SRAP and SCoT Markers-based Analysis on Genetic Diversity of Sweet Cherry Cultivars
-
摘要:
目的 探究40个甜樱桃( Prunus avium L.)品种的遗传多样性及SRAP和SCoT标记在甜樱桃上的应用。 方法 利用SRAP和SCoT分子标记进行遗传多样性分析。 结果 筛选出6对条带清晰、多态性好的SRAP引物和7条SCoT引物,在40个甜樱桃品种中分别扩增出多态性条带67和69条,多态性百分率分别为90.54%和93.24%。SRAP标记和SCoT标记的UPGMA聚类分析表明,40个甜樱桃品种的遗传相似系数分别在0.67~0.95和0.72~0.93,说明甜樱桃的遗传背景相对较窄。SRAP标记在相似系数0.79左右可以将40份甜樱桃分为6组,SCoT标记在相似系数在0.77左右可以将40份甜樱桃分为6组。两种分子标记中,来自不同地区的甜樱桃品种没有明显聚类,说明各个地区甜樱桃品种基因交流频繁,另外大部分黄色系甜樱桃品种聚为一类。 结论 2种分子标记均可应用于分析甜樱桃遗传多样性且能够区分不同果皮颜色甜樱桃,可以作为后期种质资源利用和新品种选育的技术手段。 -
关键词:
- 甜樱桃 /
- 相关序列扩增多态性 /
- 目标起始密码子多态性 /
- 遗传多样性
Abstract:Objective Genetic relationship of 40 sweet cherry cultivars were analyzed. Methods SRAP and SCoT molecular markers were used to determine the genetic diversity of sweet cherry varieties. Results Six pairs of SRAP primers and 7 pairs of SCoT primers with distinct bands and polymorphism were selected as the markers to obtain 67 and 69 amplified bands representing 90.54% and 93.24% of polymorphism, respectively, from the 40 cultivars. Based either on SRAP with a similarity coefficient of about 0.79 or on SCoT with a similarity coefficient of about 0.77, the cultivars could be divided into 6 groups. Thus, the sweet cherry cultivars collected from different regions could have gone through numerous genetic exchanges becoming low in variation. Therefore, not surprisingly, most of the yellow varieties were grouped into one single category. Conclusion The SRAP and SCoT markers successfully helped examine the genetic diversity of 40 sweet cherry cultivars collected from various regions. The result obtained would facilitate further studies in the germplasm utilization and breeding of sweet cherries. -
Key words:
- Sweet cherry /
- SRAP /
- SCoT /
- genetic diversity
-
表 1 40份甜樱桃品种
Table 1. Forty sweet cherry varieties
编号
No.名称
Name果实颜色
Fruit color原产地
Origin编号
No.名称
Name果实颜色
Fruit color原产地
Origin1 鲁樱3号 Luying3 红色 Red 中国 China 21 龙冠 Longguan 红色 Red 中国 China 2 拉宾斯 Lapins 紫红色 Purplish red 加拿大 Canada 22 佐藤锦 Satonishiki 黄红色 Yellowish red 日本 3 早甘阳 Zaoganyang 紫红色 Purplish red 中国 China 23 佳红 Jiahong 黄红色 Yellowish red 中国 China 4 齐早 Qizao 紫红色 Purplish red 中国 China 24 琥珀 Hupo 黄红色 Yellowish red 中国 China 5 鲁玉 Luyu 红色 Red 中国 China 25 桑德拉玫瑰 Sandra rose 紫红色 Purplish red 加拿大 Canada 6 美早 Tieton 红色 Red 美国 America 26 彩玉 Caiyu 黄红色 Yellowish red 中国 China 7 布鲁克斯 Brooks 红色 Red 美国 America 27 罗亚明 Royal minnie 紫红色 Purplish red 美国 America 8 桑提娜 Santina 紫红色 Purplish red 加拿大 Canada 28 罗亚理 Royal lee 红色 Red 美国 America 9 萨米脱 Summit 紫红色 Purplish red 加拿大 Canada 29 瑞德 Ruide 红色 Red 美国 America 10 黄蜜 Huangmi 黄红色 Yellowish red 中国 