Response Mechanism of Lactobacillus plantarum R23 to Sulfur Dioxide Stress
-
摘要:
目的 考察植物乳杆菌R23抗氧化酶与膜磷脂脂肪酸等在菌体应答二氧化硫胁迫中的作用机制。 方法 以植物乳杆菌R23为试验菌并对其进行梯度二氧化硫胁迫处理,借助扫描电子显微镜观察菌体超微形态,采用酶联免疫法与考马斯亮蓝法检测抗氧化酶活力及丙二醛含量,通过MIDI系统分析细胞膜磷脂脂肪酸结构。 结果 二氧化硫胁迫激发了植物乳杆菌R23胞内抗氧化酶(尤其是过氧化氢酶CAT)活力的显著提升,80 mg·L−1二氧化硫胁迫下超氧化物歧化酶SOD、CAT和谷胱甘肽过氧化物酶GPX活力分别是对照处理的1.64、2.14、1.62倍,进而维持了丙二醛MDA较低的增长幅度和基本正常的菌体形态;然而过高二氧化硫(120 mg·L−1)胁迫后,抗氧化酶活力趋于下降,膜脂质过氧化反应加剧,部分菌体细胞表面出现明显皱缩。细胞膜磷脂脂肪酸分析发现,二氧化硫胁迫促使植物乳杆菌R23中饱和、直链、长链和环丙烷脂肪酸总量发生不同程度提升,其中总直链脂肪酸高达52%,且与支链脂肪酸比例从7.15显著提升至9.72。 结论 植物乳杆菌R23通过提高抗氧化酶活力或增加饱和、直链、长链以及环丙烷脂肪酸比例,可以降低细胞膜对毒性物质的透过性或清除胞内过量的自由基,从而抵御二氧化硫对菌体细胞的伤害。 Abstract:Objective Roles of antioxidase and phospholipid fatty acid (PLFA) play in the response of Lactobacillus plantarum R23 to sulfur dioxide stress were studied. Methods L. plantarum R23 was exposed to a gradient of sulfur dioxide to observe the ultrastructural changes on the bacterium under scanning electron microscopy, determine the antioxidase activity and MDA content by ELISA and coomassie brilliant blue method, and analyze the PLFA composition using MIDI. Results The increasing sulfur dioxide stress induced in L. plantarum R23 a high antioxidase activity, especially CAT. Under 80 mg·L−1 of sulfur dioxide exposure, 1.64-fold rise on SOD activity, 2.14-fold on CAT, and 1.62-fold on GPX were found in the bacteria that afforded a relatively low increasing rate on MDA and maintained a largely intact morphology. However, the imposition of 120 mg·L−1 sulfur dioxide lowered the antioxidase activity and intensified the lipid peroxidation with appearance of wrinkles on the cellular surface. The PLFAs underwent varying degrees of increases on saturated, straight-chain, long-chain, and cyclopropane fatty acids under the stress. The straight-chain fatty acids accounted for 52% of all with a ratio to the branched-chain fatty acids significantly raised from 7.15 to 9.72. Conclusion When L. plantarum R23 encountered sulfur dioxide stress, by increasing the antioxidase activity and/or altering the PLFA composition (especially the saturated, straight-chain, long-chain, and cyclopropane fatty acids) it lowered the cell membrane permeability to deter the invasion of toxic substances or removed the excessive free radicals to prevent and mitigate possible damage. -
图 1 梯度二氧化硫胁迫下植物乳杆菌R23胞内抗氧化酶活力
小写字母表示梯度二氧化硫质量浓度胁迫后菌体抗氧化酶活性差异显著(P<0.05)。
Figure 1. Intracellular antioxidase activity of L. plantarum R23 under gradient of SO2 stress
Data with different lowercase letters represent significant differences on antioxidase activity of L. plantarum R23 treated by gradient of SO2 at P<0.05
图 4 二氧化硫对植物乳杆菌R23细胞膜磷脂脂肪酸相对含量的影响
a、b、c、d分别表示二氧化硫胁迫导致的总饱和脂肪酸与总不饱和脂肪酸、总长链脂肪酸与总短链脂肪酸、总直链脂肪酸与总支链脂肪酸、总顺式脂肪酸与总反式脂肪酸的变化;“*”表示两者间的差异显著(P < 0.05)。
Figure 4. Effect of SO2 on relative contents of PLFA in L. plantarum R23
a, b, c, and d: changes caused by SO2 stress on saturated (Sa-), unsaturated (Us-), long-chain (L-), short-chain (S-), straight-chain (Sc-), branched-chain (Bc-), cis (Cis-), and trans fatty acids (Trans-) PLFAs. “*” indicates significant difference at P<0.05.
