Effects of Silicon on Growth and Functional Ingredients Accumulation of Anoectochilus roxburghii
-
摘要:
目的 探究硅对金线莲营养生长及其主要活性成分累积的影响,为金线莲提质促产提供理论依据。 方法 以福建红霞金线莲为材料,采用水培的方式,施加不同浓度硅离子(0、0.175、0.350、0.525、0.700、0.875 mmol·L−1)处理30 d,测定金线莲生长和相关生理生化指标。 结果 硅对金线莲生长有促进作用,0.175~0.700 mmol·L−1处理后相对生长率均达对照的7倍以上;随着硅浓度的增加,叶绿素含量、叶绿素指数和氮平衡指数值均呈现明显的先升后降趋势,0.525 mmol·L−1处理时均达到最高值(P<0.01);类黄酮指数则呈先降后升的趋势,在0.875 mmol·L−1处理时达最高值(P<0.01);0.175 mmol·L−1和0.700 mmol·L−1的硅显著提高过氧化物酶的活性,为对照的2~3倍(P<0.01);0.700 mmol·L−1的硅可显著促进金线莲总黄酮和多糖的累积(P<0.01),含量较对照分别高71.45%和116.65%。 结论 硅对金线莲的生长有益,0.525 mmol·L−1为营养生长期最佳浓度;提高浓度到0.700 mmol·L−1有益于主要活性成分总黄酮和多糖的累积。 Abstract:Objective Effects of silicon on the growth and functional ingredients accumulation of Anoectochilus roxburghii were studied for the herbal crop quality improvement. Method Plants of Hong Xia, A. roxburghii (Wall.) Lindl, were supplied with concentrations of silicon at 0, 0.175, 0.350, 0.525, 0.700, and 0.875 mmol·L−1 in a hydroponic experiment for 30 d. Effects of the treatments on the plant physiology and functional ingredients contents were monitored. Result Silicon addition promoted the growth of A. roxburghii. The relative growth rate under the supplementations of 0.175 to 0.700 mmol·L−1 silicon was more than 7 times that of control. The chlorophyll content, chlorophyll index, and nitrogen balance index (NBI) all rose with increasing silicon to peak at 0.525 mmol·L−1 and followed by a decline (P<0.01), while the flavonoid decreased significantly to its lowest under 0.875 mmol·L−1 (P<0.01) and the peroxidase activity significantly increased more than 2 to 3 times that of control (P<0.01). At high concentration of silicon (i.e., 0.700 mmol·L−1), the accumulation of total flavonoids was 71.45%, and polysaccharides 116.65%, higher than those of control (P<0.01). Conclusion Presence of silicon was beneficial for the growth of A. roxburghii. At an addition rate of 0.525 mmol·L−1 during the vegetative growth period and 0.700 mmol·L−1 in later stage, a maximized accumulation on flavonoids and polysaccharides could be realized. -
Key words:
- Silicon /
- Anoectochilus roxburghii (Wall.) Lindl. /
- flavonoids /
- polysaccharide /
- nitrogen balance index
-
图 1 不同浓度硅处理对金线莲相对生长率的影响
图中不同大、小写字母分别表示处理间的差异达显著水平P<0.01或P<0.05,下图同。
Figure 1. Effect of silicon at varied concentrations on relative growth rate of A. roxburghii
Data with different capital and lowercase letters mean significant difference at P<0.01 and P<0.05, respectively. Same for following figures.
