Process Optimization and Antimicrobial Effect of Cytobacillus kochii H Protease
-
摘要:
目的 对筛选到具有抑菌效果且产蛋白酶的菌株H进行分类地位的确定,同时对其产蛋白酶的条件进行优化,以期为其在植物病害防治上的应用奠定基础。 方法 通过生理生化、电子显微镜扫描及16sRNA测序相结合的方法明确菌株H的分类地位;通过单因素和正交试验对菌株H产蛋白酶条件进行优化,并检测其优化前后对病原真菌的抑菌效果。 结果 菌株H鉴定为高知芽孢杆菌(Cytobacillus kochii);菌株H产蛋白酶的优化条件为:pH8.0、葡萄糖20.0 g·L−1、蛋白胨8.0 g·L−1、MgSO4 1.0 g·L−1、CaSO4·2H2O 0.1 g·L−1,在装有50 mL发酵培养基的250 mL三角瓶中接种2.5 mL108 CFU·mL−1的种子液,培养24 h后蛋白酶活力达到402.2 U·mL−1,较初始培养条件下的蛋白酶活力提高13.92倍;优化后菌株H对尖孢镰刀菌(Fusarium oxysporum)和辣椒疫霉病菌(Phytophthora capsici)的抑菌率分别为67.32%和44.87%,较优化前抑菌率提升值分别为9.15%和12.82%。 结论 明确菌株H为高知芽孢杆菌(C. kochii),优化了高知芽孢杆菌产蛋白酶条件及抑菌效果。 Abstract:Objective Taxonomy of antimicrobial protease-producing Cytobacillus kochii H was studied for the development of a natural disease control agent on plants. Method Taxonomy of C. kochii H was determined by physiological, biochemical, electron microscopy scanning, and 16sRNA sequencing methods. A process of producing the antimicrobial protease secreted by the bacterium was optimized in single-factor and orthogonal experiments. The efficacy of the culture broth on 4 selected pathogenic fungi was applied in an in vitro test as the evaluation criterium. Result The optimized C. kochii H protease-producing process was conducted in a 250 mL triangular flask using 50 mL of pH 8.0 medium, which contained 20.0 g·L−1 of glucose, 8.0 g·L−1 of peptone, 1.0 g·L−1 of MgSO4, and 0.1g·L−1 of CaSO4-2H2O, inoculated with 2.5 mL of 108 CFU·mL−1 C. kochii H fermentation liquid. After 24 h of incubation, the protease activity reached 402.2 U·mL−1, which was 13.92 times greater than it was prior to the optimization. The antimicrobial rates of the broth against Fusarium oxysporum and Phytophthora capsici were 67.32% and 44.87%, respectively, i.e., 9.15% and 12.82%, respectively, increases over those before the optimization. Conclusion The antimicrobial protease-producing C. kochii H was identified taxonomically. The culture process of the enzyme production was optimized to deliver significant in vitro inhibition rates on F. oxysporum and P. capsici. -
Key words:
- Cytobacillus kochii /
- protease /
- optimized fermentation /
- antimicrobial rate on pathogens
-
图 7 高知芽孢杆菌(C. kochii) H产蛋白酶优化前后对4种病原菌的抑菌效果
A:尖孢镰刀菌(F. oxysporum);B:脐橙青霉病菌(P. italicu); C:辣椒疫霉病菌(P. capsici); D:辣椒炭疽病菌(C. capsici); A~D为对照; E~H为优化前; J~M为优化后。
Figure 7. Bacteriostatic effects of C. kochii H culture broth on 4 pathogens before and after process optimization
A: F. oxysporum; B: P. italic; C: P. capsica; D: C. capsica; Lines A-D: control; Lines E-H: before optimization; Lines J-M: after optimization.
