• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅对金线莲营养生长及其主要活性成分累积的影响

董倩 王家旺 黄国强

董倩,王家旺,黄国强. 硅对金线莲营养生长及其主要活性成分累积的影响 [J]. 福建农业学报,2022,37(6):734−740 doi: 10.19303/j.issn.1008-0384.2022.06.007
引用本文: 董倩,王家旺,黄国强. 硅对金线莲营养生长及其主要活性成分累积的影响 [J]. 福建农业学报,2022,37(6):734−740 doi: 10.19303/j.issn.1008-0384.2022.06.007
DONG Q, WANG J W, HUANG G Q. Effects of Silicon on Growth and Functional Ingredients Accumulation of Anoectochilus roxburghii [J]. Fujian Journal of Agricultural Sciences,2022,37(6):734−740 doi: 10.19303/j.issn.1008-0384.2022.06.007
Citation: DONG Q, WANG J W, HUANG G Q. Effects of Silicon on Growth and Functional Ingredients Accumulation of Anoectochilus roxburghii [J]. Fujian Journal of Agricultural Sciences,2022,37(6):734−740 doi: 10.19303/j.issn.1008-0384.2022.06.007

硅对金线莲营养生长及其主要活性成分累积的影响

doi: 10.19303/j.issn.1008-0384.2022.06.007
基金项目: 福建省教育厅(A)类项目(JAT201370)
详细信息
    作者简介:

    董倩(1981−),女,硕士,讲师,研究方向:植物生理生化与分子生物学(E-mail:dqmeteor@163.com)

    通讯作者:

    黄国强(1975−),男,硕士,助理研究员,研究方向:作物遗传育种与营养栽培(E-mail:hgq94@163.com)

  • 中图分类号: S 567.239

Effects of Silicon on Growth and Functional Ingredients Accumulation of Anoectochilus roxburghii

  • 摘要:   目的  探究硅对金线莲营养生长及其主要活性成分累积的影响,为金线莲提质促产提供理论依据。  方法  以福建红霞金线莲为材料,采用水培的方式,施加不同浓度硅离子(0、0.175、0.350、0.525、0.700、0.875 mmol·L−1)处理30 d,测定金线莲生长和相关生理生化指标。  结果  硅对金线莲生长有促进作用,0.175~0.700 mmol·L−1处理后相对生长率均达对照的7倍以上;随着硅浓度的增加,叶绿素含量、叶绿素指数和氮平衡指数值均呈现明显的先升后降趋势,0.525 mmol·L−1处理时均达到最高值(P<0.01);类黄酮指数则呈先降后升的趋势,在0.875 mmol·L−1处理时达最高值(P<0.01);0.175 mmol·L−1和0.700 mmol·L−1的硅显著提高过氧化物酶的活性,为对照的2~3倍(P<0.01);0.700 mmol·L−1的硅可显著促进金线莲总黄酮和多糖的累积(P<0.01),含量较对照分别高71.45%和116.65%。  结论  硅对金线莲的生长有益,0.525 mmol·L−1为营养生长期最佳浓度;提高浓度到0.700 mmol·L−1有益于主要活性成分总黄酮和多糖的累积。
  • 图  1  不同浓度硅处理对金线莲相对生长率的影响

    图中不同大、小写字母分别表示处理间的差异达显著水平P<0.01或P<0.05,下图同。

    Figure  1.  Effect of silicon at varied concentrations on relative growth rate of A. roxburghii

    Data with different capital and lowercase letters mean significant difference at P<0.01 and P<0.05, respectively. Same for following figures.

    图  2  不同浓度硅处理对金线莲叶绿素含量的影响

    Figure  2.  Effect of silicon at varied concentrations on chlorophyll content of A. roxburghii

    图  3  金线莲叶片POD酶活性稳定性

    Figure  3.  Stability of peroxidase activity in A. roxburghii leaf

    图  4  葡萄糖标准曲线

    Figure  4.  Standard curve of glucose

    图  5  不同浓度硅处理对金线莲多糖含量的影响

    Figure  5.  Effect of silicon application at varied concentrations on polysaccharide content of A. roxburghii

    图  6  芦丁标准曲线

    Figure  6.  Standard curve of rutin (rutoside)

    图  7  硅对金线莲总黄酮含量的影响

    Figure  7.  Effect of silicon application at varied concentrations on flavonoids content of A. roxburghii