表 1 不同浓度硅处理对金线莲氮平衡指数的影响
Table 1. Effect of silicon application at varied concentrations on NBI of A. roxburghii
硅Si/(mmol·L−1) 叶绿素指数Chl 类黄酮指数Flav 花青素指数Anth 氮平衡指数NBI 0 29.0±1.2 Cc 0.22±0.04 BCb 0.08±0.01 a 133.4±25.1 CDcd 0.175 32.4±5.3 Bb 0.21±0.03 Cbc 0.08±0.01 a 158.0±49.9 BCbc 0.350 34.6±3.2 ABa 0.20±0.03 Cc 0.08±0.01 a 175.2±26.9 Bb 0.525 36.2±4.4 Aa 0.17±0.02 Dd 0.08±0.00 a 222.5±46.9 Aa 0.700 26.3±2.3 CDd 0.25±0.04 ABa 0.08±0.01 a 107.7±10.6 Ee 0.875 24.7±1.6 Dd 0.26±0.05 Aa 0.08±0.01 a 99.8±20.7 Ee 数据以平均值±标准偏差表示(n=3),同列不同大、小写字母分别表示处理间差异达极显著(P<0.01)或显著水平(P<0.05)。表2同。 Data are presented as mean±SD (n = 3); those with different capital and lowercase letters on same column mean significant difference at P<0.01 and P<0.05, respectively. Same for Table 2. 表 2 不同浓度硅处理对金线莲不同叶位叶片POD酶活的影响
Table 2. Effect of silicon application at varied concentrations on peroxidase activity in differently located leaves on an A. roxburghii plant
硅Si/(mmol·L−1) +1 叶+1 leaf/(U·g−1) +2叶+2 leaf/(U·g−1) +3叶+3 leaf/(U·g−1) 0 510±66 Bc 302±8 Cd 387±68 Bb 0.175 1425±268 Aa 1000±103 Aa 1157±212 Aa 0.350 688±33 Bbc 528±138 BCc 577±53 Bb 0.525 950±233 Bb 745±120 ABbc 622±63 Bb 0.700 1427±189 Aa 938±164 Aab 988±258 Aa 0.875 923±163 Bb 750±140 ABbc 628±25 Bb -
[1] 梁永超, 张永春, 马同生. 植物的硅素营养 [J]. 土壤学进展, 1993, 21(3):7−14.LIANG Y C, ZHANG Y C, MA T S. Review of the studies on silicon nutrition of plants [J]. PROGRESS IN SOIL SCIENCE, 1993, 21(3): 7−14.(in Chinese) [2] EPSTEIN E. The anomaly of silicon in plant biology [J]. PNAS, 1994, 91(1): 11−17. doi: 10.1073/pnas.91.1.11 [3] ARTHI V, SRIRAMACHANDRASEKHARAN M V, MANIVANNAN R, et al. Effect of silicon fertilization on agro-morphological traits of grand naine banana grown in typic ustifluvent soil [J]. International Journal of Plant & Soil Science, 2020: 38−46. [4] 董倩, 黄国强, 王艳君, 等. 硅对果蔗组培腋芽苗增殖生长及相关指标的影响 [J]. 热带作物学报, 2018, 39(1):116−120. doi: 10.3969/j.issn.1000-2561.2018.01.018DONG Q, HUANG G Q, WANG Y J, et al. Effects of silicon on proliferation, growth and relevant parameters of in vitro cultured fruit sugarcane axillary bud seedlings [J]. Chinese Journal of Tropical Crops, 2018, 39(1): 116−120.(in Chinese) doi: 10.3969/j.issn.1000-2561.2018.01.018 [5] TRIPATHI P, NA C I, KIM Y. Effect of silicon fertilizer treatment on nodule formation and yield in soybean (Glycine max L. ) [J]. European Journal of Agronomy, 2021, 122: 126172. doi: 10.1016/j.eja.2020.126172 [6] LIU C G, LU W K, MA Q N, et al. Effect of silicon on the alleviation of boron toxicity in wheat growth, boron accumulation, photosynthesis activities, and oxidative responses [J]. Journal of Plant Nutrition, 2017, 40(17): 2458−2467. doi: 10.1080/01904167.2017.1380817 [7] HOSSEINI S A, NASERI RAD S, ALI N, et al. The ameliorative effect of silicon on maize plants grown in Mg-deficient conditions [J]. International Journal of Molecular Sciences, 2019, 20(4): 969. doi: 10.3390/ijms20040969 [8] 李炜蔷, 张逸, 石健, 等. 