Temperature-induced Feminization of Channel Catfish
-
摘要:
目的 在性别分化前利用高温诱导斑点叉尾鮰性别逆转,探究雄性斑点叉尾鮰雌性化的合适水体温度。 方法 设置(30±0.5) ℃ (T-30,CK)、(33±0.5) ℃ (T-33)和(36±0.5) ℃ (T-36) 3个温度组对1dah试验鱼进行为期30 d的温度诱导。对卵巢已分化成型的60日龄试验鱼测量并统计生长数据、存活率、卵巢形成比例,同时结合遗传性别鉴定结果计算各组的性逆转率。分别在解剖学和组织学水平观察各组试验鱼的性腺结构和卵母细胞发育水平。进一步采用qRT-PCR方法分别检测雄性性别标志基因dmrt1和雌性性别标志基因foxl2在150日龄XX雌鱼、XY伪雌鱼卵巢中的表达水平。 结果 T-30组、T-33组和T-36组试验鱼的存活率分别为95.33%、91.33%、82.67%;随着温度的升高,各组试验鱼的体长、体重先增加后减小,T-30组、T-33组和T-36组试验鱼的体长分别为9.13 cm、10.14 cm、8.80 cm;T-30组、T-33组和T-36组试验鱼的体重分别为6.31 g、9.76 g、6.11 g;T-30组、T-33组和T-36组试验鱼的卵巢形成比例分别为51.00%、66.67%、77.67%。性逆转效果评估结果显示:T-30组XX雌鱼和T-33组、T-36组伪XY雌鱼卵母细胞以Ⅱ期卵母细胞为主,T-30组中XX雌鱼和T-36组XY伪雌鱼出现Ⅲ期卵母细胞;T-33组中XY伪雌鱼出现卵巢发育缓慢、轮廓不清、与体腔黏膜相连的现象。对斑点叉尾鮰性别相关基因检测显示:foxl2基因在XY雌鱼中被激活,dmrt1基因在XY雌鱼中的表达被抑制。 结论 对性别分化前的斑点叉尾鮰持续进行高温诱导,可以使斑点叉尾鮰的生理性别向雌性化方向分化。 Abstract:Objective Water temperature required to induce feminization on male channel catfish fries before sex differentiation was determined. Method One-dah channel catfish fries were treated for 30 d in water at the temperature of (30±0.5) ℃ (T-30, CK), (33±0.5) ℃ (T-33) or (36±0.5) ℃ (T-36). Growth and rates of survival, ovarian formation, and sex reversal of individual fish that had ovaries differentiated and formed in 60 d with positive genetic sex identification were measured, calculated, and recorded. In each group, the ovarian development of XX and XY females as determined by the anatomy and H&E staining sections was compared and analyzed. Subsequently, qRT-PCR was used to detect the expressions of foxl2 and dmrt1 in XX and XY female ovaries as well as XY male testis at 150 dahs. Result The survival rates of the fries under T-30, T-33, and T-36 were 95.33%, 91.33%, and 82.67%, respectively. The body length of the fish under T-30 measured at 9.13 cm, under T-33 at 10.14 cm, and under T-36 at 8.80 cm, while the body weighed at 6.31 g for CK, 9.76 g for those under T-33, and at 6.11 g for those under T-36. The ovarian formation percentages were 51.00% under CK, 66.67% under T-33, and 77.67% under T-36. On sex reversal, the majority of oocytes in the XX females were at stage Ⅱ under T-30, but under T-33 and T-36 in the XY females. The stage Ⅲ oocytes were found in the XX females under T-30 as well as in the XY females under T-36. Under T-33, the XY female channel catfish showed slow oval development with unclear outline and coelomic mucosa. The expression of foxl2 was upregulated and that of dmrt1 downregulated in the XY females. Conclusion The physiological sex before sexual differentiation of channel catfish could be converted to female by continuous high-temperature induction. -
Key words:
- Channel catfish /
- sexual reversal /
- temperature /
- feminization
-
图 1 60日龄斑点叉尾鮰卵巢组织
图A、C、G是T-30、T-33、T-36组中XX雌鱼的卵巢组织切片图,图E、I是T-33、T-36组中XY伪雌鱼的卵巢组织切片图;图B、D、H是T-30、T-33、T-36组中XX雌鱼的卵巢组织解剖图,图F、J是T-33、T-36组XY伪雌鱼的卵巢组织解剖图。
Figure 1. Histological sections and anatomy of ovaries of 60 dah channel catfish
A, C, and G: histological ovarian sections of channel catfish (XX) under T-30, T-33, and T-36, respectively; E and I: histological ovarian sections of sexual reversal channel catfish (XY) under T-33 and T-36, respectively; B, D, and H: ovarian anatomy of channel catfish (XX) under T-30, T-33, and T-36, respectively; F and J: ovarian anatomy of sex-reversed channel catfish (XY) under T-33 and T-36, respectively.