    表  1  不同浓度硅处理对金线莲氮平衡指数的影响

    Table  1.   Effect of silicon application at varied concentrations on NBI of A. roxburghii

    硅Si/(mmol·L−1叶绿素指数Chl类黄酮指数Flav花青素指数Anth氮平衡指数NBI
    029.0±1.2 Cc0.22±0.04 BCb0.08±0.01 a133.4±25.1 CDcd
    0.17532.4±5.3 Bb0.21±0.03 Cbc0.08±0.01 a158.0±49.9 BCbc
    0.35034.6±3.2 ABa0.20±0.03 Cc0.08±0.01 a175.2±26.9 Bb
    0.52536.2±4.4 Aa0.17±0.02 Dd0.08±0.00 a222.5±46.9 Aa
    0.70026.3±2.3 CDd0.25±0.04 ABa0.08±0.01 a107.7±10.6 Ee
    0.87524.7±1.6 Dd0.26±0.05 Aa0.08±0.01 a99.8±20.7 Ee
    数据以平均值±标准偏差表示(n=3),同列不同大、小写字母分别表示处理间差异达极显著(P<0.01)或显著水平(P<0.05)。表2同。
    Data are presented as mean±SD (n = 3); those with different capital and lowercase letters on same column mean significant difference at P<0.01 and P<0.05, respectively. Same for Table 2.
    下载: 导出CSV

    表  2  不同浓度硅处理对金线莲不同叶位叶片POD酶活的影响

    Table  2.   Effect of silicon application at varied concentrations on peroxidase activity in differently located leaves on an A. roxburghii plant

    硅Si/(mmol·L−1+1 叶+1 leaf/(U·g−1+2叶+2 leaf/(U·g−1+3叶+3 leaf/(U·g−1
    0510±66 Bc302±8 Cd387±68 Bb
    0.1751425±268 Aa1000±103 Aa1157±212 Aa
    0.350688±33 Bbc528±138 BCc577±53 Bb
    0.525950±233 Bb745±120 ABbc622±63 Bb
    0.7001427±189 Aa938±164 Aab988±258 Aa
    0.875923±163 Bb750±140 ABbc628±25 Bb
    下载: 导出CSV
  • [1] 梁永超, 张永春, 马同生. 植物的硅素营养 [J]. 土壤学进展, 1993, 21(3):7−14.

    LIANG Y C, ZHANG Y C, MA T S. Review of the studies on silicon nutrition of plants [J]. PROGRESS IN SOIL SCIENCE, 1993, 21(3): 7−14.(in Chinese)
    [2] EPSTEIN E. The anomaly of silicon in plant biology [J]. PNAS, 1994, 91(1): 11−17. doi: 10.1073/pnas.91.1.11
    [3] ARTHI V, SRIRAMACHANDRASEKHARAN M V, MANIVANNAN R, et al. Effect of silicon fertilization on agro-morphological traits of grand naine banana grown in typic ustifluvent soil [J]. International Journal of Plant & Soil Science, 2020: 38−46.
    [4] 董倩, 黄国强, 王艳君, 等. 硅对果蔗组培腋芽苗增殖生长及相关指标的影响 [J]. 热带作物学报, 2018, 39(1):116−120. doi: 10.3969/j.issn.1000-2561.2018.01.018

    DONG Q, HUANG G Q, WANG Y J, et al. Effects of silicon on proliferation, growth and relevant parameters of in vitro cultured fruit sugarcane axillary bud seedlings [J]. Chinese Journal of Tropical Crops, 2018, 39(1): 116−120.(in Chinese) doi: 10.3969/j.issn.1000-2561.2018.01.018
    [5] TRIPATHI P, NA C I, KIM Y. Effect of silicon fertilizer treatment on nodule formation and yield in soybean (Glycine max L. ) [J]. European Journal of Agronomy, 2021, 122: 126172. doi: 10.1016/j.eja.2020.126172
    [6] LIU C G, LU W K, MA Q N, et al. Effect of silicon on the alleviation of boron toxicity in wheat growth, boron accumulation, photosynthesis activities, and oxidative responses [J]. Journal of Plant Nutrition, 2017, 40(17): 2458−2467. doi: 10.1080/01904167.2017.1380817
    [7] HOSSEINI S A, NASERI RAD S, ALI N, et al. The ameliorative effect of silicon on maize plants grown in Mg-deficient conditions [J]. International Journal of Molecular Sciences, 2019, 20(4): 969. doi: 10.3390/ijms20040969
    [8] 李炜蔷, 张逸, 石健, 等. 硅对大葱矿质元素吸收、分配特性及产量和品质的影响 [J]. 植物营养与肥料学报, 2016, 22(2):486−494. doi: 10.11674/zwyf.14466