China 30 水晶香槟 Pearl champagne 红色 Red 美国 America 11 雷尼 Rainier 黄红色 Yellowish red 美国 America 31 珊瑚香槟 Coral champagne 红色 Red 美国 America 12 福星 Fuxing 红色 Red 中国 China 32 科迪亚 Kodia 紫黑色 Purplish-black 捷克 Chech 13 明珠 Mingzhu 黄红色 Yellowish red 中国 China 33 那翁 Napoleon 黄色 Yellow 德国 Germany 14 鲁樱1号 Luying1 红色 Red 中国 China 34 艳阳 Sunburst 紫红色 Purplish red 加拿大 Canada 15 黑珍珠 Heizhenzhu 紫黑色 Purplish red 中国 China 35 红蜜 Hongmi 黄红色 Yellowish red 中国 China 16 福晨 Fuchen 红色 Red 中国 China 36 大紫 Black tartarin 紫红色 Purplish red 俄罗斯 Russia 17 早大果 Крупноплодная 紫红色 Purplish red 乌克兰 Ukraine 37 早红宝石 Early ruby 紫红色 Purplish red 乌克兰 Ukraine 18 俄罗斯8号 Russia 8 紫黑色 Purplish red 俄罗斯 Russia 38 宾库 Bing 紫红色 Purplish red 美国 America 19 先锋 Van 紫红色 Purplish red 加拿大 Canada 39 意大利早红 Italian early 紫红色 Purplish red 法国 France 20 红灯 Hongdeng 红色 Red 中国 China 40 红灯(短柄) Hongdeng 红色 Red 中国 China 表 2 SRAP引物名称及序列
Table 2. Names and sequences of SRAP primers
名称
Name引物序列5′→3′
Primer Sequence 5′→3′引物序列5′→3′
Primer Sequence 5′→3′me4/em13 TGAGTCCAAACCGGACC GACTGCGTACGAATTCTA me5/em11 TGAGTCCAAACCGGAAG GACTGCGTACGAATTGCA me7/em23 TGAGTCCAAACCGGTCC GACTGCGTACGAATTGGT me8/em4 TGAGTCCAAACCGGTGC GACTGCGTACGAATTTGA me14/em23 TGAGTCCAAACCGGAAC GACTGCGTACGAATTGGT me26/em24 TTCAGGGTGGCCGGATG GACTGCGTACGAATTCAG 表 3 SCoT引物名称及序列
Table 3. Names and sequences of SCoT primers
名称
Name引物序列5′→3′
Primer Sequence 5′→3′名称
Name引物序列5′→3′
Primer Sequence 5′→3′SCoT12 ACGACATGGCGACCAACG SCoT27 ACCATGGCTACCACCGTG SCoT15 ACGACATGGCGACCGCGA SCoT62 ACCATGGCTACCACGGAG SCoT19 ACCATGGCTACCACCGGC SCoT72 CCATGGCTACCACCGCCC SCoT21 ACGACATGGCGACCCACA 表 4 不同甜樱桃品种SRAP分子标记多态性及遗传多样性分析
Table 4. Polymorphism and genetic diversity of sweet cherry cultivars analyzed based on SRAP markers
引物
Primer总条带数
Number of
total bands多态性条带数
Number of
polymorphic bands多态性百分率
Percentage of
polymorphic bands/%等位基因数
Observed number of
alleles (Na)有效等位基因数
Effect
number of
alleles (Ne)Nei's 基因遗传
多样性指数
Nei's gene
diversity (H )Shannon's 信息指数
Shannon's
information
index (I )me4/em13 9 9 100.00 2.0000 1.4506 0.2915 0.4529 me5/em11 16 15 93.75 1.9375 1.4471 0.2684 0.4126 me7/em23 13 12 92.31 1.9231 1.4281 0.2736 0.4263 me8/em4 10 9 90.91 1.9091 1.6451 0.3587 0.5205 me14/em23 12 10 83.33 1.8333 1.3245 0.2008 0.3134 me26/em24 14 12 85.71 1.8571 1.4372 0.2759 0.4250 合计 Total 74 67 均值 Mean 12.3 11.2 90.54 1.9100 1.4554 0.2782 0.3701 表 5 不同甜樱桃品种SCoT分子标记多态性及遗传多样性分析
Table 5. Polymorphism and genetic diversity of sweet cherry cultivars analyzed based on SCoT markers
引物
Primer总条带数
Number of
total bands多态性条带数
Number of
polymorphic bands多态性百分率
Percentage of
polymorphic bands/%等位基因数
Observed number of