图 2 斑点叉尾鮰性别分化基因表达
A为斑点叉尾鮰雄性性别分化基因dmrt1表达图,B为斑点叉尾鮰雌性性别决定基因foxl2表达图。图中小写字母表示显著性差异( P <0.05)。
Figure 2. mRNA expressions of sex differentiation genes in channel catfish
A: mRNA expression of dmrt1; B: mRNA expression of foxl2. Means with different lowercase letters indicate significant difference at P<0.05.
表 1 开口饵料及微粒饲料调整方案
Table 1. Particulate feed adjustment for channel catfish
饲料
Feed试验鱼体长
Body length/mm投喂天数
Feeding days/d卤虫 1~6 3 微粒饲料S1 6~10 6 微粒饲料S2 9~14 6 微粒饲料S3 13~18 6 微粒饲料S4 18~28 6 表 2 qRT-PCR反应引物表
Table 2. Primers for q-PCR
基因
Gene引物
Primers序列 (5′-3′)
Sequence (5′-3′)长度
Length/bp退火温度
Tm/℃dmrt1 dmrt1-F
dmrt1-RGTGATTACGGCTTTGCGGTG
TAGCGGGAAGGCTGACAAAA20
2057
56foxl2 foxl2-F
foxl2-RTGATGCACTGCCCTTACTGG
CACAAGTCTCGGGTAGTGGG20
2057
58α-tubulin α-tubulinF
α-tubulinRAGCCATACAATTCCATCCTGACC
GCGGCAGATGTCGTAGATGG23
2056
58表 3 试验鱼生长特性和雌鱼比例
Table 3. Growth and survival of channel catfish and proportion of females in each experimental group
组别
Group存活率
Survival rate/%体长
Body length/cm体重
Body weight/g卵巢形成比例
Ovarian ratio/%性逆转率
Sex reversal rate/%T-30 95.33±0.94 a 9.13±0.75 6.310±1.58 51.00±1.03 a 0 a T-33 91.33±1.25 a 10.14±1.39 9.761±2.80 66.67±1.22 b 31.98±1.34 b T-36 82.67±1.25 b 8.80±0.81 6.113±1.62 77.67±1.35 c 54.43±1.96 c 同列数据后不同小写字母表示差异显著 (P<0.05)。
Means with different lowercase letters on the same column indicate significant difference (P<0.05). -
[1] 张振东, 肖友红. 美斑点叉尾鮰法案系统性回顾 [J]. 海洋与渔业, 2017(1):65−66.ZHANG Z D, XIAO Y H. Systematic review of channel catfish act in the United States [J]. Ocean & Fishery, 2017(1): 65−66.(in Chinese) [2] 钟立强, 王明华, 陈校辉, 等. 江苏斑点叉尾鮰产业现状及发展战略思考 [J]. 中国农学通报, 2021, 37(17):137−143.ZHONG L Q, WANG M H, CHEN X H, et al. Current status and development strategy of the channel catfish industry in Jiangsu [J]. Chinese Agricultural Science Bulletin, 2021, 37(17): 137−143.(in Chinese) [3] DESPREZ D, MÉLARD C. Effect of ambient water temperature on sex determinism in the blue tilapia Oreochromis aureus [J]. Aquaculture, 1998, 162(1/2): 79−84. [4] 陈玉红, 林丹军, 尤永隆. 泥鳅的性腺分化及温度对性腺分化的影响 [J]. 中国水产科学, 2007, 14(1):74−82.CHEN Y H, LIN D J, YOU Y L. Gonad differentiation in loach(Misgurnus anguillicaudatus) and the temperature effects [J]. Journal of Fishery Sciences of China, 2007, 14(1): 74−82.(in Chinese) [5] ABOZAID H, WESSELS S, HÖRSTGEN-SCHWARK G. Effect of rearing temperatures during embryonic development on the phenotypic sex in zebrafish (Danio rerio) [J]. Sexual Development, 2011, 5(5): 259−265. doi: 10.1159/000330120 [6] 王浚宇. 高温和甲基睾酮联合处理对尼罗罗非鱼性别分化的影响研究[D]. 泰安: 山东农业大学, 2020.WANG J Y. Effects of co-treatment with high temperature and methyltestosterone on sex differentiation of Nile tilapia[D]. Taian: Shandong Agricultural University, 2020. (in Chinese) [7] KITANO T, TAKAMUNE K, KOBAYASHI T, et al. Suppression of P450 aromatase gene expression in sex-reversed males produced by rearing genetically female larvae at a high water temperature during a period of sex differentiation in the Japanese flounder (Paralichthys olivaceus) [J]. Journal of Molecular Endocrinology, 1999, 23(2): 167−176. doi: 10.1677/jme.0.0230167 [8] 齐飘飘, 陈敏, 于跃, 等. 高温和皮质醇对黄颡鱼性别分化的影响 [J]. 水生生物学报, 2021, 45(1):106−117.QI P P, CHEN M, YU Y, et al. Effects of high temperature and cortisol on sex differentiation of yellow catfish(Tachysurus fulvidraco) [J]. Acta Hydrobiologica Sinica, 2021, 45(1): 106−117.