    LI W Q, ZHANG Y, SHI J, et al. Effects of silicon on mineral element uptake and distribution, yield and quality of Chinese spring onion [J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(2): 486−494.(in Chinese) doi: 10.11674/zwyf.14466
    [9] ZHANG Y, CHEN H T, LIANG Y, et al. Comparative transcriptomic and metabolomic analyses reveal the protective effects of silicon against low phosphorus stress in tomato plants [J]. Plant Physiology and Biochemistry, 2021, 166: 78−87. doi: 10.1016/j.plaphy.2021.05.043
    [10] 宁东峰, 梁永超. 硅调节植物抗病性的机理: 进展与展望 [J]. 植物营养与肥料学报, 2014, 20(5):1280−1287. doi: 10.11674/zwyf.2014.0525

    NING D F, LIANG Y C. Silicon-mediated plant disease resistance: Advance and perspectives [J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(5): 1280−1287.(in Chinese) doi: 10.11674/zwyf.2014.0525
    [11] 陈翠芳, 钟继洪, 李淑仪. 施硅对抑制植物吸收重金属镉的效应研究进展 [J]. 生态学杂志, 2007, 26(4):567−570. doi: 10.3321/j.issn:1000-4890.2007.04.021

    CHEN C F, ZHONG J H, LI S Y. Research progress on inhibitory effects of silicon on cadmium absorption by plants [J]. Chinese Journal of Ecology, 2007, 26(4): 567−570.(in Chinese) doi: 10.3321/j.issn:1000-4890.2007.04.021
    [12] VACULÍK M, KOVÁČ J, FIALOVÁ I, et al. Multiple effects of silicon on alleviation of nickel toxicity in young maize roots [J]. Journal of Hazardous Materials, 2021, 415: 125570. doi: 10.1016/j.jhazmat.2021.125570
    [13] VOLETI S R, PADMAKUMARI A P, RAJU V S, et al. Effect of silicon solubilizers on silica transportation, induced pest and disease resistance in rice (Oryza sativa L. ) [J]. Crop Protection, 2008, 27(10): 1398−1402. doi: 10.1016/j.cropro.2008.05.009
    [14] HAN Y Q, WEN J H, PENG Z P, et al. Effects of silicon amendment on the occurrence of rice insect pests and diseases in a field test [J]. Journal of Integrative Agriculture, 2018, 17(10): 2172−2181. doi: 10.1016/S2095-3119(18)62035-0
    [15] THORNE S J, HARTLEY S E, MAATHUIS F J M. The effect of silicon on osmotic and drought stress tolerance in wheat landraces [J]. Plants, 2021, 10(4): 814. doi: 10.3390/plants10040814
    [16] 沈廷明, 吴仲玉, 黄春情, 等. 金线莲化学成分、药理、组培及栽培研究进展 [J]. 海峡药学, 2016, 28(12):26−30. doi: 10.3969/j.issn.1006-3765.2016.12.010

    SHEN T M, WU Z Y, HUANG C Q, et al. Study on Anoectochilus roxburghii's chemical constituents, pharmacodynamics, tissue culture and cultivation [J]. Strait Pharmaceutical Journal, 2016, 28(12): 26−30.(in Chinese) doi: 10.3969/j.issn.1006-3765.2016.12.010
    [17] 陈育青, 林艺华, 邹毅辉, 等. 金线莲生药鉴定、活性成分影响因素及药理作用研究进展 [J]. 中成药, 2020, 42(8):2141−2144. doi: 10.3969/j.issn.1001-1528.2020.08.033