alleles (Na)有效等位基因数
Effect number of
alleles (Ne)Nei's 基因遗传
多样性指数
Nei's gene
diversity (H)Shannon's 信息指数
Shannon's information
index (I)SCoT12 9 9 100.00 2.0000 1.3428 0.2262 0.3671 SCoT15 9 9 100.00 2.0000 1.3098 0.2059 0.3380 SCoT19 12 12 100.00 2.0000 1.2752 0.1793 0.3026 SCoT21 13 13 100.00 2.0000 1.4005 0.2493 0.3939 SCoT27 10 8 80.00 1.8000 1.4251 0.2455 0.3693 SCoT62 12 11 91.67 1.9167 1.3015 0.1835 0.2922 SCoT72 9 7 77.78 1.7778 1.2847 0.1755 0.2765 合计 Total 74 69 均值 Mean 10.6 9.9 93.24 1.9278 1.3342 0.2093 0.3342 -
[1] KHADIVI A, MOHAMMADI M, ASGARI K. Morphological and pomological characterizations of sweet cherry (Prunus avium L. ), sour cherry (Prunus cerasus L. ) and duke cherry (Prunus × gondouinii Rehd. ) to choose the promising selections [J]. Scientia Horticulturae, 2019, 257: 108719. doi: 10.1016/j.scienta.2019.108719 [2] MARIETTE S, LEFRANC M, LEGRAND P, et al. Genetic variability in wild cherry populations in France. Effects of colonizing processes [J]. Theoretical and Applied Genetics, 1997, 94(6): 904−908. [3] 段续伟, 李明, 谭钺, 等. 新中国果树科学研究70年: 樱桃 [J]. 果树学报, 2019, 36(10):1339−1351.DUAN X W, LI M, TAN Y, et al. Fruit scientific research in New China in the past 70 years: Cherry [J]. Journal of Fruit Science, 2019, 36(10): 1339−1351.(in Chinese) [4] 张开春, 闫国华, 张晓明, 等. 中国甜樱桃的栽培历史、生产现状及发展建议 [J]. 落叶果树, 2017, 49(6):1−5.ZHANG K C, YAN G H, ZHANG X M, et al. Cultivation history, production status and development suggestions of sweet cherry in China [J]. Deciduous Fruits, 2017, 49(6): 1−5.(in Chinese) [5] 陈豫静. 基于SSR、SRAP标记的榛属种质资源遗传多样性及亲缘关系分析[D]. 沈阳: 沈阳农业大学, 2019.CHEN Y J. Genetic diversity and relationship analysis of hazelnut germplasm resources based on SSR, SRAP marker[D]. Shenyang: Shenyang Agricultural University, 2019. (in Chinese) [6] LI G, QUIROS C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica [J]. Theoretical and Applied Genetics, 2001, 103(2/3): 455−461. [7] 杨迎花, 李先信, 曾柏全, 等. 新型分子标记SRAP的原理及其研究进展 [J]. 湖南农业科学, 2009(5):15−17,20.YANG Y H, LI X X, ZENG B Q, et al. The principle and research advancement of sequence-related amplified polymorphism [J]. Hunan Agricultural Sciences, 2009(5): 15−17,20.(in Chinese) [8] MAHJBI A, BARAKET G, OUESLATI A, et al. Start Codon Targeted (SCoT) markers provide new insights into the genetic diversity analysis and characterization of Tunisian Citrus species [J]. Biochemical Systematics and Ecology, 2015, 61: 390−398. doi: 10.1016/j.bse.2015.07.017 [9] 蔡元保, 杨祥燕, 陈豪军, 等. SRAP结合SCoT标记分析番木瓜种质的遗传多样性 [J]. 植物遗传资源学报, 2014, 15(2):292−298.CAI Y B, YANG X Y, CHEN H J, et al. Genetic diversity analysis of Papaya resources by SRAP and SCoT combination [J]. Journal of Plant Genetic Resources, 2014, 15(2): 292−298.