表 1 单因素优化设计
Table 1. Single factor optimization experimental design
接种量
Inocuiation amount/mL装液量
Refilled amount/mLpH 2.5 20 5.0 5.0 30 6.0 7.5 50 7.0 10 70 8.0 12.5 90 9.0 15 110 10.0 17.5 - - 20 - - 表 2 正交试验优化组合试验因子及水平
Table 2. Factors and levels of optimization experiment
水平
LevelA:葡萄糖
Glucose/
(g·L−1)B:蛋白胨
Peptone/
( g·L−1)C:Mg2+/
( g·L−1)D:Ca2+/
( g·L−1)1 10 8 0.1 0.1 2 15 10 0.5 0.5 3 20 12 1.0 1.0 表 3 菌株H生理生化试验
Table 3. Physiological and biochemical test results on C. kochii H
试验名称
Test names试验现象
Experimental phenomenon试验结果
Results甲基红试验 Methylred test 反应液呈黄色 The reaction solution is yellow − 革兰氏染色 Gram staining test 菌体呈紫色 The cell is purple + V-P试验 V-P test 培养液呈非红色 The culture medium is not red − 靛基质试验 Imdole test 反应液呈红色 The reaction solution is red + 触酶试验 Contact enzyme test 有气泡 Bubble + 柠檬酸盐利用试验 Citrate test 培养基呈深蓝色 The culture medium is navy blue + +:阳性;−:阴性。
+: positive; −: negative.表 4 高知芽孢杆菌(C. kochii) H产蛋白酶优化组合正交试验结果
Table 4. Orthogonal optimization of C. kochii H protease-producing process
试验编号
Test No因子 Factor 酶活力
Protease activity/(U·mL−1)葡萄糖
Glucose蛋白胨
PeptoneMg2+ Ca2+ 1 1 1 1 1 215.370 2 1 2 2 2 51.584 3 1 3 3 3 122.418 4 2 1 2 3 15.460 5 2 2 3 1 176.814 6 2 3 1 2 100.002 7 3 1 3 2 360.028 8 3 2 1 3 107.773 9 3 3 2 1 221.348 K1 129.791 196.953 141.048 204.511 - K2 97.426 112.057 96.130 170.538 - K3 229.716 147.923 219.753 81.884 - R 132.291 84.896 123.623 122.627 - 优化组合
Optimization grouping3 1 3 1 - 表 5 蛋白酶抑菌验证
Table 5. Validation on bacteriostasis of C. kochii H protease
病原菌
Pathogen粗酶液抑菌率
Antibacterial rate of
crude enzyme
solution/%粗酶液灭活后抑菌率
Antibacterial rate of
crude enzyme solution
after inactivation/%尖孢镰刀菌
Fusarium oxysporum21.89±1.40 a 6.26±1.23 b 辣椒疫霉病菌
Phytophthora capsici36.67±3.10 a 29.63±3.40 a 脐橙青霉病菌
Penicillium italicu16.90±2.70 a 1.98±1.31 b 辣椒炭疽病菌
Colletotrichum capsici17.57±9.69 a 0.40±0.00 b -
[1] KUDDUS M, PRAMOD W R. Recent development in production and biotechnological applications of cold-active mocrobial protease [J]. Critical Reviews in Microbiology, 2012, 38(4): 330−338. doi: 10.3109/1040841X.2012.678477 [2] WANG Z, WANG Y, ZHENG L, et al. Isolation and characterization of an antifungal protein from Bacillus licheniformis HS10 [J]. Biochemical and Biophysical Research Communications, 2014, 454(1): 48−52. doi: 10.1016/j.bbrc.2014.10.031 [3] 周桂旭, 文阳宣, 李新锋, 等. 重组枯草芽孢杆菌产碱性蛋白酶发酵条件优化 [J]. 山西大学学报(自然科学版), 2020, 43(2):405−412. doi: 10.13451/j.sxu.ns.2019103ZHOU G X, WEN Y X, LI X F, et al. Optimization of fermentation conditions for recombinant alkaline protease produced by Bacillus subtilis [J]. Journal of Shanxi University (Natural Science Edition), 2020, 43(2): 405−412.(in Chinese) doi: 10.13451/j.sxu.ns.2019103 [4] 朱泓, 王一明, 林先贵. 一株高温蛋白酶高产菌株产酶条件的优化 [J]. 南京林业大学学报(自然科学版), 2014, 38(1):31−35.ZHU H, WANG Y M, LIN X G. Optimization of fermentation medium and culture condition of a thermostable protease from moderate thermophilic strain Bacillus subtilis BY25 [J]. Journal of Nanjing Forestry University (Natural Science Edition), 2014, 38(1): 31−35.(in Chinese) [5] 龚志立, 曹誉, 刘平, 等. 产蛋白酶菌株P12产酶条件的优化 [J]. 