硅对大葱矿质元素吸收、分配特性及产量和品质的影响 [J]. 植物营养与肥料学报, 2016, 22(2):486−494. doi: 10.11674/zwyf.14466LI W Q, ZHANG Y, SHI J, et al. Effects of silicon on mineral element uptake and distribution, yield and quality of Chinese spring onion [J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(2): 486−494.(in Chinese) doi: 10.11674/zwyf.14466 [9] ZHANG Y, CHEN H T, LIANG Y, et al. Comparative transcriptomic and metabolomic analyses reveal the protective effects of silicon against low phosphorus stress in tomato plants [J]. Plant Physiology and Biochemistry, 2021, 166: 78−87. doi: 10.1016/j.plaphy.2021.05.043 [10] 宁东峰, 梁永超. 硅调节植物抗病性的机理: 进展与展望 [J]. 植物营养与肥料学报, 2014, 20(5):1280−1287. doi: 10.11674/zwyf.2014.0525NING D F, LIANG Y C. Silicon-mediated plant disease resistance: Advance and perspectives [J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(5): 1280−1287.(in Chinese) doi: 10.11674/zwyf.2014.0525 [11] 陈翠芳, 钟继洪, 李淑仪. 施硅对抑制植物吸收重金属镉的效应研究进展 [J]. 生态学杂志, 2007, 26(4):567−570. doi: 10.3321/j.issn:1000-4890.2007.04.021CHEN C F, ZHONG J H, LI S Y. Research progress on inhibitory effects of silicon on cadmium absorption by plants [J]. Chinese Journal of Ecology, 2007, 26(4): 567−570.(in Chinese) doi: 10.3321/j.issn:1000-4890.2007.04.021 [12] VACULÍK M, KOVÁČ J, FIALOVÁ I, et al. Multiple effects of silicon on alleviation of nickel toxicity in young maize roots [J]. Journal of Hazardous Materials, 2021, 415: 125570. doi: 10.1016/j.jhazmat.2021.125570 [13] VOLETI S R, PADMAKUMARI A P, RAJU V S, et al. Effect of silicon solubilizers on silica transportation, induced pest and disease resistance in rice (Oryza sativa L. ) [J]. Crop Protection, 2008, 27(10): 1398−1402. doi: 10.1016/j.cropro.2008.05.009 [14] HAN Y Q, WEN J H, PENG Z P, et al. Effects of silicon amendment on the occurrence of rice insect pests and diseases in a field test [J]. Journal of Integrative Agriculture, 2018, 17(10): 2172−2181. doi: 10.1016/S2095-3119(18)62035-0 [15] THORNE S J, HARTLEY S E, MAATHUIS F J M. The effect of silicon on osmotic and drought stress tolerance in wheat landraces [J]. Plants, 2021, 10(4): 814. doi: 10.3390/plants10040814 [16] 沈廷明, 吴仲玉, 黄春情, 等. 金线莲化学成分、药理、组培及栽培研究进展 [J]. 海峡药学, 2016, 28(12):26−30. doi: 10.3969/j.issn.1006-3765.2016.12.010SHEN T M, WU Z Y, HUANG C Q, et al. Study on Anoectochilus roxburghii's chemical constituents, pharmacodynamics, tissue culture and cultivation [J]. Strait Pharmaceutical Journal, 2016, 28(12): 26−30.(in Chinese) doi: 10.3969/j.issn.1006-3765.2016.12.010 [17] 陈育青, 林艺华, 邹毅辉, 等. 金线莲生药鉴定、活性成分影响因素及药理作用研究进展 [J]. 中成药, 2020, 42(8):2141−2144. doi: 10.3969/j.issn.1001-1528.2020.08.033CHEN Y Q, LIN Y H, ZOU Y H, et al. Progress in Anoectochilus roxburghii's biochemical drug identification, factors affecting active ingredients and pharmacological effects [J]. Chinese Traditional Patent Medicine, 2020, 42(8): 2141−2144.