• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

山羊FN1基因InDel位点鉴定及其与生长性状的关联性分析

吴贤锋 刘远 王迎港 张富 李文杨

吴贤锋,刘远,王迎港,等. 山羊FN1基因InDel位点鉴定及其与生长性状的关联性分析 [J]. 福建农业学报,2023,38(1):1−6 doi: 10.19303/j.issn.1008-0384.2023.01.001
引用本文: 吴贤锋,刘远,王迎港,等. 山羊FN1基因InDel位点鉴定及其与生长性状的关联性分析 [J]. 福建农业学报,2023,38(1):1−6 doi: 10.19303/j.issn.1008-0384.2023.01.001
WU X F, LIU Y, WANG Y G, et al. Relationship between InDel Polymorphism of FN1 Gene and Growth Traits of Goats [J]. Fujian Journal of Agricultural Sciences,2023,38(1):1−6 doi: 10.19303/j.issn.1008-0384.2023.01.001
Citation: WU X F, LIU Y, WANG Y G, et al. Relationship between InDel Polymorphism of FN1 Gene and Growth Traits of Goats [J]. Fujian Journal of Agricultural Sciences,2023,38(1):1−6 doi: 10.19303/j.issn.1008-0384.2023.01.001

山羊FN1基因InDel位点鉴定及其与生长性状的关联性分析

doi: 10.19303/j.issn.1008-0384.2023.01.001
基金项目: 福建省科技计划公益类专项(2020R10260012、2020R10260014)
详细信息
    作者简介:

    吴贤锋 (1990−),男,硕士,助理研究员,研究方向:动物遗传育种(E-mail:wuxianfeng3080@163.com

    通讯作者:

    李文杨 (1972−),男,硕士,副研究员,研究方向:动物遗传育种(E-mail:Wy369@sina.com

  • 中图分类号: S 828.2

Relationship between InDel Polymorphism of FN1 Gene and Growth Traits of Goats

  • 摘要:   目的  转录组候选基因纤维连接蛋白1(Fibronectin 1,FN1)对于骨分化、骨形成和骨细胞迁移起关键作用。对FN1基因预测突变位点进行DNA池检测,并与山羊生长性状进行关联分析,以期为山羊的遗传育种和性状改良提供分子标记。  方法  利用DNA池检测和PCR-RFLP技术,分析福清山羊、努比亚黑山羊和简阳大耳羊中FN1基因的7个预测突变位点的遗传多态性,并与其生长性状进行关联分析。  结果  通过DNA池检测和PCR-RFLP发现,7个预测位点中只有Del66652位点存在多态性,且在3个山羊群体中都只存在II和ID基因型,都不处于哈迪温伯格平衡(P>0.05),多态性信息含量小于0.25。关联分析发现,努比亚黑山羊ID基因型个体的管围显著优于II基因型(P<0.05),ID基因型的胸围指数极显著优于II基因型(P<0.01)。简阳大耳羊ID基因型个体的胸围指数和管围指数显著优于II基因型(P<0.05)。  结论  Del66652位点与努比亚山羊和简阳大耳羊的生长性状显著相关,且ID基因型为优势基因型。Del66652位点可作为影响山羊生长性状的分子标记位点,为提高山羊生长性状的品种改良提供研究基础。
  • 图  1  FN1基因7个位点测序峰图(a—g)和Del66652位点琼脂糖凝胶电泳图(h)

    Figure  1.  Sequencing chromes of 7 loci (a—g) and electrophoresis of Del66652 locus (h) of FN1 gene

