Flavor of Liuyuezao Pummelos as Affected by Sugar and Acid Contents in Storage at Ambient Temperature
-
摘要:
目的 探究六月早柚果实常温贮藏过程中糖酸组分含量变化与其风味品质的关系,为优化柚类品种结构提供理论和实践依据。 方法 以六月早柚为试验材料,琯溪蜜柚为对照,应用超高效液相色谱法测定并分析六月早柚果实贮藏期有机酸组分(柠檬酸、苹果酸、奎尼酸、顺乌头酸、酒石酸、琥珀酸、α-酮戊二酸)和可溶性糖组分(葡萄糖、果糖、蔗糖)含量的变化。 结果 常温贮藏期间六月早柚汁胞总酸、柠檬酸和苹果酸含量增加,于贮藏35 d达到最大值,分别是同时期琯溪蜜柚的81.18%、84.17%和1.90倍;六月早柚葡萄糖和果糖含量先降低后增加,均在贮藏10 d出现最小值,分别为同时期琯溪蜜柚的1.30倍和1.47倍;蔗糖含量先增加后降低,在贮藏10 d出现最大值,仅为同时期琯溪蜜柚的84.45%;六月早柚糖酸比逐渐降低,贮藏35 d最小,是同时期琯溪蜜柚的1.27倍,且与苹果酸含量呈显著负相关(P<0.01)。 结论 常温贮藏期间六月早柚汁胞柠檬酸和蔗糖的含量较低,糖酸比及苹果酸、果糖和葡萄糖的含量较高,这可能是导致贮藏期六月早柚果实风味变化优于琯溪蜜柚的原因。 Abstract:Objective Flavor of Liuyuezao pummelos as affected by the sugar and acid contents in the fruits during storage at ambient temperature was studied in order to provide a clue for breeding new variety. Method Contents of soluble sugars (i.e., glucose, fructose, and sucrose) and organic acids (including citric acid, malic acid, quinic acid, aconitic acid, tartaric acid, succinic acid, and α- ketoglutarate acid) in the fruits of Liuyuezao pummelo, as well as Guanximiyou pummelo as control, during storage at ambient temperature were monitored using ultra-high performance liquid chromatography (UPLC) for a correlation analysis with the eating quality of the fruits. Result In storage, the contents of total acid, citric acid, and malic acid in the juice sacs of Liuyuezao pummelos increased to peak in 35 d at 81.18%, 84.17%, and 1.90 times, respectively, of those in Guanximiyou. Glucose and fructose in Liuyuezao pummelos declined initially at the beginning of the storage but reached the minimum in 10 d at 1.30 times and 1.47 times, respectively, of those in Guanximiyou. Meanwhile, sucrose increased at first and followed by a decline with the highest that was 84.45% of Guanximiyou appeared after 10 d of storage. The sugar/acid ratio of the fruits decreased gradually to arrive at the minimum of 1.27 times of Guanximiyou in 35 d. There was a significant inverse correlation between the ratio and the content of malic acid (P<0.01). Conclusion At ambient temperature, the stored Liuyuezao pummelos had relative lower contents of citric acid and sucrose but higher sugar/acid ratio, malic acid, fructose, and glucose than Guanximiyou. That, perhaps, differentiated the quality of the two pummelo varieties concerning the sensory appealing. -
图 1 柚果实常温贮藏过程中汁胞可滴定酸变化
不同小写字母表示同一柚品种不同贮藏时间之间显著差异(P<0.05);**、*表示同一贮藏时间不同柚品种之间差异极显著(P<0.01)或差异显著(P<0.05);下同。
Figure 1. Changes on titratable acids in pummelo juice sacs during storage
Different lowercase letters indicate significant differences among different storage times of the same pummelo (P<0.05). ** and * indicate extremely significant (P<0.01) or significant (P<0.05) difference between different pummelo varieties at the same storage time. The same as below.