(in Chinese) doi: 10.3969/j.issn.1001-1528.2020.08.033 [18] 薛梅花, 卢石孔, 翁文, 等. 不同种植方式对金线莲黄酮类化合物含量的影响 [J]. 福建分析测试, 2021, 30(1):33−36. doi: 10.3969/j.issn.1009-8143.2021.01.07XUE M H, LU S K, WENG W, et al. Effects of planting methods on the content of flavonoids in Anoectochilus roxburghii [J]. Fujian Analysis & Testing, 2021, 30(1): 33−36.(in Chinese) doi: 10.3969/j.issn.1009-8143.2021.01.07 [19] 吴水华, 程伟青. 不同栽培方式对金线莲中多糖含量的影响 [J]. 现代中药研究与实践, 2016, 30(6):8−11.WU S H, CHENG W Q. Effects of different cultivation methods on polysaccharide content of different Anoectochilus roxburghii [J]. Research and Practice on Chinese Medicines, 2016, 30(6): 8−11.(in Chinese) [20] 王建寰, 张文晋, 郎多勇, 等. 硅对盐胁迫下甘草非药用部位总黄酮、总皂苷积累动态的影响 [J]. 世界科学技术-中医药现代化, 2018, 20(7):1251−1255.WANG J H, ZHANG W J, LANG D Y, et al. Effects of silicon on the accumulation of total flavonoids and total saponins of non-medicinal parts of glvarrhiza uralensis fisch. under salt stress [J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2018, 20(7): 1251−1255.(in Chinese) [21] 于涛, 张海楼, 隽英华, 等. 施肥模式对水稻稻瘟病抗性的影响 [J]. 江苏农业科学, 2014, 42(7):113−116. doi: 10.3969/j.issn.1002-1302.2014.07.038YU T, ZHANG H L, JUAN Y H, et al. Effect of fertilization modes on resistance to rice blast [J]. Jiangsu Agricultural Sciences, 2014, 42(7): 113−116.(in Chinese) doi: 10.3969/j.issn.1002-1302.2014.07.038 [22] 何永美, 湛方栋, 祖艳群, 等. 大田条件下UV-B辐射对元阳梯田2个地方水稻品种硅、类黄酮和总酚含量的影响 [J]. 农业环境科学学报, 2013, 32(8):1500−1506. doi: 10.11654/jaes.2013.08.002HE Y M, ZHAN F D, ZU Y Q, et al. Effects of UV-B radiation on the contents of silicon, flavonoids and total phenolic of two local rice varieties in Yuanyang Terrace under field conditions [J]. Journal of Agro-Environment Science, 2013, 32(8): 1500−1506.(in Chinese) doi: 10.11654/jaes.2013.08.002 [23] CARVER T L W, ROBBINS M P, THOMAS B J, et al. Silicon deprivation enhances localized autofluorescent responses and phenylalanine ammonia-lyase activity in oat attacked by Blumeria graminis [J]. Physiological and Molecular Plant Pathology, 1998, 52(4): 245−257. doi: 10.1006/pmpp.1998.0149 [24] 杨开兴. 不同施肥模式对金线莲生长及生理特性的影响 [J]. 林业和草原机械, 2020, 1(4):34−38.YANG K X. Effects of different fertilization modes on growth and physiological characteristics of Anoectochilus [J]. Forestry and Grassland Machinery, 2020, 1(4): 34−38.(in Chinese) [25] 应震, 杨燕萍, 周庄, 等. 不同基质和年份栽培对金线莲药用成分的影响 [J]. 浙江农业科学, 2020, 61(7):1356−1357.YING Z, YANG Y P, ZHOU Z, et al. Effects of different substrates and years on medicinal components of Anoectochilus roxburghii [J]. Journal of Zhejiang Agricultural Sciences, 2020, 61(7): 1356−1357.(in Chinese) [26] 张文林, 任亚超, 张益文, 等. 不同光质LED光源对转基因杨树叶片Bt毒蛋白含量及叶绿素荧光参数的影响 [J]. 