科技创新与生产力, 2021(4):69−71. doi: 10.3969/j.issn.1674-9146.2021.04.069GONG Z L, CAO Y, LIU P, et al. Optimization of enzyme production condition of a protease strain P12 [J]. Sci-Tech Innovation and Productivity, 2021(4): 69−71.(in Chinese) doi: 10.3969/j.issn.1674-9146.2021.04.069 [6] 韩淑梅, 李欣, 张芝元, 等. 微生物角蛋白酶的特性及其应用研究进展 [J]. 微生物学通报, 2021, 48(11):4315−4326. doi: 10.13344/j.microbiol.china.210152HAN S M, LI X, ZHANG Z Y, et al. Research progress on the characteristics and application of microbial keratinase [J]. Microbiology China, 2021, 48(11): 4315−4326.(in Chinese) doi: 10.13344/j.microbiol.china.210152 [7] HAMED A A, KHEDR M, ABDELRAOF M. Molecular characterization of alkaline protease-coding gene from Bacillus licheniformis MK90 mutants with biofilm inhibitory activity [J]. Egyptian Pharmaceutical Journal, 2019, 18(4): 419−433. doi: 10.4103/epj.epj_47_19 [8] KABANOV D, KHABIPOVA N, VALEEVA L, et al. Effect of subtilisin-like proteinase of Bacillus pumilus 3-19 on Pseudomonas aeruginosa biofilms [J]. Bionanoscience, 2019, 9(2): 515−520. doi: 10.1007/s12668-019-00617-z [9] 张永军, 彭国雄, 方卫国, 等. 球孢白僵菌胞外蛋白酶及类枯草杆菌蛋白酶的诱导 [J]. 应用与环境生物学报, 2000, 6(2):182−186. doi: 10.3321/j.issn:1006-687X.2000.02.017ZHANG Y J, PENG G X, FANG W G, et al. Induction of extracellular protease and subtilisin like protease of Beauveria bassiana [J]. Chinese Journal of Applied and Environmental Biology, 2000, 6(2): 182−186.(in Chinese) doi: 10.3321/j.issn:1006-687X.2000.02.017 [10] FAN H J, LIU Z H, ZHANG R S, et al. Functional analysis of a subtilisin-like serine gene from biocontrol fungus Trichoderma harzianum [J]. Journal of Microbiology, 2014, 52(2): 129−138. doi: 10.1007/s12275-014-3308-9 [11] 陈瑜, 孔海深. 伯杰鉴定细菌学手册第9版简介[J]. 国外医学(微生物学分册), 1995, 18(6): 32, 48.CHEN Y, KONG H S. Berger’s Handbook of identification bacteriology, 9th Edition[J] Foreign Med., 1995, 18 (6): 32, 48. [12] 姜艳彬, 王海, 侯东军, 等. 两种快速细菌菌种鉴定方法的比较 [J]. 中国测试, 2010, 36(5):41−44.JIANG Y B, WANG H, HOU D J, et al. Comparison of two rapid bacteria strain identification methods [J]. China Measurement & Test, 2010, 36(5): 41−44.(in Chinese) [13] 中华人民共和国国家质量监督检验检疫总局. 蛋白酶制剂: GB/T23527-2009[S]. 北京: 中国标准出版社, 2009. [14] 王永红, 李小斌, 徐磊, 等. 产蛋白酶菌株的筛选、鉴定及水解菜粕蛋白能力 [J]. 生物资源, 2018(2):135−140.WANG Y H, LI X B, XU L, et al. Screening and identification of protease producing strains and their ability of hydrolysis of rapeseed protein [J]. Biotic Resources, 2018(2): 135−140.(in Chinese) [15] 曹慧, 张腾月, 赵龙妹, 等. 土壤中高产蛋白酶菌株产酶条件及酶学性质 [J]. 微生物学通报, 2020, 47(7):2072−2081. doi: 10.13344/j.microbiol.china.200135CAO H, ZHANG T Y, ZHAO L M, et al. Identification and characterization of a high protease-producing strain from soil [J]. Microbiology China, 2020, 47(7): 2072−2081.(in Chinese) doi: 10.13344/j.microbiol.china.200135 [16] 张红岩, 张妮, 杨梦莹, 等. 拟蕈状芽孢杆菌Gxun-30产角蛋白酶液体发酵条件优化 [J]. 食品与发酵工业, 2021, 47(4):136−143. doi: 10.13995/j.cnki.11-1802/ts.025196ZHANG H Y, ZHANG N, YANG M Y, et al. Optimization of liquid fermentation conditions of keratinase produced by Bacillus paramycoides Gxun-30 [J]. Food and Fermentation Industries, 2021, 47(4): 136−143.(in Chinese) doi: 10.13995/j.cnki.11-1802/ts.025196 [17] 杨城, 姚善泾, 杨志坚, 等. 一株产酸性蛋白酶菌株的筛选、鉴定及发酵条件优化 [J]. 