(in Chinese) [10] 文露, 王永清, 邓群仙, 等. 皮球桃黄肉芽变的ISSR和SRAP分子标记鉴定 [J]. 基因组学与应用生物学, 2020, 39(11):5180−5185.WEN L, WANG Y Q, DENG Q X, et al. Identification of a yellow-flesh sport of piqiutao peach(Prunus persica) using ISSR and SRAP markers [J]. Genomics and Applied Biology, 2020, 39(11): 5180−5185.(in Chinese) [11] 刘均. 基于SRAP和IRAP标记的诱变李嫁接株系遗传变异分析[D]. 雅安: 四川农业大学, 2017LIU J. Genetic variation analysis of mutagenic grafted plum lines based on SRAP and IRAP markers[D]. Yaan: Sichuan Agricultural University, 2017. (in Chinese) [12] SHARMA K, XUAN H B, SEDLÁK P. Assessment of genetic diversity of Czech sweet cherry cultivars using microsatellite markers [J]. Biochemical Systematics and Ecology, 2015, 63: 6−12. doi: 10.1016/j.bse.2015.09.013 [13] LACIS G, RASHAL I, RUISA S, et al. Assessment of genetic diversity of Latvian and Swedish sweet cherry (Prunus avium L. ) genetic resources collections by using SSR (microsatellite) markers [J]. Scientia Horticulturae, 2009, 121(4): 451−457. doi: 10.1016/j.scienta.2009.03.016 [14] 路娟, 张绍铃, 刘庆忠, 等. 樱桃SRAP-PCR体系优化及其遗传多样性分析 [J]. 果树学报, 2009, 26(2):163−169.LU J, ZHANG S L, LIU Q Z, et al. Optimization of SRAP-PCR system and its application in genetic diversity analysis of cherry [J]. Journal of Fruit Science, 2009, 26(2): 163−169.(in Chinese) [15] MASOUD A, MAJID T, HAMID R G, et al. Genetic diversity and population structure of mahaleb cherry (Prunus mahaleb L. ) and sweet cherry (Prunus avium L. ) using SRAP markers [J]. Biochemical Systematics and Ecology, 2012, 40: 112−117. doi: 10.1016/j.bse.2011.10.005 [16] 彭芳芳, 龙治坚, 魏召新, 等. 樱桃种质SCoT分子标记与叶片表型性状关联分析 [J]. 园艺学报, 2021, 48(2):325−335.PENG F F, LONG Z J, WEI Z X, et al. Association analysis of SCoT markers and leaf phenotypic traits in cherry germplasm [J]. Acta Horticulturae Sinica, 2021, 48(2): 325−335.(in Chinese) [17] COLLARD B C Y, MACKILL D J. Start Codon targeted (SCoT) polymorphism: A simple, novel DNA marker technique for generating gene-targeted markers in plants [J]. Plant Molecular Biology Reporter, 2009, 27(1): 86−93. doi: 10.1007/s11105-008-0060-5 [18] LUO C, HE X H, CHEN H, et al. Analysis of diversity and relationships among mango cultivars using Start Codon Targeted (SCoT) markers [J]. Biochemical Systematics and Ecology, 2010, 38(6): 1176−1184. doi: 10.1016/j.bse.2010.11.004 [19] 廖柏勇, 王芳, 陈丽君, 等. 基于SRAP分子标记的苦楝种质资源遗传多样性分析 [J]. 林业科学, 2016, 52(4):48−58.LIAO B Y, WANG F, CHEN L J, et al. Genetic diversity of germplasm resources of Melia azedarach revealed by SRAP markers [J]. Scientia Silvae Sinicae, 2016, 52(4): 48−58.