    表  1  引物信息

    Table  1.   Information on primer

    引物
    Primer
    引物序列(5′-3′)
    Sequence of primer(5′-3′)
    退火温度
    Temperature/℃
    产物大小
    Product size/bp
    检测位点
    Identified site
    P1TGCAAACTCAACTGTTTTCAAGGG62268Del3837
    CGTTTAAATGAAGGTGGGCTGT
    P2GGCTGAGGTGGTAACAATGGA6165111697A>T
    GCACTGGAGGGCTTTTCCTT
    P3CACGTGGAACTTTCTTCTTACCC59.5204Del29318
    GGCTGACTTTGATCCTGTGGAA
    P4AGTCACTGATATTCCACTACTTCCT61268Del50927
    GCAAAAAGCCTAGATTTTGTACATT
    P5AGATTGGAGAGAAGTGGGATC6029965122G>A
    CGGAGAAGTGCTAAAGTGCC
    P6ACCAGATCTTAGACAACATGAAGA62257Del62401
    GAGGGCGCCTTTTGCTTTTAAT
    P7TGCCAGTACTTCTCAACCATTTCT60291Del66652
    TGGGTACCTGCAACTGGCTA
    下载: 导出CSV

    表  2  山羊FN1基因InDel位点基因型频率和等位基因频率

    Table  2.   Genotypic and allelic frequencies of InDel polymorphism of FN1 gene in goat

    位点
    Locus
    品种(数量)
    Breeds (Amount)
    基因型频率
    Genotypic frequencies/%
    基因频率
    Allelic frequencies/%
    纯合性
    Ho
    杂合性
    He
    有效等位基因数
    Ne
    多态信息含量
    PIC
    哈代-温伯格平衡
    HWE P value
    IDIIDI
    Del66652FQ (n=118)0.076(9)0.924(109)0.0380.9270.9270.0731.0790.071P<0.05
    NB (n=141)0.028 (4)0.972(137)0.0140.9860.9720.0281.0290.028P<0.05
    JY (n=120)0.050 (6)0.950 (114)0.0250.9750.9510.0491.0510.048P<0.05
    下载: 导出CSV

    表  3  FN1基因InDel位点与山羊生长性状关联分析

    Table  3.   Association between the InDel loci of the FN1 gene and growth traits in goat

    品种 Breeds生长性状 Growth traits基因型 Genotype
    IIID
    福清山羊 FQ体重 Body weight/kg30.68 ±0.6529.68 ±1.92
    体高 Body height/cm55.10 ±0.3855.22 ±0.62
    体长 Body length/cm55.10 ±0.4453.68 ±0.93
    胸围 Chest circumference/cm73.57 ±0.6173.64 ±1.78
    胸宽 Chest width/cm16.50 ±0.1816.60 ±0.55
    胸深 Chest depth/cm30.16 ±0.3430.39 ±1.00
    管围 Cannon circumference/cm7.45 ±0.067.47 ±0.20
    尻宽 Huckle bone width /cm14.92 ±0.1415.59 ±0.55
    体躯指数 Trunk index133.85 ±0.98137.37 ±3.41
    体长指数 Body length index100.29 ±0.8697.24 ±1.61
    胸围指数 Chest circumference index133.76 ±1.04133.48 ±3.49
    管围指数 Cannon circumference index13.55 ±0.1113.53 ±0.34
    髋骨指数 Huckle bone width index110.94 ±1.08106.79 ±2.68
    努比亚山羊 NB体重 Body weight/kg48.96±0.9457.40±8.34
    体高 Body height/cm71.25±0.4874.00±4.20
    体长 Body length/cm64.55±0.4769.80±1.23
    胸围 Chest circumference/cm85.91±0.7294.33±4.71
    胸宽 Chest width/cm21.03±0.3522.55±2.51
    胸深 Chest depth/cm34.01±0.4037.58±3.89
    管围 Cannon circumference/cm9.85±0.29b10.09±0.62a
    尻宽 Huckle bone width /cm17.60±0.1920.03±1.27
    体躯指数 Trunk index133.34±0.91135.05±5.42
    体长指数 Body length index90.81±0.5995.05±4.56
    胸围指数 Chest circumference index120.61±0.66B127.63±0.89A
    管围指数 Cannon circumference index14.20±0.9013.38±0.54
    髋骨指数 Huckle bone width index119.77±1.63112.33±8.28
    简阳大耳羊 JY体重 Body weight/kg34.13±0.7334.38±3.89
    体高 Body height/cm62.47±0.4960.67±2.27
    体长 Body length/cm57.56±0.5056.40±2.15
    胸围 Chest circumference/cm74.80±0.5777.37±2.58
    胸宽 Chest width/cm17.40±0.1617.17±0.71
    胸深 Chest depth/cm29.65±0.3029.83±1.07
    管围 Cannon circumference/cm7.72±0.087.82±0.27
    尻宽 Huckle bone width /cm14.06±0.1813.62±0.85
    体躯指数 Trunk index130.30±0.71132.45±2.99
    体长指数 Body length index92.21±0.5193.02±1.48
    胸围指数 Chest circumference index120.05±0.80b127.67±1.52a
    管围指数 Cannon circumference index12.35±0.11b13.49±.31a
    髋骨指数 Huckle bone width index125.26±1.45127.12±4.23
    不同大、小写字母表示不同基因型之间差异极显著(P<0.01)或差异显著(P<0.05)。
    Different uppercase or lowercase letters indicate extremely significant difference (P<0.01) or significant difference (P<0.05).
    下载: 导出CSV
  • [1] 刘远, 李文杨, 吴贤锋, 等. 福清山羊与努比亚黑山羊背最长肌比较转录组分析 [J]. 中国农业科学, 2019, 52(14):2525−2537. doi: 10.3864/j.issn.0578-1752.2019.14.011