农业生物技术学报, 2019, 27(2):371−380.YANG C, YAO S J, YANG Z J, et al. Screening, identification and fermentation optimization of a acidprotease strain [J]. Journal of Agricultural Biotechnology, 2019, 27(2): 371−380.(in Chinese) [18] 朱祥杰, 王震, 苑志欣, 等. 海洋芽孢杆菌N11-8产蛋白酶的发酵条件优化 [J]. 渔业科学进展, 2018, 39(6):155−163.ZHU X J, WANG Z, YUAN Z X, et al. Optimization of fermentation conditions of Bacillus sp. N11-8 on the production of protease PBN11-8 [J]. Progress in Fishery Sciences, 2018, 39(6): 155−163.(in Chinese) [19] 侯泽林. 从土壤中筛选碱性蛋白酶产生菌及产酶条件优化研究[D]. 哈尔滨: 东北农业大学, 2021.HOU Z L. Screening alkaline protease-producing bacteria from soil and optimization of enzyme-producing conditions[D]. Harbin: Northeast Agricultural University, 2021. (in Chinese) [20] 周魏, 曾嵩玉, 余金凤, 等. 一株地衣芽胞杆菌产碱性蛋白酶条件优化 [J]. 微生物学通报, 2022, 49(7):2753−2766. doi: 10.13344/j.microbiol.china.211107ZHOU W, ZENG S Y, YU J F, et al. Optimization of alkaline protease production by a strain of Bacillus licheniformis [J]. Microbiology China, 2022, 49(7): 2753−2766.(in Chinese) doi: 10.13344/j.microbiol.china.211107 [21] 刘新风, 牛春华, 刘香英, 等. 枯草芽孢杆菌BSG1产蛋白酶发酵条件优化 [J]. 食品工业, 2013, 34(7):1−4.LIU X F, NIU C H, LIU X Y, et al. The Bacillus subtilis BSG1 producing protease optimization of fermentation conditions [J]. The Food Industry, 2013, 34(7): 1−4.(in Chinese) [22] 曹春红, 李爽, 王海燕, 等. 解淀粉芽孢杆菌YF03产蛋白酶发酵培养基及发酵条件的优化 [J]. 饲料工业, 2020(10):23−29.CAO C H, LI S, WANG H Y, et al. The Bacillus amyloliquefaciens YF03 producing protease optimization of fermentation medium and fermentation conditions [J]. Feed Industry, 2020(10): 23−29.(in Chinese) [23] HADDAR A, HMIDET N. Alkaline proteases produced by Bacillus licheniforms PR1 grown on shrimp wastes: application in chitin extraction, chicken feather-degradation and as a dehairing agent [J]. Biotechnology and Bioprocess Engineering, 2011(16): 669−678. [24] 张晓云, 李宝庆, 郭庆港, 等. 枯草芽孢杆菌CAB-1抑菌蛋白对黄瓜白粉病的防治作用 [J]. 中国生物防治学报, 2012, 28(3):375−380. doi: 10.3969/j.issn.2095-039X.2012.03.012ZHANG X Y, LI B Q, GUO Q G, et al. Inhibitive effect of antifungal protein produced by Bacillus subtilis CAB-I against sphaerothecafuliginea in cucumber [J]. Chinese Journal of Biological Control, 2012, 28(3): 375−380.(in Chinese) doi: 10.3969/j.issn.2095-039X.2012.03.012 [25] 陈志杰, 谢江辉, 陈宇丰, 等. 一株植物病原拮抗细菌的分离筛选及拮抗物质 [J]. 生态学杂志, 2018, 37(5):1595−1604.CHEN Z J, XIE J H, CHEN Y F, et al. Isolation and screening of a plant pathogen-antagonistic bacterium and antagonistic substance [J]. Chinese Journal of Ecology, 2018, 37(5): 1595−1604.(in Chinese) [26] 彭帅. 地衣芽孢杆菌W10枯草杆菌蛋白酶Sp1抗菌和诱导植物抗病性机理研究[D]. 扬州: 扬州大学, 2021.PENG S. Study on the mechanism of antimicrobial activity and plant disease resistance induced by Bacillus licheniformis W10 subtilisin Sp1[D]. Yangzhou: Yangzhou University, 2021. (in Chinese) [27] 彭兵, 张树斌, 贾宇, 等. 枯草芽孢杆菌菌株A抗菌蛋白的分离纯化及抗真菌机理 [J]. 中国农业科学, 2011, 44(1):67−74. doi: 10.3864/j.issn.0578-1752.2011.01.008PENG B, ZHANG S B, JIA Y, et al. Purification and antifungal mechanism of a kind of antifungal protein from strain A of Bacillus subtilis [J]. Scientia Agricultura Sinica, 2011, 44(1): 67−74.(in Chinese) doi: 10.3864/j.issn.0578-1752.2011.01.008