(in Chinese) [20] 陈红, 杨鑫, 安华明. 贵州桃种质资源遗传多样性的SCoT分析 [J]. 西北植物学报, 2014, 34(8):1559−1564.CHEN H, YANG X, AN H M. Genetic diversity of peach accessions in Guizhou analysed by SCoT markers [J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(8): 1559−1564.(in Chinese) [21] 陈晓流, 陈学森, 束怀瑞, 等. 15个樱桃品种的RAPD分析 [J]. 果树学报, 2004, 21(6):556−559.CHEN X L, CHEN X S, SHU H R, et al. RAPD analysis of 15 cherry cultivars [J]. Journal of Fruit Science, 2004, 21(6): 556−559.(in Chinese) [22] 田长平, 张福兴, 刘晓静, 等. 樱桃荧光AFLP反应体系优化及应用 [J]. 北方园艺, 2014(14):115−118.TIAN C P, ZHANG F X, LIU X J, et al. Optimization and application of fluorescent-AFLP analysis system on cherry [J]. Northern Horticulture, 2014(14): 115−118.(in Chinese) [23] LIU C L, QI X L, SONG L L, et al. Species identification, genetic diversity and population structure of sweet cherry commercial cultivars assessed by SSRs and the gametophytic self-incompatibility locus [J]. Scientia Horticulturae, 2018, 237: 28−35. doi: 10.1016/j.scienta.2018.03.063 [24] 陈仲刚. 甜樱桃S基因型鉴定及品种遗传关系SSR分析[D]. 雅安: 四川农业大学, 2014CHEN Z G. Identification of self-incompatibility genotypes of sweet cherries and the genetic relationship by SSR analysis[D]. Yaan: Sichuan Agricultural University, 2014. (in Chinese) [25] 周杰, 于鹏, 陈学森, 等. 甜樱桃品种遗传多样性的SSR分析 [J]. 山东农业科学, 2008, 40(3):26−28,42.ZHOU J, YU P, CHEN X S, et al. Analysis of genetic diversity for sweet cherry varieties by SSR marker [J]. Shandong Agricultural Sciences, 2008, 40(3): 26−28,42.(in Chinese) [26] 蔡宇良, 曹东伟, 李珊, 等. 甜樱桃品种及其砧木的RAPD分析 [J]. 西北植物学报, 2006, 26(6):1125−1132.CAI Y L, CAO D W, LI S, et al. RAPD analysis of Prunus avium L. Varieties and their rootstocks [J]. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(6): 1125−1132.(in Chinese) [27] 王丹丹, 付化瑞, 张彦文. 甜樱桃栽培种指纹图谱构建及遗传多样性分析 [J]. 西北农业学报, 2017, 26(12):1813−1820.WANG D D, FU H R, ZHANG Y W. Establishment of DNA fingerprinting and analysis of genetic diversity among Prunus aviun cultivars [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2017, 26(12): 1813−1820.(in Chinese) [28] STANYS V, BANIULIS D, MORKUNAITE-HAIMI S, et al. Characterising the genetic diversity of Lithuanian sweet cherry (Prunus avium L.) cultivars using SSR markers [J]. Scientia Horticulturae, 2012, 142: 136−142. doi: 10.1016/j.scienta.2012.05.011 [29] 高平, 郑玮, 冯瑛, 等. 甜樱桃遗传图谱的构建及果皮红色性状QTL分析 [J]. 园艺学报, 2012, 39(1):135−142.GAO P, ZHENG W, FENG Y, et al. Genetic mapping and QTL analysis for fruit color in sweet cherry using the intra-specific crossing‘rainier’ × ‘8-100’ [J]. Acta Horticulturae Sinica, 2012, 39(1): 135−142.(in Chinese)