    LIU Y, LI W Y, WU X F, et al. Transcriptome analysis of differentially gene expression associated with longissimus Doris tissue in Fuqing goat and Nubian black goat [J]. Scientia Agricultura Sinica, 2019, 52(14): 2525−2537.(in Chinese) doi: 10.3864/j.issn.0578-1752.2019.14.011
    [2] GOOSSENS K, VAN SOOM A, VAN ZEVEREN A, et al. Quantification of fibronectin 1 (FN1) splice variants, including two novel ones, and analysis of integrins as candidate FN1 receptors in bovine preimplantation embryos [J]. BMC Developmental Biology, 2009, 9: 1. doi: 10.1186/1471-213X-9-1
    [3] MARCONI G D, FONTICOLI L, DELLA ROCCA Y, et al. Human periodontal ligament stem cells response to titanium implant surface: Extracellular matrix deposition [J]. Biology, 2021, 10(9): 931. doi: 10.3390/biology10090931
    [4] ALVES R D A M, EIJKEN M, SWAGEMAKERS S, et al. Proteomic analysis of human osteoblastic cells: Relevant proteins and functional categories for differentiation [J]. Journal of Proteome Research, 2010, 9(9): 4688−4700. doi: 10.1021/pr100400d
    [5] ZHANG H L, CHEN X, XUE P, et al. FN1 promotes chondrocyte differentiation and collagen production via TGF-β/PI3K/Akt pathway in mice with femoral fracture [J]. Gene, 2021, 769: 145253. doi: 10.1016/j.gene.2020.145253
    [6] STUCZYŃSKA A, PIÓRKOWSKA K, TYRA M, et al. The effect of QTL-rich region polymorphisms identified by targeted DNA-seq on pig production traits [J]. Molecular Biology Reports, 2018, 45(3): 361−371. doi: 10.1007/s11033-018-4170-3
    [7] ZHANG W, KROSCHER K A, MURRAY R L, et al. Dietary calcium and phosphorus amounts affect development and tissue-specific stem cell characteristics in neonatal pigs [J]. The Journal of Nutrition, 2020, 150(5): 1086−1092. doi: 10.1093/jn/nxaa011
    [8] SOARES R A N, VARGAS G, MUNIZ M M M, et al. Differential gene expression in dairy cows under negative energy balance and ketosis: A systematic review and meta-analysis [J]. Journal of Dairy Science, 2021, 104(1): 602−615. doi: 10.3168/jds.2020-18883
    [9] GILBERT R P, BAILEY D R, SHANNON N H. Linear body measurements of cattle before and after 20 years of selection for postweaning gain when fed two different diets [J]. Journal of Animal Science, 1993, 71(7): 1712−1720. doi: 10.2527/1993.7171712x
    [10] 吴贤锋, 王金宝, 刘远, 等. 基于转录组测序的ITGAD基因InDel位点鉴定及其与山羊生长性状的关联性分析 [J]. 农业生物技术学报, 2022, 30(9):1763−1770. doi: 10.3969/j.issn.1674-7968.2022.09.010