表 1 柚汁胞有机酸组分质谱定量参数
Table 1. Elution conditions for chromatographic determination of organic acids in pummelo juice sacs
化合物
Compound保留时间
Retention time/min相对分子质量
Relative molecular mass母离子质荷比
Parent ion m/z柠檬酸
Citrate2.34 192.13 191 苹果酸
Malate1.42 134.09 133 奎尼酸
Quinate1.81 192.17 191 顺乌头酸
Aconitate2.53 174.108 173 α-酮戊二酸
α- ketoglutarate1.76 146.11 145 琥珀酸
Succinate2.87 118.09 117 酒石酸
Tartrate1.18 150.09 149 表 2 六月早柚和琯溪蜜柚糖、酸及组分含量相关性分析
Table 2. Correlation on sugars, acids, and other chemicals between Liuyuezao and Guanximiyou pummelos
指标
Index柠檬酸
Citrate苹果酸
Malate奎尼酸
Quinate顺乌头酸
Aconitateα-酮戊二酸
α- ketoglutarate琥珀酸
Succinate酒石酸
Tartrate果糖
Fructose葡萄糖
Glucose蔗糖
Sucrose总酸
TA总糖
TSS糖酸比
TSS/TA柠檬酸
Citrate1 −0.055 −0.035 0.056 −0.197 −0.137 −0.211 0.128 −0.168 −0.272 0.983** −0.162 −0.862** 苹果酸
Malate0.432** 1 0.178 0.020 0.475** 0.434** 0.540** 0.025 0.244 0.000 −0.011 −0.008 0.038 奎尼酸
Quinate0.337* 0.417** 1 0.400** 0.369** 0.398** 0.179 0.165 0.208 −0.102 −0.055 0.004 0.021 顺乌头酸
Aconitate0.022 −.337* 0.252 1 0.098 0.288* −0.014 −0.071 −0.022 0.301* 0.066 0.051 −0.071 α-酮戊二酸
α- ketoglutarate0.190 0.042 0.523** 0.205 1 0.482** 0.505** −0.133 0.425** 0.064 −0.212 0.107 0.228 琥珀酸
Succinate−0.036 0.106 0.365* 0.285* 0.304* 1 0.565** 0.137 0.436** 0.084 −0.111 0.155 0.210 酒石酸
Tartrate−0.061 0.370** 0.392** −0.045 0.093 0.266 1 0.031 0.342* 0.136 −0.201 0.083 0.291* 果糖
Fructose0.204 0.375** 0.401** −0.042 0.036 0.212 0.299* 1 0.147 −0.587** 0.109 −0.096 −0.162 葡萄糖
Glucose0.066 0.193 0.346* 0.124 0.153 0.183 0.212 0.397** 1 −0.292* −0.177 −0.059 0.099 蔗糖
Sucrose−0.259 −0.197 −0.025 0.273 0.119 0.034 0.078 −0.109 −0.015 1 −0.275 0.534** 0.488** 总酸
TA0.889** 0.701** 0.476** −0.085 0.169 0.072 0.057 0.345* 0.098 −0.274 1 −0.153 −0.887** 总糖
TSS−0.291* −0.293* −0.089 0.179 0.015 0.130 0.143 0.039 0.179 0.618** −0.322* 1 0.415** 糖酸比
TSS/TA−0.753** −0.530** −0.256 0.200 −0.016 0.082 0.070 −0.163 0.077 0.568** −0.802** 0.734** 1 左下三角为六月早柚,右上三角为琯溪蜜柚,*表示差异显著(P<0.05),**表示差异极显著(P<0.01)。
Data with triangles on lower left indicate Liuyuezao pummelo; those with triangles on upper right Guanximiyou; * means significant difference at P<0.05; ** means extremely significant difference at P<0.01. -
[1] 张智伟. 琯溪蜜柚芽变株系‘六月早’的若干生物学性状研究[D]. 福州: 福建农林大学, 2017.ZHANG Z W. The biological characteristic study of new strain ‘Liu yue zao’ from bud mutation of pumelo[D]. Fuzhou: Fujian Agriculture and Forestry University, 2017. (in Chinese) [2] DING Y D, CHANG J W, Ma Q L, et al. Network analysis of postharvest senescence process in citrus fruits revealed by transcriptomic and metabolomic profiling [J]. Plant Physiology, 2015, 168(1): 357−376. doi: 10.1104/pp.114.255711 [3] STRAZZER P, SPELT C E, LI S J, et al. Hyperacidification of Citrus fruits by a vacuolar proton-pumping P-ATPase complex [J]. Nature Communications, 2019, 10(1): 744. doi: 10.1038/s41467-019-08516-3 [4] WU S W, ZHANG C M, LI M, et al. Effects of potassium on fruit soluble sugar and citrate accumulations in Cara Cara navel orange (Citrus sinensis L. Osbeck) [J]. Scientia Horticulturae, 2021, 283: 110057. doi: 10.1016/j.scienta.2021.110057 [5] ALBERTINI M V, CARCOUET E, PAILLY O, et al. Changes in organic acids and sugars during early stages of development of acidic and acidless citrus fruit [J]. Journal of Agricultural and Food Chemistry, 2006, 54(21): 8335−8339. doi: 10.1021/jf061648j [6] MA X Q, LI N, GUO J, et al. Involvement of CsPH8 in citrate accumulation directly related to fruit storage performance of ‘Bingtang’ sweet orange mutants [J]. Postharvest Biology and Technology, 2020, 170: 111316. doi: 10.1016/j.postharvbio.2020.111316 [7] 陈明. 