Inhibitory Activity of Isoflavones from Ormosia hosiei Seeds against Botrytis cinerea
-
摘要:
目的 研究红豆树提取物及其异黄酮对番茄灰霉病菌的抑菌作用,为植物源抑菌剂的开发和红豆树提取物利用奠定基础。 方法 采用生长速率法筛选红豆树异黄酮对番茄灰霉病菌的抑制作用,进一步测定异黄酮鹰嘴豆芽素A对番茄灰霉病菌的菌丝干重、细胞膜、还原糖含量、过氧化氢酶、过氧化物酶和超氧化物歧化酶等保护酶活性的影响,探讨抑制植物病原真菌的生理生化的作用,评价单体在离体番茄上的抑菌效果。 结果 鹰嘴豆芽素A对番茄灰霉病菌具有好的抑制效果,EC50值为203.189 μg·mL-1。番茄灰霉病菌经鹰嘴豆芽素A处理后,菌丝干重减少,细胞膜的通透性增加,菌体内还原糖含量减少,保护酶含量增多,并且在离体番茄上菌丝生长防治效果较好。 结论 红豆树种子乙酸乙酯活性部位富含生物碱和黄酮类化学成分,其中异黄酮成分是关键的抑菌活性成分。异黄酮成分发挥抑菌活性的作用方式,可能与其干扰菌丝生长、使菌丝细胞膜正常功能受损以及降低菌丝体内保护酶活性等有关。 Abstract:Objective Antifungal activity of the isoflavones of Ormosia hosiei on Botrytis cinerea Pers was investigated for the development of a natural disease control agent on tomato plants. Methods Inhibitory effect of the isoflavones extract from seeds of O. hosiei on the pathogen, B. cinerea, that infects tomato plants was tested according to the in vitro fungal growth rate. Functions of the isoflavone monomer biochanin A on the changes of mycelial dry weight, cell membrane, reducing sugar content, and activities of catalase, peroxidase, superoxide dismutase, and other protective enzymes of B. cinerea were analyzed. Physiological, biochemical, and bacteriostatic effects of the monomer on tomatoes were observed in vitro. Results Biochanin A of O. hosiei significantly inhibited the growth of B. cinerea with an EC50 of 203.189 μg·mL−1. Its presence lowered the dry mycelia weight, cell membrane permeability, and reducing sugar content but rose the protective enzyme activities in hyphae of B. cinerea. Conclusions The ethyl acetate extract from the seeds of O. hosiei was rich in alkaloids and flavonoids. Of which, isoflavones was believed to be the key active antibacterial components that inhibited the fungal growth by interfering the growth, impairing the cell membrane functions, and reducing the protective enzyme activities of the hyphae. -
Key words:
- Ormosia hosiei /
- Botrytis cinerea /
- antifungal activity /
- biochanin A /
- isoflavones
-
表 1 红豆树异黄酮单体化合物
Table 1. Isoflavone monomer of O. hosiei
序号 No. 化合物名称
Compound name序号 No. 化合物名称
Compound name1 鹰嘴豆芽素A Biochanin A 11 染料木素-7-O-β-D-呋喃芹糖基-(1→6)-O-β-D-吡喃葡萄糖苷 ambocin 2 大豆素 Daidzein 12 5,7-二羟基-4′-甲氧基异黄酮-7-O-β-D-木糖-(1→6)-O-β-D-吡喃葡萄糖苷 Kakkanin 3 染料木素 Genistein 13 4′-甲氧基异黄酮-7-O-β-D-木糖-(1→6)-O-β-D-吡喃葡萄糖苷 Kushenol O 4 异樱黄素 Isoprunetin 14 4′-甲氧基异黄酮-7-O-β-D-芹糖-(1→6)-O-β-D-吡喃葡萄糖苷7-hydroxy-4′-methoxylisoflavone-7-O-β-D-apiofuranosyl-(1→6)-O-β-D-glucopyranoside 5 2′,4′,5,7-四羟基异黄酮 2′,4′,5,7-tetrahydroxyisoflavone 15 3′,4′,7-三羟基-5-甲氧基异黄酮 3',4',7-trihydroxy-5-me-thoxyisoflavone 6 4′,8-二甲氧基-7-O-β-D-
葡萄糖基异黄酮 4′,8-dimethoxyl-7-O-β-D-glucopyranosyl isoflavone16 染料木苷-5,4′-二甲醚 Genistin-5, 4′-methyl ether 7 降紫香苷 Sissotrin 17 澳白檀苷Lanceolarin 8 芒柄花苷 Ononin 18 鹰嘴豆芽素A-7-O-芸香糖苷 biochanin A-7-O-rutinoside 9 异樱黄素-7-O-β-D-吡喃葡萄糖苷 Isoprunetin-7-O-β-D-glucoside 19 染料木苷 Genistin 10 圆荚草双糖苷 Sphaerobioside 20 2′,4′,7-三羟基-5-甲氧基异黄酮 2',4',7-trihydroxy-5-me-thoxyisoflavone 表 2 红豆树提取物及单体化合物对番茄灰霉病菌的抑制作用