表 1 蛋白质含量测定标准曲线
Table 1. Standard curve for protein determination
试剂
Reagent管号
Tube No.1 2 3 4 5 6 蛋白质标准液
Standard solution of protein/mL0 0.2 0.4 0.6 0.8 1.0 蒸馏水
Distilled water/mL1.0 0.8 0.6 0.4 0.2 0 考马斯亮蓝G-250试剂
Coomassie brilliant blue G-250 reagent/mL5 5 5 5 5 5 表 2 不同二氧化硫胁迫下植物乳杆菌R23细胞膜磷脂脂肪酸相对含量
Table 2. Relative contents of PLFA in L. plantarum R23 under SO2 stress
磷脂脂肪酸
PLFA磷脂脂肪酸相对含量
Relative amount of PLFA/%胁迫前
Before stress胁迫后
After stress十二碳异脂肪酸 12:0 iso 1.36±0.08 2.45±0.11 十四烷酸 14:0 7.34±0.21 3.36±0.31 十四碳异脂肪酸 14:0 iso 0 1.92±0.18 十五碳异脂肪酸 15:0 iso 0 0.98±0.04 十六碳异脂肪酸 16:1 iso 3.99±0.18 0 十六碳顺式单不饱和脂肪酸 16:1 cis 3.19±0.55 2.87±0.65 十六烷酸 16:0 27.77±1.29 30.10±1.20 十七碳前异脂肪酸 17:0 anteiso 1.55±0.10 0 Sum In Feature 8 7.35±0.23 12.05±0.92 Sum In Feature 9 18.67±0.11 8.14±0.96 十八烷酸 18:0 8.65±0.59 10.92±0.17 十八碳顺式单不饱和脂肪酸 18:1 cis 0 2.46±0.20 十九碳反式脂肪酸 19:1 trans 2.41±0.16 2.29±0.40 Sum In Feature 11 4.28±0.03 7.80±0.08 环丙烷脂肪酸 19:0 cyclo 13.44±0.31 14.66±0.34 -
[1] FERNÁNDEZ-PÉREZ R, TENORIO RODRÍGUEZ C, RUIZ-LARREA F. Fluorescence microscopy to monitor wine malolactic fermentation [J]. Food Chemistry, 2019, 274: 228−233. doi: 10.1016/j.foodchem.2018.08.088 [2] JIANG J, SUMBY K M, SUNDSTROM J F, et al. Directed evolution of Oenococcus oeni strains for more efficient malolactic fermentation in a multi-stressor wine environment [J]. Food Microbiology, 2018, 73: 150−159. doi: 10.1016/j.fm.2018.01.005 [3] LIN X Z, HE Z G, LI W X, et al. Validation of reference genes for real-time quantitative polymerase chain reaction analysis in Lactobacillus plantarum R23 under sulfur dioxide stress conditions [J]. Australian Journal of Grape and Wine Research, 2018, 24(3): 390−395. doi: 10.1111/ajgw.12331 [4] 李维新, 何志刚, 郑宝东, 等. 植物乳杆菌R23产苹果酸乳酸酶特性研究 [J]. 中国食品学报, 2012, 12(5):35−40. doi: 10.3969/j.issn.1009-7848.2012.05.006LI W X, HE Z G, ZHENG B D, et al. Studies on characteristics of Lactobacillus plantarum R23 in producing malolactic enzyme [J]. Journal of Chinese Institute of Food Science and Technology, 2012, 12(5): 35−40.(in Chinese) doi: 10.3969/j.issn.1009-7848.2012.05.006 [5] YI H L, LIU J, ZHENG K. Effect of sulfur dioxide hydrates on cell cycle, sister chromatid exchange, and micronuclei in barley [J]. Ecotoxicology and Environmental Safety, 2005, 62(3): 421−426. doi: 10.1016/j.ecoenv.2004.11.005 [6] JIANG C M, SHI J L, CHEN X Q, et al. Effect of sulfur dioxide and ethanol concentration on fungal profile and ochratoxin a production by Aspergillus carbonarius during wine making [J]. Food Control, 2015, 47: 656−663. doi: 10.1016/j.foodcont.2014.08.011 [7] LINLEY E, DENYER S P, MCDONNELL G, et al. Use of hydrogen peroxide as a biocide: New consideration of its mechanisms of biocidal action [J]. Journal of Antimicrobial Chemotherapy, 2012, 67(7): 1589−1596. doi: 10.1093/jac/dks129 [8] HOUGAARD A B, PINDSTRUP H, ARNEBORG N, et al. Free radical formation by Lactobacillus acidophilus NCFM is enhanced by antioxidants and decreased by catalase [J]. Food Research International, 2016, 79: 81−87. doi: 10.1016/j.foodres.2015.12.003 [9] HUANG Y Y, MORVAY A A, SHI X M, et al. Comparison of oxidative stress response and biofilm formation of Listeria monocytogenes serotypes 4b and 1/2a [J]. Food Control, 2018, 85: 416−422. doi: 10.1016/j.foodcont.2017.10.007 [10] FIOCCO D, CAPOZZI V, GOFFIN P, et al. Improved adaptation to heat, cold, and solvent tolerance