(in Chinese) [9] CONOVER D O, KYNARD B E. Environmental sex determination: Interaction of temperature and genotype in a fish [J]. Science, 1981, 213(4507): 577−579. doi: 10.1126/science.213.4507.577 [10] 孙毅. 温度对小黄鱼早期生长发育和性别分化的影响[D]. 舟山: 浙江海洋大学, 2018.SUN Y. Effects of temperature on early growth and sex differentiation in little yellow croaker[D]. Zhoushan: Zhejiang Ocean University, 2018. (in Chinese) [11] 岳敏娟. 温度对鲫鱼性别决定的影响及分子机制探讨[D]. 福州: 福建师范大学, 2009.YUE M J. The study of the influence of the temperature on sex differentiation of Carassius auratus and the molecular mechnism[D]. Fuzhou: Fujian Normal University, 2009. (in Chinese) [12] 张思敏, 王孝杰, 李吉方, 等. 温度对许氏平鲉性腺分化的影响及其机制 [J]. 水产学报, 2019, 43(7):1569−1580.ZHANG S M, WANG X J, LI J F, et al. Effects of temperature on gonadal differentiation of black rockfish (Sebastes schlegelii) and its mechanism [J]. Journal of Fisheries of China, 2019, 43(7): 1569−1580.(in Chinese) [13] 程晓春. 温度对江黄颡鱼(Pseudobagrus vachelli)性分化的研究[D]. 福州: 福建师范大学, 2007.CHENG X C. The study of the influence of temperature on sex differentiation of teleost, Pseudobagrus vachelli[D]. Fuzhou: Fujian Normal University, 2007. (in Chinese) [14] PATIÑO R, DAVIS K B, SCHOORE J E, et al. Sex differentiation of channel catfish gonads: normal development and effects of temperature [J]. The Journal of Experimental Zoology, 1996, 276(3): 209−218. [15] ZHANG S Y, ZHANG X H, CHEN X H, et al. Construction of a high-density linkage map and QTL fine mapping for growth- and sex-related traits in channel catfish (Ictalurus punctatus) [J]. Frontiers in Genetics, 2019, 10: 251. doi: 10.3389/fgene.2019.00251 [16] 牛莹月, 区又君, 蓝军南, 等. 人工培育四指马鲅鳃组织结构及其早期发育 [J]. 南方水产科学, 2020, 16(5):108−114.NIU Y Y, OU Y J, LAN J N, et al. Structure and early development of gill tissue in artificially cultured Eleutheronema tetradactylum [J]. South China Fisheries Science, 2020, 16(5): 108−114.(in Chinese) [17] ZHANG S Y, LI Y, SHAO J J, et al. Functional identification and characterization of IpMSTNa, a novel orthologous myostatin (MSTN) gene in channel catfish Ictalurus punctatus [J]. International Journal of Biological Macromolecules, 2020, 152: 1−10. doi: 10.1016/j.ijbiomac.2020.02.060 [18] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method [J]. Methods, 2001, 25(4): 402−408. doi: 10.1006/meth.2001.1262 [19] HAYASHI Y, KOBIRA H, YAMAGUCHI T, et al. High temperature causes masculinization of genetically female medaka by elevation of cortisol [J]. Molecular Reproduction and Development, 2010, 77(8): 679−686. doi: 10.1002/mrd.21203 [20] 邹芝英, 杨弘, 李大宇. 罗非鱼性别决定和分化机制的研究进展 [J]. 中国水产科学, 2009, 16(1):139−145. doi: 10.3321/j.issn:1005-8737.2009.01.020ZOU Z Y, YANG H, LI D Y. Research advances on sex determination and differentiation mechanism in tilapia [J]. Journal of Fishery Sciences of China, 2009, 16(1): 139−145.(in Chinese) doi: 10.3321/j.issn:1005-8737.2009.01.020 [21] HAYASAKA O, TAKEUCHI Y, SHIOZAKI K, et al. Green light irradiation during sex differentiation induces female-to-male sex reversal in the medaka Oryzias latipes [J]. Scientific Reports, 2019, 9: 2383. doi: 10.1038/s41598-019-38908-w [22] WU R S S, ZHOU B S, RANDALL D J, et al. Aquatic hypoxia is an endocrine disruptor and impairs fish reproduction [J]. Environmental Science & Technology, 2003, 37(6): 1137−1141. [23] FRANCIS R C, BARLOW G W. Social control of primary sex differentiation in the Midas cichlid [J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(22): 10673−10675. doi: 10.1073/pnas.90.22.10673 [24] 王成龙, 关文志, 李永强, 等. 17β-雌二醇诱导黄颡鱼雌性化的研究 [J]. 