Table 2. Inhibitory effects of O. hosiei extract and monomer against B. cinerea
序号 No. 化合物名称
Compound name抑菌率
Antibacterial rate/%1 鹰嘴豆芽素A Biochanin A 46.74±0.43 b 4 异樱黄素 Isoprunetin 42.14±0.29 c 15 3′,4′,7-三羟基-5-甲氧基异黄酮
3′,4′,7-trihydroxy-5-me-thoxyisoflavone25.54±0.73 e 16 染料木苷-5,4′-二甲醚
Genistin-5, 4′-methyl ether29.76±0.35 d 阳性对照
Positive control丁子香酚 Eugenol 57.79±0.08 a 表 3 两种化合物对番茄灰霉病菌的毒力测定
Table 3. Toxicity of two compounds on B. cinerea
样品
Sample毒力曲线
Virulence curve相关系数
Correlation coefficient (R2)EC50 /
(μg·mL−1)95%置信度
Confidence level/(μg·mL−1)丁子香酚(CK) Eugenol(CK) y=0.787x−1.766 0.989 175.739 128.365~279.500 异樱黄素 Isosakura flavin y=0.635x−1.504 0.998 232.599 153.616~503.442 鹰嘴豆芽素 Chickpea sprout y=0.783x−1.807 0.994 203.189 145.968~341.329 表 4 鹰嘴豆芽素A在离体番茄果实上对番茄灰霉病菌的防治效果
Table 4. Control efficacy of biochanin A against B. cinerea on tomatoes
处理编号
No.样品质量浓度
Concentration of samples/(mg·mL−1)先接菌后喷药
First inoculate, then spray先喷药后接菌
First spray, then inoculate病斑面积
Lesion area/cm2防治效果
Control efficiency/%病斑面积
Lesion area/cm2防治效果
Control efficiency/%A 0(CK) 2.56±0.14 a — 2.52±1.13 a — B 0.5 1.90±0.12 b 26.06 2.15±0.13 a 14.99 C 1.0 0.51±0.05 c 80.04 0.64±0.14 b 74.62 D 2.0 0.21±0.07 d 91.80 0.29±0.09 b 88.60 -
[1] 赵娟, 刘霆, 刘伟成, 等. 番茄灰霉病生防链霉菌筛选及鉴定 [J]. 微生物学通报, 2019, 46(10):2548−2558.ZHAO J, LIU T, LIU W C, et al. Screening and identification of the biocontrol Streptomyces against tomato Botrytis cinerea [J]. Microbiology China, 2019, 46(10): 2548−2558.(in Chinese) [2] 魏佳爽, 袁善奎, 向冰峰, 等. 番茄灰霉病菌(Botrytis cinerea)对3种杀菌剂的抗性监测及交互抗药性研究 [J]. 现代农药, 2021, 20(1):46−49. doi: 10.3969/j.issn.1671-5284.2021.01.010WEI J S, YUAN S K, XIANG B F, et al. Resistance monitoring and cross-resistance study of Botrytis cinerea to three fungicides [J]. Modern Agrochemicals, 2021, 20(1): 46−49.(in Chinese) doi: 10.3969/j.issn.1671-5284.2021.01.010 [3] 陈丽萍, 张怡, 徐笔奇, 等. 6种杀菌剂对番茄灰霉病菌的室内毒力测定 [J]. 浙江农业科学, 2019, 60(12):2270−2272.CHEN L P, ZHANG Y, XU B Q, et al. Toxicity determination of 6 fungicides to Botrytis cinerea on tomato [J]. Journal of Zhejiang Agricultural Sciences, 2019, 60(12): 2270−2272.(in Chinese) [4] 李朋钰, 李映, 杨涛, 等. 小檗碱与多种成分复配及其对番茄灰霉病的抑制作用 [J]. 湖北农业科学, 2019, 58(1):56−60,110.LI P Y, LI Y, YANG T, et al. Inhibition of berberine with other components on Botrytis cinerea [J]. Hubei Agricultural Sciences, 2019, 58(1): 56−60,110.(in Chinese) [5] 楚秀丽, 付艳茹, 严巍. 珍稀植物红豆树资源保育及精细化培育研究进展 [J]. 中国野生植物资源, 2021, 40(10):61−65. doi: 10.3969/j.issn.1006-9690.2021.10.010CHU X L, FU Y R, YAN W. Genetic conservation for rear plant of Ormosia hosiei and research progress in its fine silviculture [J]. Chinese Wild Plant Resources, 2021, 40(10): 61−65.(in Chinese) doi: 10.3969/j.issn.1006-9690.2021.10.010 [6] 张琳婧, 周文娟, 倪林, 等. 红豆属植物化学成分及其药理活性研究进展 [J]. 中草药, 2021, 52(14):4433−4442. doi: 10.7501/j.issn.0253-2670.2021.14.035ZHANG L J, ZHOU W J, NI L, et al. A review on chemical constituents and pharmacological activities of Ormosia Full text replacement [J]. Chinese Traditional and Herbal Drugs, 2021, 52(14): 4433−4442.