椪柑和脐橙果实柠檬酸合成与降解相关基因表达及其调控研究[D]. 杭州: 浙江大学, 2013.CHEN M. Expression and it's regulation of citric acid synthesis and degradation related genes in the fruits of Ponkan and navel orange[D]. Hangzhou: Zhejiang University, 2013. (in Chinese) [8] 常媛媛, 李先信, 盛玲, 等. ‘早蜜’ 椪柑采后主要品质性状变化研究 [J]. 江西农业大学学报, 2021, 43(2):270−278.CHANG Y Y, LI X X, SHENG L, et al. Postharvest changes in main quality traits of ‘Zaomi’ Ponkan [J]. Acta Agriculturae Universitatis Jiangxiensis, 2021, 43(2): 270−278.(in Chinese) [9] 杨滢滢. ‘纽荷尔’ 脐橙果实柠檬酸合成与降解机理的研究[D]. 南昌: 江西农业大学, 2017.YANG Y Y. Research on synthesis and degradation of citric acid in ‘Newhall’ navel orange fruit[D]. Nanchang: Jiangxi Agricultural University, 2017. (in Chinese) [10] 孙晓华. 柚果实采后贮藏期间有机酸代谢的研究[D]. 武汉: 华中农业大学, 2013.SUN X H. Organic acid metabolism in pumelo fruit during postharvest storage phase[D]. Wuhan: Huazhong Agricultural University, 2013. (in Chinese) [11] 张小红. 琯溪蜜柚(Citrus grandis (L. ) Osbeck. cv. guanximiyou)果实采后酸代谢研究[D]. 福州: 福建农林大学, 2005.ZHANG X H. Studies on the metabolism of organic acids in citrus guanxi-miyou (Citrus grandis (L. ) Osbeck. cv. guanximiyou) fruit after harvest[D]. Fuzhou: Fujian Agriculture and Forestry University, 2005. (in Chinese) [12] 徐世荣. 琯溪蜜柚果实采后柠檬酸代谢的研究[D]. 福州: 福建农林大学, 2017.XU S R. Studies on citric acid metabolism of guanxi pumelo fruit during postharvest storage[D]. Fuzhou: Fujian Agriculture and Forestry University, 2017. (in Chinese) [13] LIN Q, WANG C Y, DONG W C, et al. Transcriptome and metabolome analyses of sugar and organic acid metabolism in Ponkan (Citrus reticulata) fruit during fruit maturation [J]. Gene, 2015, 554(1): 64−74. doi: 10.1016/j.gene.2014.10.025 [14] ZHENG H W, ZHANG Q Y, QUAN J P, et al. Determination of sugars, organic acids, aroma components, and carotenoids in grapefruit pulps [J]. Food Chemistry, 2016, 205: 112−121. doi: 10.1016/j.foodchem.2016.03.007 [15] 徐世荣. 柚早熟芽变‘六月早柚’果实成熟的分子机理若干研究[D]. 福州: 福建农林大学, 2020.XU S R. Fruit ripening molecular mechanism of ‘Liuyuezaoyou’ pummelo[D]. Fuzhou: Fujian Agriculture and Forestry University, 2020. (in Chinese) [16] 王学奎, 黄见良. 植物生理生化实验原理与技术[M]. 北京: 高等教育出版社, 2015: 171 − 173. [17] MORALES J, TÁRREGA A, SALVADOR A, et al. Impact of ethylene degreening treatment on sensory properties and consumer response to citrus fruits [J]. Food Research International, 2020, 127: 108641. doi: 10.1016/j.foodres.2019.108641 [18] 陈露, 李家明, 林志强, 等. 紫色小白菜有机酸的提取优化及UPLC定量分析 [J]. 天然产物研究与开发, 2019, 31(6):1038−1045.CHEN L, LI J M, LIN Z Q, et al. Optimization of organic acids and UPLC analysis of purple cabbage [J]. Natural Product Research and Development, 2019, 31(6): 1038−1045.(in Chinese) [19] 龚江美. 一个琯溪蜜柚新种质的选育与品质评价研究[D]. 福州: 福建农林大学, 2018.GONG J M. Identification and quality evaluation of a new bud mutant of Pummelo. Fuzhou: Fujian Agriculture and Forestry University, 2018. (in Chinese) [20] 蔡灿军. 不同MA包装对荔枝采后贮藏生理的影响[D]. 福州: 福建农林大学, 2020.CAI C J. Effects of different MA packaging on postharvest storage physiology of litchi[D]. Fuzhou: Fujian Agriculture and Forestry University, 2020. (in Chinese) [21] SUN X H, XIONG J J, ZHU A D, et al. Sugar and organic acid changes in pericarp and endocarp tissues of pumelo fruit during postharvest storage [J]. Scientia Horticulturae., 2012, 142: 112−117. doi: 10.1016/j.scienta.2012.05.009 [22] YUN Z, LI W Y, PAN Z Y, et al. Comparative proteomics analysis of differentially accumulated proteins in juice sacs of Ponkan (Citrus reticulata) fruit during postharvest cold storage [J]. Postharvest Biology and Technology, 2010, 56(3): 189−201. doi: 10.1016/j.postharvbio.2010.01.002 [23] 盛玲. GABA支路调控柑橘果实柠檬酸代谢的机理研究[D]. 