优组合
The best combinationA2 B2 C3 表 6 不同处理对鼓节竹出笋量的影响
Table 6. Effects of treatments on number of B. tuldoides shoots emerged
处理
Treatment施肥组合
Fertilization combination出笋量
Bamboo shoots yield/
(个·株−1)A B C 1 A1 B1 C1 6.00 b 2 A1 B2 C2 9.67 ab 3 A1 B3 C3 9.00 ab 4 A2 B1 C2 8.33 ab 5 A2 B2 C3 11.00 a 6 A2 B3 C1 8.33 ab 7 A3 B1 C3 10.00 ab 8 A3 B2 C1 8.33 ab 9 A3 B3 C2 6.67 ab CK 5.33 K1 24.67 24.33 22.66 K2 27.66 29.00 24.67 K3 25.00 23.51 30.00 k1 8.22 8.11 7.55 k2 9.22 9.67 8.22 k3 8.33 7.84 10.00 R 1.00 1.83 2.45 最优组合
The best combinationA2 B2 C3 表 7 鼓节竹叶片热值相关指标及建成成本的相关性分析
Table 7. Correlations among calorific value-related indices and biomass cost-related factors of B. tuldoides leaves
项目
Item单位质量
建成成本
CCmass单位面积
建成成本
CCarea去灰分热值
AFCV氮含量
Nitrogen
content碳含量
Carbon
content灰分含量
AC比叶面积
SLA出笋量
Bamboo shoots
yield单位质量建成成本 CCmass 1 单位面积建成成本 CCarea 0.527* 1 去灰分热值 AFCV 0.758** 0.205 1 氮含量 Nitrogen content −0.273 −0.423* −0.394 1 碳含量 Carbon content 0.871** 0.245 0.718** −0.174 1 灰分含量 AC −0.852** −0.296 −0.624* 0.141 −0.958** 1 比叶面积 SLA 0.148 −0.663* 0.565* 0.064 0.353 −0214 1 出笋量 Bamboo shoots yield 0.29 0.299 0.099 −0.217 0.413 −0.418 −0.175 1 *:P<0.05,显著相关;**:P<0.01,极显著相关。
*:P<0.05, significant correlation;**:P<0.01, highly significant correlation.表 8 不同生物炭与氮肥配施对鼓节竹的综合评价
Table 8. Overall evaluation on biochar/nitrogen fertilizer combinations for B. tuldoides cultivation
处理
Treatment单位质量
建成成本
CCmass单位面积
建成成本
CCarea去灰分热值
AFCV氮含量
Nitrogen
content碳含量
Carbon
content灰分含量
AC比叶面积
SLA出笋量
Bamboo shoots
yield综合评价
Comprehe-nsive
evaluation排序
Sort1 0.12 0.05 0.09 0.13 0.01 0.05 0.02 0.04 0.50 7 2 0.04 0.04 0.03 0.07 0.01 0.12 0.01 0.23 0.54 6 3 0.04 0.04 0.04 0.10 0.01 0.06 0.01 0.20 0.49 8 4 0.01 0.04 0.00 0.18 0.00 0.17 0.00 0.16 0.57 5 5 0.19 0.07 0.13 0.04 0.02 0.00 0.00 0.31 0.76 1 6 0.13 0.04 0.10 0.11 0.02 0.03 0.03 0.16 0.63 4 7 0.14 0.04 0.09 0.13 0.02 0.00 0.03 0.25 0.71 2 8 0.06 0.03 0.13 0.09 0.01 0.11 0.05 0.16 0.64 3 9 0.07 0.05 0.07 0.05 0.01 0.14 0.02 0.07 0.47 9 CK 0.00 0.00 0.03 0.00 0.00 0.18 0.24 0.00 0.44 10 -
[1] 董周焱, 柏新富, 侯玉平, 等. 胶东滨海8种树木叶片热值、建成成本及其适应能力 [J]. 林业科学, 2015, 51(3):8−15.DONG Z Y, BAI X F, HOU Y P, et al. Leaf calorific value of 8 tree species in the coastal areas of Jiaodong and cost of construction of leaf biomass and its adaptability [J]. Scientia Silvae Sinicae, 2015, 51(3): 8−15.(in Chinese) [2] 黄滔, 刘玮, 唐红, 等. 4个观赏竹种的光合特性及其影响因子分析 [J]. 植物资源与环境学报, 2016, 25(1):24−33. doi: 10.3969/j.issn.1674-7895.2016.01.04HUANG T, LIU W, TANG H, et al. Analyses on photosynthetic characteristics of four ornamental bamboo species and its influence factors [J]. Journal of Plant Resources and Environment, 2016, 25(1): 24−33.(in Chinese) doi: 10.3969/j.issn.1674-7895.2016.01.04 [3] 凡莉莉, 薛磊, 杜溶讫, 等. 福建省沿海沙地竹子适应性研究进展 [J]. 