(in Chinese) doi: 10.7501/j.issn.0253-2670.2021.14.035 [7] 张琳婧, 全颖萱, 李林海, 等. 红豆树枝条化学成分及抗炎活性研究 [J]. 天然产物研究与开发, 2021, 33(4):585−591.ZHANG L J, QUAN Y X, LI L H, et al. Chemical constituents and their anti-inflammatory activity from twigs of Ormosia hosiei Hemsl. & E. H. Wilson [J]. Natural Product Research and Development, 2021, 33(4): 585−591.(in Chinese) [8] 邱亚铁, 石妍, 徐会有, 等. 红豆树茎枝中黄酮类成分及其抑菌活性研究 [J]. 天然产物研究与开发, 2018, 30(12):2056−2062.QIU Y T, SHI Y, XU H Y, et al. Flavonoids from the twigs of Ormosia hosiei and their anti-fungal activities [J]. Natural Product Research and Development, 2018, 30(12): 2056−2062.(in Chinese) [9] ZHANG L J, ZHENG L J, WANG Q, et al. Cytisine-like alkaloids from the seeds of Ormosia hosiei Hemsl. et Wils. [J]. Natural product research, 2021: 1−7. Doi: 10.1080/14786419.2021.2005591. [10] FAN L L, LUO Z F, LI Y, et al. Synthesis and antifungal activity of imidazo[1, 2- b]pyridazine derivatives against phytopathogenic fungi [J]. Bioorganic & Medicinal Chemistry Letters, 2020, 30(14): 127139. [11] DEVI R, LUSIANA, AGUS M, et al. Study on the potency of methanol extracts from xanthosoma nigrum stellfeld as natural anti oxidant by thiobarbituric acid method [J]. Aceh International Journal of Science and Technology, 2013, 2(3): 82−87. [12] 赵凯, 许鹏举, 谷广烨. 3, 5-二硝基水杨酸比色法测定还原糖含量的研究 [J]. 食品科学, 2008, 29(8):534−536. doi: 10.3321/j.issn:1002-6630.2008.08.127ZHAO K, XU P J, GU G Y, et al. Study on determination of reducing sugar content using 3, 5-dinitrosalicylic acid method [J]. Food Science, 2008, 29(8): 534−536.(in Chinese) doi: 10.3321/j.issn:1002-6630.2008.08.127 [13] 杜斌, 谭方根, 史学林, 等. 紫外分光光度法测定合欢皮中的总黄酮 [J]. 华西药学杂志, 2019, 34(2):176−178. doi: 10.13375/j.cnki.wcjps.2019.02.015DU B, TAN F G, SHI X L, et al. Determination of the total flavonoids in Albizia julibrissin by UV spectrophotometry [J]. West China Journal of Pharmaceutical Sciences, 2019, 34(2): 176−178.(in Chinese) doi: 10.13375/j.cnki.wcjps.2019.02.015 [14] 沈文飚, 徐朗莱, 叶茂炳, 等. 氮蓝四唑光化还原法测定超氧化物歧化酶活性的适宜条件 [J]. 南京农业大学学报, 1996, 19(2):101−102.SHEN W B, XU L L, YE M B, et al. The suitable conditions for determining sod activity by nitro blue tetrazolium(nbt) photoreduction method [J]. Journal of Nanjing Agricultural University, 1996, 19(2): 101−102.(in Chinese) [15] 靳蕊, 徐敏纹, 刘莹, 等. 黄酮类化合物的抑菌作用及其机制的研究 [J]. 继续医学教育, 2016, 30(8):152−154. doi: 10.3969/j.issn.1004-6763.2016.08.087JIN R, XU M W, LIU Y, et al. Study on antibacterial activity and mechanism of flavonoids [J]. Continuing Medical Education, 2016, 30(8): 152−154.(in Chinese) doi: 10.3969/j.issn.1004-6763.2016.08.087 [16] 赵雪巍, 刘培玉, 刘丹, 等. 黄酮类化合物的构效关系研究进展 [J]. 中草药, 2015, 46(21):3264−3271. doi: 10.7501/j.issn.0253-2670.2015.21.025ZHAO X W, LIU P Y, LIU D, et al. Research progress in structure-activity relationship of flavoniods [J]. Chinese Traditional and Herbal Drugs, 2015, 46(21): 3264−3271.(in Chinese) doi: 10.7501/j.issn.0253-2670.2015.21.025