    CHEN Y Q, LIN Y H, ZOU Y H, et al. Progress in Anoectochilus roxburghii's biochemical drug identification, factors affecting active ingredients and pharmacological effects [J]. Chinese Traditional Patent Medicine, 2020, 42(8): 2141−2144.(in Chinese) doi: 10.3969/j.issn.1001-1528.2020.08.033
    [18] 薛梅花, 卢石孔, 翁文, 等. 不同种植方式对金线莲黄酮类化合物含量的影响 [J]. 福建分析测试, 2021, 30(1):33−36. doi: 10.3969/j.issn.1009-8143.2021.01.07

    XUE M H, LU S K, WENG W, et al. Effects of planting methods on the content of flavonoids in Anoectochilus roxburghii [J]. Fujian Analysis & Testing, 2021, 30(1): 33−36.(in Chinese) doi: 10.3969/j.issn.1009-8143.2021.01.07
    [19] 吴水华, 程伟青. 不同栽培方式对金线莲中多糖含量的影响 [J]. 现代中药研究与实践, 2016, 30(6):8−11.

    WU S H, CHENG W Q. Effects of different cultivation methods on polysaccharide content of different Anoectochilus roxburghii [J]. Research and Practice on Chinese Medicines, 2016, 30(6): 8−11.(in Chinese)
    [20] 王建寰, 张文晋, 郎多勇, 等. 硅对盐胁迫下甘草非药用部位总黄酮、总皂苷积累动态的影响 [J]. 世界科学技术-中医药现代化, 2018, 20(7):1251−1255.

    WANG J H, ZHANG W J, LANG D Y, et al. Effects of silicon on the accumulation of total flavonoids and total saponins of non-medicinal parts of glvarrhiza uralensis fisch. under salt stress [J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2018, 20(7): 1251−1255.(in Chinese)
    [21] 于涛, 张海楼, 隽英华, 等. 施肥模式对水稻稻瘟病抗性的影响 [J]. 江苏农业科学, 2014, 42(7):113−116. doi: 10.3969/j.issn.1002-1302.2014.07.038

    YU T, ZHANG H L, JUAN Y H, et al. Effect of fertilization modes on resistance to rice blast [J]. Jiangsu Agricultural Sciences, 2014, 42(7): 113−116.(in Chinese) doi: 10.3969/j.issn.1002-1302.2014.07.038
    [22] 何永美, 湛方栋, 祖艳群, 等. 大田条件下UV-B辐射对元阳梯田2个地方水稻品种硅、类黄酮和总酚含量的影响 [J]. 农业环境科学学报, 2013, 32(8):1500−1506. doi: 10.11654/jaes.2013.08.002

    HE Y M, ZHAN F D, ZU Y Q, et al. Effects of UV-B radiation on the contents of silicon, flavonoids and total phenolic of two local rice varieties in Yuanyang Terrace under field conditions [J]. Journal of Agro-Environment Science, 2013, 32(8): 1500−1506.(in Chinese) doi: 10.11654/jaes.2013.08.002
    [23] CARVER T L W, ROBBINS M P, THOMAS B J, et al. Silicon deprivation enhances localized autofluorescent responses and phenylalanine ammonia-lyase activity in oat attacked by Blumeria graminis [J]. Physiological and Molecular Plant Pathology, 1998, 52(4): 245−257. doi: 10.1006/pmpp.1998.0149
    [24] 杨开兴. 不同施肥模式对金线莲生长及生理特性的影响 [J]. 林业和草原机械, 2020, 1(4):34−38.

    YANG K X. Effects of different fertilization modes on growth and physiological characteristics of Anoectochilus [J]. Forestry and Grassland Machinery, 2020, 1(4): 34−38.(in Chinese)
    [25] 应震, 杨燕萍, 周庄, 等. 不同基质和年份栽培对金线莲药用成分的影响 [J]. 浙江农业科学, 2020, 61(7):1356−1357.

    YING Z, YANG Y P, ZHOU Z, et al. Effects of different substrates and years on medicinal components of Anoectochilus roxburghii [J]. Journal of Zhejiang Agricultural Sciences, 2020, 61(7): 1356−1357.(in Chinese)
    [26] 张文林, 任亚超, 张益文, 等. 不同光质LED光源对转基因杨树叶片Bt毒蛋白含量及叶绿素荧光参数的影响 [J]. 核农学报, 2016, 30(8):1639−1645. doi: 10.11869/j.issn.100-8551.2016.08.1639