in Lactobacillus plantarum [J]. Applied Microbiology and Biotechnology, 2007, 77(4): 909−915. doi: 10.1007/s00253-007-1228-x [11] HUANG R H, PAN M F, WAN C X, et al. Physiological and transcriptional responses and cross protection of Lactobacillus plantarum ZDY2013 under acid stress [J]. Journal of Dairy Science, 2016, 99(2): 1002−1010. doi: 10.3168/jds.2015-9993 [12] BROADBENT J R, LARSEN R L, DEIBEL V, et al. Physiological and transcriptional response of Lactobacillus casei ATCC 334 to acid stress [J]. Journal of Bacteriology, 2010, 192(9): 2445−2458. doi: 10.1128/JB.01618-09 [13] 蔡秋杏, 吴燕燕, 李来好, 等. 来源于腌干鱼的乳酸菌中抗氧化酶及胞外多糖研究 [J]. 水产学报, 2017, 41(6):952−961.CAI Q X, WU Y Y, LI L H, et al. Study on antioxidant enzymes and exopolysaccharides of lactic acid bacteria separated from salt-dried fish products [J]. Journal of Fisheries of China, 2017, 41(6): 952−961.(in Chinese) [14] LIN J Z, ZOU Y X, CAO K L, et al. The impact of heterologous catalase expression and superoxide dismutase overexpression on enhancing the oxidative resistance in Lactobacillus casei [J]. Journal of Industrial Microbiology & Biotechnology, 2016, 43(5): 703−711. [15] KULLISAAR T, SONGISEPP E, AUNAPUU M, et al. Complete glutathione system in probiotic Lactobacillus fermentum ME-3 [J]. Prikladnaia Biokhimiia i Mikrobiologiia, 2010, 46(5): 527−531. [16] MONTANARI C, SADO KAMDEM S L, SERRAZANETTI D I, et al. Synthesis of cyclopropane fatty acids in Lactobacillus helveticus and Lactobacillus sanfranciscensis and their cellular fatty acids changes following short term acid and cold stresses [J]. Food Microbiology, 2010, 27(4): 493−502. doi: 10.1016/j.fm.2009.12.003 [17] 张一敏. 三种有机酸对单增李斯特菌诱导性耐酸响应研究[D]. 泰安: 山东农业大学, 2014ZHANG Y M. Adaption to three types of organic acid induces resistance to acid in Listeria monocytogenes[D]. Taian: Shandong Agricultural University, 2014. (in Chinese) [18] GIOTIS E S, MCDOWELL D A, BLAIR I S, et al. Role of branched-chain fatty acids in pH stress tolerance in Listeria monocytogenes [J]. Applied and Environmental Microbiology, 2007, 73(3): 997−1001. doi: 10.1128/AEM.00865-06 [19] ZHANG Y M, ROCK C O. Membrane lipid homeostasis in bacteria [J]. Nature Reviews Microbiology, 2008, 6(3): 222−233. doi: 10.1038/nrmicro1839 [20] MASTRONICOLIS S K, BERBERI A, DIAKOGIANNIS I, et al. Alteration of the phospho- or neutral lipid content and fatty acid composition in Listeria monocytogenes due to acid adaptation mechanisms for hydrochloric, acetic and lactic acids at pH 5.5 or benzoic acid at neutral pH [J]. Antonie Van Leeuwenhoek, 2010, 98(3): 307−316. doi: 10.1007/s10482-010-9439-z [21] 郑昀昀, 陈茂娇, 王敏, 等. 甲苯胁迫下有机溶剂耐受菌Anoxybacillus flavithermus ssp. yunnanesis E13T膜脂肪酸的变化 [J]. 微生物学报, 2015, 55(6):719−724.ZHENG Y Y, CHEN M J, WANG M, et al. Adaptation of Anoxybacillus flavithermus ssp. yunnanesis E13T to toluene at the level of fatty acid composition of membrane [J]. Acta Microbiologica Sinica, 2015, 55(6): 719−724.(in Chinese) [22] TARANTO M P, FERNANDEZ MURGA M L, LORCA G, et al. Bile salts and cholesterol induce changes in the lipid cell membrane of Lactobacillus reuteri [J]. Journal of Applied Microbiology, 2003, 95(1): 86−91. doi: 10.1046/j.1365-2672.2003.01962.x [23] 袁峥. 嗜酸乳杆菌耐酸机理研究[D]. 新乡: 河南科技学院, 2013YUAN Z. Study on the acid tolerance-mechanism of Lactobacillus acidophilus[D]. Xinxiang: Henan Institute of Science and Technology, 2013. (in Chinese)