武汉: 华中农业大学, 2017.SHENG L. Mechanism of gamma-Aminobutyric acid shunt regulating citrate metabolism in citrus fruit[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese) [24] ETIENNE A, GÉNARD M, LOBIT P. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit sacs [J]. Journal of experimental botany, 2013, 64(6): 1451−1469. doi: 10.1093/jxb/ert035 [25] LADO J, GAMBETTA G, ZACARIAS L. Key determinants of citrus fruit quality: Metabolites and main changes during maturation [J]. Scientia Horticulturae, 2018, 233: 238−248. doi: 10.1016/j.scienta.2018.01.055 [26] 韩寿坤. 苹果采后苹果酸含量及其转运体基因MdALMT9调控机制研究[D]. 杨陵: 西北农林科技大学, 2020.HAN S K. Regulation mechanisms of malate content and malate transporter gene MdALMT9 in postharvest apple fruit[D]. Yangling: Northwest A&F University, 2020. (in Chinese) [27] SCHOUREN R E, WOLTERING E J, TIJSKENS L. M. M. Sugar and acid interconversion in tomato fruits based on biopsy sampling of locule gel and pericarp tissue [J]. Postharvest Biology and Technology, 2016, 111: 83−92. doi: 10.1016/j.postharvbio.2015.07.032 [28] YU K Q, XU Q, DA X L, et al. Transcriptome changes during fruit development and ripening of sweet orange (Citrus sinensis) [J]. BMC Genomics, 2012, 13(1): 10. doi: 10.1186/1471-2164-13-10 [29] EMMANOUILIDOU M G, KYRIACOU M C. Rootstock-modulated yield performance, fruit maturation and phytochemical quality of ‘Lane Late’ and ‘Delta’ sweet orange [J]. Scientia Horticulturae, 2017, 225: 112−121. doi: 10.1016/j.scienta.2017.06.056 [30] NAVARRO J M, PEREZ-PEREZ J G, ROMERO P, et al. Analysis of the changes in quality in mandarin fruit, produced by deficit irrigation treatments [J]. Food Chemistry, 2010, 119(4): 1591−1596. doi: 10.1016/j.foodchem.2009.09.048 [31] 易明亮, 肖洒, 刘德春, 杨莉, 匡柳青, 刘勇, 胡威. 温州蜜柑完熟栽培期间果实糖酸变化及其相关基因表达分析 [J]. 江西农业大学学报, 2022, 44(1):35−44.YI M L, XIAO S, LIU D C, et al. Analysis on changes in sugar and organic acid and related gene expression in fruit of satsuma mandarin during delayed harvest cultivation [J]. Acta Agriculturae Universitatis Jiangxiensis, 2022, 44(1): 35−44.(in Chinese) [32] DELPHINE M. P, JOSÉ G. V, SONIA O. Metabolite changes during postharvest storage: Effects on fruit quality traits [J]. Metabolites, 2020, 10(5): 187−187. doi: 10.3390/metabo10050187 [33] CHEN C Y, PENG X, CHEN J Y, et al. Mitigating effects of chitosan coating on postharvest senescence and energy depletion of harvested pummelo fruit response to granulation stress [J]. Food Chemistry, 2021, 348: 129113. doi: 10.1016/j.foodchem.2021.129113 [34] 郑丽静, 聂继云, 闫震. 糖酸组分及其对水果风味的影响研究进展 [J]. 果树学报, 2015, 32(2):304−312.ZHENG L J, NIE J Y, YAN Z. Advances in research on sugars, organic acids and their effects on taste of fruits [J]. Journal of Fruit Science, 2015, 32(2): 304−312.(in Chinese) [35] 林媚, 姚周麟, 王天玉, 等. 8个杂交柑橘品种的糖酸组分含量及特征研究 [J]. 果树学报, 2021, 38(2):202−211.LIN M, YAO Z L, WANG T Y, et al. A study on the components and characteristics of sugars and acids in 8 hybrid citrus cultivars [J]. Journal of Fruit Science, 2021, 38(2): 202−211.(in Chinese) [36] 颉博杰, 刘晓奇, 张洋, 等. 番茄果实采后贮藏期风味品质的动态变化 [J]. 甘肃农业大学学报, 2021, 56(1):94−101.XIE B J, LIU X Q, ZHANG Y, et al. Dynamic changes of flavor quality of tomato fruits in postharvest storage period [J]. Journal of Gansu Agricultural University, 2021, 56(1): 94−101.(in Chinese)