竹子学报, 2017, 36(4):41−46. doi: 10.3969/j.issn.1000-6567.2017.04.007FAN L L, XUE L, DU R Q, et al. The research progress of bamboo adaptability in Fujian coastal sandy land [J]. Journal of Bamboo Research, 2017, 36(4): 41−46.(in Chinese) doi: 10.3969/j.issn.1000-6567.2017.04.007 [4] 荣俊冬, 凡莉莉, 陈礼光, 等. 不同用量保水剂对沿海沙地麻竹生理特征的影响 [J]. 南方农业学报, 2019, 50(2):323−329. doi: 10.3969/j.issn.2095-1191.2019.02.15RONG J D, FAN L L, CHEN L G, et al. Effects of different dosages of super absorbent polymers(SAP) on physiological indexes of Dendrocalamus latiflorus in coastal sand [J]. Journal of Southern Agriculture, 2019, 50(2): 323−329.(in Chinese) doi: 10.3969/j.issn.2095-1191.2019.02.15 [5] 官丽莉, 周小勇, 罗艳. 我国植物热值研究综述 [J]. 生态学杂志, 2005, 24(4):452−457. doi: 10.3321/j.issn:1000-4890.2005.04.022GUAN L L, ZHOU X Y, LUO Y. A review on the study of plant caloric value in China [J]. Chinese Journal of Ecology, 2005, 24(4): 452−457.(in Chinese) doi: 10.3321/j.issn:1000-4890.2005.04.022 [6] 许宇星, 陈少雄. 一年生高密度初植桉树能源林生物量及热值研究 [J]. 热带作物学报, 2012, 33(11):2079−2084. doi: 10.3969/j.issn.1000-2561.2012.11.031XU Y X, CHEN S X. Biomass and calorific value of OneYear-old Eucalyptus with various high densities [J]. Chinese Journal of Tropical Crops, 2012, 33(11): 2079−2084.(in Chinese) doi: 10.3969/j.issn.1000-2561.2012.11.031 [7] 周群英, 陈少雄, 韩斐扬, 等. 短周期尾巨桉能源林生物量与能量特征研究 [J]. 热带亚热带植物学报, 2013, 21(1):45−51. doi: 10.3969/j.issn.1005-3395.2013.01.006ZHOU Q Y, CHEN S X, HAN F Y, et al. Studies on biomass and energy characteristics of short rotation energy plantations of Eucalyptus urophylla × E. grandis [J]. Journal of Tropical and Subtropical Botany, 2013, 21(1): 45−51.(in Chinese) doi: 10.3969/j.issn.1005-3395.2013.01.006 [8] 严雪婷, 顾肖璇, 陈鹭真. 红树植物生活史过程的能量利用策略 [J]. 生态学杂志, 2021, 40(1):245−254. doi: 10.13292/j.1000-4890.202101.001YAN X T, GU X X, CHEN L Z. Energy-use strategy of mangrove individuals along the life history [J]. Chinese Journal of Ecology, 2021, 40(1): 245−254.(in Chinese) doi: 10.13292/j.1000-4890.202101.001 [9] DAEHLER C C. Performance comparisons of Co-occurring native and alien invasive plants: Implications for conservation and restoration [J]. Annual Review of Ecology, Evolution, and Systematics, 2003, 34: 183−211. doi: 10.1146/annurev.ecolsys.34.011802.132403 [10] 钟文晶, 符帝俊, 齐丹, 等. 生物炭的制备及其应用研究进展 [J]. 海南热带海洋学院学报, 2022, 29(2):101−108.ZHONG W J, FU D J, QI D, et al. Research progress on the preparation of biochar and its application [J]. Journal of Hainan Tropical Ocean University, 2022, 29(2): 101−108.(in Chinese) [11] 覃姜薇, 陈雄, 林运萍, 等. 不同生物炭种类与施用量对胡椒园土壤培肥效果研究 [J]. 热带农业工程, 2016, 40(2):42−45.QIN J W, CHEN X, LIN Y P, et al. Effects of different biochar species and application amount on soil nutrient of pepper gardens [J]. Tropical Agricultural Engineering, 2016, 40(2): 42−45.(in Chinese) [12] 张继旭, 张继光, 张忠锋, 等. 秸秆生物炭对烤烟生长发育、土壤有机碳及酶活性的影响 [J]. 