    WU X F, WANG J B, LIU Y, et al. Identification of InDel locus of ITGAD gene based on transcriptome sequencing and its association with goat(Capra hircus) growth traits [J]. Journal of Agricultural Biotechnology, 2022, 30(9): 1763−1770.(in Chinese) doi: 10.3969/j.issn.1674-7968.2022.09.010
    [11] LI W Y, LIU Y, GAO C F, et al. A novel duplicated insertion/deletion (InDel) of theCPT1a gene and its effects on growth traits in goat [J]. Animal Biotechnology, 2021, 32(3): 343−351. doi: 10.1080/10495398.2019.1698433
    [12] KLINKENBERG E, ONWONA-AGYEMAN K A, MCCALL P J, et al. Cohort trial reveals community impact of insecticide-treated nets on malariometric indices in urban Ghana [J]. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2010, 104(7): 496−503. doi: 10.1016/j.trstmh.2010.03.004
    [13] YAN H L, JIANG E H, ZHU H J, et al. The novel 22 bp insertion mutation in a promoter region of the PITX2 gene is associated with litter size and growth traits in goats [J]. Archives Animal Breeding, 2018, 61(3): 329−336. doi: 10.5194/aab-61-329-2018
    [14] NYMAN L R, COX K B, HOPPEL C L, et al. Homozygous carnitine palmitoyltransferase 1a (liver isoform) deficiency is lethal in the mouse [J]. Molecular Genetics and Metabolism, 2005, 86(1/2): 179−187.
    [15] SEEVAGAN M, JEICHITRA V, RAJENDRAN R, et al. Detection of lethal SNP (A781G) in growth hormone (GH) gene of Indian sheep [J]. Small Ruminant Research, 2015, 126: 13−15. doi: 10.1016/j.smallrumres.2015.03.003
    [16] WU X F, JIA W C, ZHANG J J, et al. Determination of the novel genetic variants of goat STAT5A gene and their effects on body measurement traits in two Chinese native breeds [J]. Small Ruminant Research, 2014, 121(2/3): 232−243.
    [17] BERULAVA T, HORSTHEMKE B. The obesity-associated SNPs in intron 1 of the FTO gene affect primary transcript levels [J]. European Journal of Human Genetics, 2010, 18(9): 1054−1056. doi: 10.1038/ejhg.2010.71
    [18] REN F, YU S, CHEN R, et al. Identification of a novel 12-bp insertion/deletion (indel) of iPS-related Oct4 gene and its association with reproductive traits in male piglets [J]. Animal Reproduction Science, 2017, 178: 55−60. doi: 10.1016/j.anireprosci.2017.01.009
    [19] WANG Z, ZHANG X, JIANG E, et al. InDels within caprine IGF2BP1 intron 2 and the 3'-untranslated regions are associated with goat growth traits [J]. Animal Genetics, 2020, 51(1): 117−121. doi: 10.1111/age.12871
    [20] VAN LAERE A S, NGUYEN M, BRAUNSCHWEIG M, et al. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig [J]. Nature, 2003, 425(6960): 832−836. doi: 10.1038/nature02064
  • 加载中
图(1) / 表(3)
计量
  • 文章访问数:  477
  • HTML全文浏览量:  191
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-18
  • 修回日期:  2022-12-04
  • 网络出版日期:  2023-03-06
  • 刊出日期:  2023-01-28

目录

    /

    返回文章
    返回