核农学报, 2016, 30(8):1639−1645. doi: 10.11869/j.issn.100-8551.2016.08.1639ZHANG W L, REN Y C, ZHANG Y W, et al. Effect of different LED light qualities on bt toxic protein content and chlorophyll fluorescence of transgenic poplar leaves [J]. Journal of Nuclear Agricultural Sciences, 2016, 30(8): 1639−1645.(in Chinese) doi: 10.11869/j.issn.100-8551.2016.08.1639 [27] 常福辰, 陆长梅, 沙莎. 植物生物学实验[M]. 南京: 南京师范大学出版社, 2007. [28] 张志信, 张铁, 赵保发, 等. 文山野生金线莲总黄酮及多糖含量测定 [J]. 时珍国医国药, 2009, 20(6):1362−1364. doi: 10.3969/j.issn.1008-0805.2009.06.032ZHANG Z X, ZHANG T, ZHAO B F, et al. Determination of total flavonoids and polysaccharide of the wild anocetochilus plants in Wenshan prefecture [J]. Lishizhen Medicine and Materia Medica Research, 2009, 20(6): 1362−1364.(in Chinese) doi: 10.3969/j.issn.1008-0805.2009.06.032 [29] 熊蔚. 湿地草本植物叶硅含量特征及其与环境因子的关系[D]. 杭州: 杭州师范大学, 2016.XIONG W. Characteristics of silicon contents and their relationship to environmental factorsin wetland herbaceous plants[D]. Hangzhou: Hangzhou Normal University, 2016. (in Chinese) [30] 李晓艳. 不同吸硅型植物硅同位素组成和营养元素分布特征[D]. 杭州: 浙江大学, 2013.LI X Y. Silicon isotope compositions and distribution patterns of Si and others nutritional elements in the different absorbing-silicon plants[D]. Hangzhou: Zhejiang University, 2013. (in Chinese) [31] 曹逼力, 徐坤, 石健, 等. 硅对番茄生长及光合作用与蒸腾作用的影响 [J]. 植物营养与肥料学报, 2013, 19(2):354−360. doi: 10.11674/zwyf.2013.0211CAO B L, XU K, SHI J, et al. Effects of silicon on growth, photosynthesis and transpiration of tomato [J]. Plant Nutrition and Fertilizer Science, 2013, 19(2): 354−360.(in Chinese) doi: 10.11674/zwyf.2013.0211 [32] 高臣, 刘俊渤, 常海波, 等. 硅对水稻叶片光合特性和超微结构的影响 [J]. 吉林农业大学学报, 2011, 33(1):1−4.GAO C, LIU J B, CHANG H B, et al. Effects of silicon on rice leaf photosynthesis and ultrastructure [J]. Journal of Jilin Agricultural University, 2011, 33(1): 1−4.(in Chinese) [33] 李振海, 王纪华, 贺鹏, 等. 基于Dualex氮平衡指数测量仪的作物叶绿素含量估算模型 [J]. 农业工程学报, 2015, 31(21):191−197. doi: 10.11975/j.issn.1002-6819.2015.21.025LI Z H, WANG J H, HE P, et al. Modelling of crop chlorophyll content based on Dualex [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(21): 191−197.(in Chinese) doi: 10.11975/j.issn.1002-6819.2015.21.025 [34] 殷星, 侯振安, 冶军, 等. 应用多酚–叶绿素仪监测棉花氮素营养状况研究 [J]. 植物营养与肥料学报, 2021, 27(7):1198−1212. doi: 10.11674/zwyf.20617YIN X, HOU Z N, YE J, et al. Application of polyphenol-chlorophyll meter to monitor cotton N nutrition status [J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(7): 1198−1212.(in Chinese) doi: 10.11674/zwyf.20617 [35] 吴杏春, 陈裕坤, 李奇松, 等. 硅营养对UV-B辐射条件下水稻酚类代谢的影响 [J]. 中国农学通报, 2009, 25(24):225−230.WU X C, CHEN Y K, LI Q S, et al. Effects of silicon nutrition on phenolics metabolization of rice (Oryza sativa L. ) exposed to enhanced ultraviolet-B [J]. Chinese Agricultural Science Bulletin, 2009, 25(24): 225−230.(in Chinese)