中国烟草科学, 2016, 37(5):16−21.ZHANG J X, ZHANG J G, ZHANG Z F, et al. Effects of straw biochar on tobacco growth, soil organic carbon and soil enzyme activities [J]. Chinese Tobacco Science, 2016, 37(5): 16−21.(in Chinese) [13] 周劲松, 闫平, 张伟明, 等. 生物炭对水稻苗期生长、养分吸收及土壤矿质元素含量的影响 [J]. 生态学杂志, 2016, 35(11):2952−2959. doi: 10.13292/j.1000-4890.201611.037ZHOU J S, YAN P, ZHANG W M, et al. Effects of biochar on seedling growth, nutrient absorption of Japonica rice and mineral element contents of substrate soil [J]. Chinese Journal of Ecology, 2016, 35(11): 2952−2959.(in Chinese) doi: 10.13292/j.1000-4890.201611.037 [14] LASHARI M S, LIU Y M, LI L Q, et al. Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain [J]. Field Crops Research, 2013, 144: 113−118. doi: 10.1016/j.fcr.2012.11.015 [15] 江立. 生物炭与氮肥配比对土壤微生物特性和红枣产量的影响 [J]. 灌溉排水学报, 2020, 39(9):81−86.JIANG L. The combination of biochar addition and nitrogen fertilizer application affects soil microbial community and functions and jujube yield [J]. Journal of Irrigation and Drainage, 2020, 39(9): 81−86.(in Chinese) [16] 柳瑞, 高阳, 李恩琳, 等. 减氮配施生物炭对水稻生长发育、干物质积累及产量的影响 [J]. 生态环境学报, 2020, 29(5):926−932. doi: 10.16258/j.cnki.1674-5906.2020.05.008LIU R, GAO Y, LI E L, et al. Effects of reduced nitrogen and biochar application on plant growth, dry matter accumulation and rice yield [J]. Ecology and Environmental Sciences, 2020, 29(5): 926−932.(in Chinese) doi: 10.16258/j.cnki.1674-5906.2020.05.008 [17] 王少杰. 黄土高原旱作覆膜玉米不同时期施氮效果及气态氮损失[D]. 北京: 中国科学院研究生院(教育部水土保持与生态环境研究中心), 2016.WANG S J. Effect of nitrogen application splits application to dry-land mulching maize on fate of nitrogen and gaseous nitrogen losses in the loess plateau[D]. Beijing: University of Chinese Academy of Sciences, 2016. (in Chinese) [18] 高景, 王金牛, 徐波, 等. 不同雪被厚度下典型高山草地早春植物叶片性状、株高及生物量分配的研究 [J]. 植物生态学报, 2016, 40(8):775−787. doi: 10.17521/cjpe.2015.0288GAO J, WANG J N, XU B, et al. Plant leaf traits, height and biomass partitioning in typical ephemerals under different levels of snow cover thickness in an alpine meadow [J]. Chinese Journal of Plant Ecology, 2016, 40(8): 775−787.(in Chinese) doi: 10.17521/cjpe.2015.0288 [19] 肖燕, 张科燕, 张树斌, 等. 羊蹄甲属藤本和树木叶片热值与建成成本的比较研究 [J]. 植物科学学报, 2020, 38(3):428−436. doi: 10.11913/PSJ.2095-0837.2020.30428XIAO Y, ZHANG K Y, ZHANG S B, et al. Differences in leaf caloric values and construction costs between liana and tree species in Bauhinia [J]. Plant Science Journal, 2020, 38(3): 428−436.(in Chinese) doi: 10.11913/PSJ.2095-0837.2020.30428 [20] WILLIAMS K, PERCIVAL F, MERINO J, et al. Estimation of tissue construction cost from heat of combustion and organic nitrogen content [J]. Plant, Cell and Environment, 1987, 10(9): 725−734. [21] SHEN X Y, PENG S L, CHEN B M, et al. Do higher resource capture ability and utilization efficiency facilitate the successful invasion of native plants? [J]. Biological Invasions, 2011, 13(4): 869−881. doi: 10.1007/s10530-010-9875-8 [22] 王希贤, 吴君, 李磊, 等. 