    ZHANG W L, REN Y C, ZHANG Y W, et al. Effect of different LED light qualities on bt toxic protein content and chlorophyll fluorescence of transgenic poplar leaves [J]. Journal of Nuclear Agricultural Sciences, 2016, 30(8): 1639−1645.(in Chinese) doi: 10.11869/j.issn.100-8551.2016.08.1639
    [27] 常福辰, 陆长梅, 沙莎. 植物生物学实验[M]. 南京: 南京师范大学出版社, 2007.
    [28] 张志信, 张铁, 赵保发, 等. 文山野生金线莲总黄酮及多糖含量测定 [J]. 时珍国医国药, 2009, 20(6):1362−1364. doi: 10.3969/j.issn.1008-0805.2009.06.032

    ZHANG Z X, ZHANG T, ZHAO B F, et al. Determination of total flavonoids and polysaccharide of the wild anocetochilus plants in Wenshan prefecture [J]. Lishizhen Medicine and Materia Medica Research, 2009, 20(6): 1362−1364.(in Chinese) doi: 10.3969/j.issn.1008-0805.2009.06.032
    [29] 熊蔚. 湿地草本植物叶硅含量特征及其与环境因子的关系[D]. 杭州: 杭州师范大学, 2016.

    XIONG W. Characteristics of silicon contents and their relationship to environmental factorsin wetland herbaceous plants[D]. Hangzhou: Hangzhou Normal University, 2016. (in Chinese)
    [30] 李晓艳. 不同吸硅型植物硅同位素组成和营养元素分布特征[D]. 杭州: 浙江大学, 2013.

    LI X Y. Silicon isotope compositions and distribution patterns of Si and others nutritional elements in the different absorbing-silicon plants[D]. Hangzhou: Zhejiang University, 2013. (in Chinese)
    [31] 曹逼力, 徐坤, 石健, 等. 硅对番茄生长及光合作用与蒸腾作用的影响 [J]. 植物营养与肥料学报, 2013, 19(2):354−360. doi: 10.11674/zwyf.2013.0211

    CAO B L, XU K, SHI J, et al. Effects of silicon on growth, photosynthesis and transpiration of tomato [J]. Plant Nutrition and Fertilizer Science, 2013, 19(2): 354−360.(in Chinese) doi: 10.11674/zwyf.2013.0211
    [32] 高臣, 刘俊渤, 常海波, 等. 硅对水稻叶片光合特性和超微结构的影响 [J]. 吉林农业大学学报, 2011, 33(1):1−4.

    GAO C, LIU J B, CHANG H B, et al. Effects of silicon on rice leaf photosynthesis and ultrastructure [J]. Journal of Jilin Agricultural University, 2011, 33(1): 1−4.(in Chinese)
    [33] 李振海, 王纪华, 贺鹏, 等. 基于Dualex氮平衡指数测量仪的作物叶绿素含量估算模型 [J]. 农业工程学报, 2015, 31(21):191−197. doi: 10.11975/j.issn.1002-6819.2015.21.025

    LI Z H, WANG J H, HE P, et al. Modelling of crop chlorophyll content based on Dualex [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(21): 191−197.(in Chinese) doi: 10.11975/j.issn.1002-6819.2015.21.025
    [34] 殷星, 侯振安, 冶军, 等. 应用多酚–叶绿素仪监测棉花氮素营养状况研究 [J]. 植物营养与肥料学报, 2021, 27(7):1198−1212. doi: 10.11674/zwyf.20617

    YIN X, HOU Z N, YE J, et al. Application of polyphenol-chlorophyll meter to monitor cotton N nutrition status [J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(7): 1198−1212.(in Chinese) doi: 10.11674/zwyf.20617
    [35] 吴杏春, 陈裕坤, 李奇松, 等. 硅营养对UV-B辐射条件下水稻酚类代谢的影响 [J]. 中国农学通报, 2009, 25(24):225−230.

    WU X C, CHEN Y K, LI Q S, et al. Effects of silicon nutrition on phenolics metabolization of rice (Oryza sativa L. ) exposed to enhanced ultraviolet-B [J]. Chinese Agricultural Science Bulletin, 2009, 25(24): 225−230.(in Chinese)
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  552
  • HTML全文浏览量:  233
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-19
  • 录用日期:  2022-02-19
  • 修回日期:  2022-04-24
  • 网络出版日期:  2022-05-21
  • 刊出日期:  2022-06-28

目录

    /

    返回文章
    返回