南方水产科学, 2020, 16(3):25−30. doi: 10.12131/20200001WANG C L, GUAN W Z, LI Y Q, et al. Study on 17β-estradiol induced feminization of Pelteobagrus fulvidraco [J]. South China Fisheries Science, 2020, 16(3): 25−30.(in Chinese) doi: 10.12131/20200001 [25] 王海贞, 王辉, 强俊, 等. 温度、盐度和pH对尼罗罗非鱼性别分化的影响 [J]. 应用生态学报, 2012, 23(10):2893−2899.WANG H Z, WANG H, QIANG J, et al. Effects of water temperature, salinity and pH on sex differentiation of Oreochromis niloticus [J]. Chinese Journal of Applied Ecology, 2012, 23(10): 2893−2899.(in Chinese) [26] CARTER A W, SADD B M, TUBERVILLE T D, et al. Short heatwaves during fluctuating incubation regimes produce females under temperature-dependent sex determination with implications for sex ratios in nature [J]. Scientific Reports, 2018, 8: 3. doi: 10.1038/s41598-017-17708-0 [27] BOWDEN R M, PAITZ R T. Temperature fluctuations and maternal estrogens as critical factors for understanding temperature-dependent sex determination in nature [J]. Journal of Experimental Zoology Part A:Ecological and Integrative Physiology, 2018, 329(4/5): 177−184. [28] 陈兴汉, 刘晓春, 蒙子宁, 等. 温度调控诱导尼罗罗非鱼仔鱼雄性化的研究 [J]. 中山大学学报(自然科学版), 2013, 52(1):94−99.CHEN X H, LIU X C, MENG Z N, et al. Masculinization by temperature control in larvae Nile Tilapia, Oreochromis niloticus L [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2013, 52(1): 94−99.(in Chinese) [29] KILLEN S S. Growth trajectory influences temperature preference in fish through an effect on metabolic rate [J]. Journal of Animal Ecology, 2014, 83(6): 1513−1522. doi: 10.1111/1365-2656.12244 [30] 刘鉴毅, 宋志明, 王妤, 等. 温度对点篮子鱼幼鱼生长、摄食和消化酶活性的影响 [J]. 海洋渔业, 2015, 37(5):442−448.LIU J Y, SONG Z M, WANG Y, et al. Effects of water temperature on growth, feeding and activities of digestive enzymes of juvenile Siganus guttatas [J]. Marine Fisheries, 2015, 37(5): 442−448.(in Chinese) [31] HUANG S S, YE L P, CHEN H L. Sex determination and maintenance: The role of DMRT1 and FOXL2 [J]. Asian Journal of Andrology, 2017, 19(6): 619−624. doi: 10.4103/1008-682X.194420 [32] BAROILLER J F, GUIGUEN Y, FOSTIER A. Endocrine and environmental aspects of sex differentiation in fish [J]. Cellular and Molecular Life Sciences, 1999, 55(6/7): 910−931. [33] GUIGUEN Y, BAROILLER J F, RICORDEL M J, et al. Involvement of estrogens in the process of sex differentiation in two fish species: The rainbow trout (Oncorhynchus mykiss) and a tilapia (Oreochromis niloticus) [J]. Molecular Reproduction and Development, 1999, 54(2): 154−162. doi: 10.1002/(SICI)1098-2795(199910)54:2<154::AID-MRD7>3.0.CO;2-5 [34] WEBSTER K A, SCHACH U, ORDAZ A, et al. Dmrt1 is necessary for male sexual development in zebrafish [J]. Developmental Biology, 2017, 422(1): 33−46. doi: 10.1016/j.ydbio.2016.12.008 [35] GAN R H, WANG Y, LI Z, et al. Functional divergence of multiple duplicated Foxl2 homeologs and alleles in a recurrent polyploid fish [J]. Molecular Biology and Evolution, 2021, 38(5): 1995−2013. doi: 10.1093/molbev/msab002 [36] BANH Q Q T, GUPPY J L, DOMINGOS J A, et al. Induction of precocious females in the protandrous barramundi (Lates calcarifer) through implants containing 17β-estradiol - effects on gonadal morphology, gene expression and DNA methylation of key sex genes [J]. Aquaculture, 2021, 539: 736601. doi: 10.1016/j.aquaculture.2021.736601