生物炭和氮肥对沿海沙地鼓节竹笋生长和光合特性的效应 [J]. 福建农林大学学报(自然科学版), 2022, 51(2):217−223.WANG X X, WU J, LI L, et al. Effects of biochar and nitrogen fertilizer on growth and photosynthetic characteristics of bamboo shoots of Bambusa tuldoides ‘Swolleninternode’ in coastal sandy land [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2022, 51(2): 217−223.(in Chinese) [23] 王金旺, 陈秋夏, 李效文, 等. 红树植物秋茄与无瓣海桑叶片热值比较研究 [J]. 湿地科学, 2016, 14(3):376−381.WANG J W, CHEN Q X, LI X W, et al. Comparison of foliage caloric values of mangrove species Kandelia obovata and Sonneratia apetala [J]. Wetland Science, 2016, 14(3): 376−381.(in Chinese) [24] 鲍雅静, 李政海, 韩兴国, 等. 植物热值及其生物生态学属性 [J]. 生态学杂志, 2006, 25(9):1095−1103. doi: 10.3321/j.issn:1000-4890.2006.09.017BAO Y J, LI Z H, HAN X G, et al. Plant caloric value and its bio-ecological attributes [J]. Chinese Journal of Ecology, 2006, 25(9): 1095−1103.(in Chinese) doi: 10.3321/j.issn:1000-4890.2006.09.017 [25] 刘艳莉, 陈鹏东, 侯玉平, 等. 烟台沙质海岸前沿4种草本植物热值与建成成本分析 [J]. 生态环境学报, 2018, 27(7):1211−1217.LIU Y L, CHEN P D, HOU Y P, et al. Calorific value and construction cost of 4 herbaceous species in the coastal frontier of Yantai [J]. Ecology and Environmental Sciences, 2018, 27(7): 1211−1217.(in Chinese) [26] 宋莉英, 彭长连, 彭少麟. 华南地区3种入侵植物与本地植物叶片建成成本的比较 [J]. 生物多样性, 2009, 17(4):378−384. doi: 10.3724/SP.J.1003.2009.09077SONG L Y, PENG C L, PENG S L. Comparison of leaf construction costs between three invasive species and three native species in South China [J]. Biodiversity Science, 2009, 17(4): 378−384.(in Chinese) doi: 10.3724/SP.J.1003.2009.09077 [27] 侯皓, 刘慧, 贺鹏程, 等. 木兰科常绿与落叶物种叶片构建策略的差异 [J]. 热带亚热带植物学报, 2019, 27(3):272−278. doi: 10.11926/jtsb.3978HOU H, LIU H, HE P C, et al. Different leaf construction strategies in evergreen and deciduous species of Magnoliaceae [J]. Journal of Tropical and Subtropical Botany, 2019, 27(3): 272−278.(in Chinese) doi: 10.11926/jtsb.3978 [28] 袁晶晶, 同延安, 卢绍辉, 等. 生物炭与氮肥配施对土壤肥力及红枣产量、品质的影响 [J]. 植物营养与肥料学报, 2017, 23(2):468−475. doi: 10.11674/zwyf.16285YUAN J J, TONG Y A, LU S H, et al. Effects of biochar and nitrogen fertilizer application on soil fertility and jujube yield and quality [J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(2): 468−475.(in Chinese) doi: 10.11674/zwyf.16285 [29] 宋世龙, 杨卫君, 陈雨欣, 等. 氮肥减量配施生物炭对北疆灌区春小麦光合和干物质转运特性及产量的影响[J/OL]. 麦类作物学报, http://kns.cnki.net/kcms/detail/61.1359.S.20221117.0938.012.html.SONG S L, YANG W J, CHEN Y X, et al. Effects of reduced nitrogen fertilizer combined with biochar on photosynthetic characteristics, dry matter accumulation and distribution, and yeild of spring wheat in irrigated area of northern Xinjiang[J/OL]. Journal of Triticeae Crops, http://kns.cnki.net/kcms/detail/61.1359.S.20221117.0938.012.html.