Effect of Spraying Methyl Jasmonate on Oxidase Activity and Interleaf Microbial Diversity of Tobacco Leaves
-
摘要:
目的 探索茉莉酸甲酯(MeJA)影响烟草抗氧化酶活性与叶际微生物多样性及其相关性。 方法 设喷施0.5 mmol·L-1茉莉酸甲酯(+MeJA)和不喷施(CK)处理,在喷施72 h后分别测定烟草叶片的超氧化物歧化酶(SOD)活性、过氧化物酶(POD)活性、总酚含量和过氧化氢(H2O2)积累量,烟草叶际细菌、真菌的丰富度和多样性。 结果 与−MeJA相比, +MeJA显著提高了烟叶中SOD和POD的活性及H2O2的积累,显著降低叶际细菌和真菌的丰富度,极显著提高叶际真菌的多样性;SOD活性和H2O2积累量与高氏白粉菌属呈显著负相关,POD活性与青枯菌属和伯克霍尔德氏菌-卡巴拉尼亚-帕拉伯克霍尔德氏菌属呈正相关。 结论 烟草喷施茉莉酸甲酯不仅能激活叶片中抗氧化酶活性,而且能改变叶际真菌优势菌属占比,烟草叶片中氧化酶活性与真菌菌属占比具有一定的相关关系。 Abstract:Objective Effects of spraying methyl jasmonate (MeJA) on the antioxidant enzyme activity and interleaf microbial diversity of tobacco leaves were investigated. Method Superoxide dismutase (SOD) activity, peroxidase (POD) activity, total phenolic content, hydrogen peroxide (H2O2) accumulation as well as abundance and diversity of interleaf bacteria and fungi in tobacco leaves were measured 72 h after spraying the plant growth regulator at 0.5 mmol·L-1 (+MeJA) or without (CK) as control. Result The MeJA spray significantly increased SOD and POD activities and H2O2 accumulation but reduced the microbial abundance and increased the fungal diversity in the tobacco leaves. The SOD activity and H2O2 accumulation significantly inversely correlated with Golovinomyces, whereas POD positively correlated with Ralstonia and Burkholderia-Caballeronia-Paraburkholderia. Conclusion Tobacco leaves sprayed by MeJA not only activated the antioxidant enzyme activity but also altered the dominant fungi distribution in them, resulting in a correlation between oxidase activity and fungal genus share in tobacco leaves. -
Key words:
- methyl jasmonate /
- tobacco /
- phyllosphere microorganisms /
- antioxidant enzyme
-
图 1 茉莉酸甲酯对烟草抗氧化酶活性和总酚含量的影响
POD和SOD活性、H2O2含量测定鲜样,TP含量测定干样;图中*表示P<0.05,**表示P<0.01;CK—未喷施茉莉酸甲酯,MeJA—喷施茉莉酸甲酯,图2同;A:茉莉酸甲酯处理后烟草叶片中过氧化物酶活性和过氧化氢含量的变化;B:茉莉酸甲酯处理后烟草叶片中超氧化物歧化酶活性和总酚含量的变化。
Figure 1. Effect of methyl jasmonate on antioxidant enzyme activity and total phenol content in tobacco
POD and SOD activities and H2O2 content were measured in fresh samples, and TP content in dry samples. * indicates P<0.05, ** indicates P<0.01. CK: no spraying, MeJA:spraying with MeJA; Same for Fig.2. Changes in POD activity and H2O2 content in tobacco leaves by spraying (A); changes in SOD activity and TP content in tobacco leaves by spraying (B).
图 2 茉莉酸甲酯对烟草叶际微生物群落丰富度和多样性变化的影响
A:茉莉酸甲酯处理后烟草叶际微生物ACE指数的变化;B:茉莉酸甲酯处理后烟草叶际微生物Shannon指数的变化。
Figure 2. Effects of methyl jasmonate on the richness and diversity of tobacco phyllosphere microbial community
Changes on leaf microbial ACE index of tobacco leaf after spraying (A); changes of microbial Shannon index of tobacco leaf after spraying (B) .
表 1 PCR扩增引物
Table 1. PCR amplification primers
微生物
Microbial引物
Primers序列
Sequence细菌
Bacteria (V3+V4)Forward AACMGGATTAGATACCCKG Reverse ACGGGCGGTGTGTRC 真菌
Fungi (ITS1+ITS2)Forward CTTGGTCATTTAGAGGAAGTAA Reverse GCTGCGTTCATCGATGC 表 2 PCR扩增反应体系及条件
Table 2. PCR amplification reaction system and conditions
反应体系
Reaction system反应条件
Reaction conditions反应成分
Reaction
components添加量
Amount
added缓冲液5×FastPfu
Buffer 5×FastPfu4 mL 95 ℃预变性3 min
Pre-denaturation at 95 ℃
for 3 min
↓
27个循环(95 ℃变性30 s,
55 ℃退火30 s,72 ℃延伸30 s)
27 cycles (denaturation at 95 ℃ for
30 s, annealing at 55 ℃ for
30 s, extension at 72 ℃ for 30 s)
↓
72 ℃稳定延伸10 min
Stable extension at
72 ℃ for 10 min
↓
4 ℃保存
storage at 4 ℃上下游引物
Upstream and
downstream primers0.8 mL 脱氧核糖核苷三磷酸
dNTPs(2.5 mmol·L−1)2 mL 快速-pfu 聚合酶
Fast-Pfu Polymerase0.4 mL DNA模板
DNA template10 ng 双蒸水
ddH2O至20 mL
Up to 20 mL表 3 不同处理氧化酶活性与属水平的优势菌群丰度Pearson相关性分析
Table 3. Pearson correlation analysis on oxidase activity and abundance of dominant flora at genus level under varied treatments
属
Genus超氧化物歧化酶
SOD过氧化物酶
POD过氧化氢
H2O2总酚
TP高氏白粉菌属 Golovinomyces −0.734* 0.037 −0.435* −0.426 未分类真菌属 unclassified_k__Fungi 0.237 −0.702 0.534 0.232 毛孢子菌属 Cutaneotrichosporon −0.601 −0.357 0.979 0.116 青枯菌属 Ralstonia −0.535 0.867* −0.406 0.148 红球菌属 Rhodococcus 0.377 −0.793 0.478 0.472 叶杆菌属 Phyllobacterium 0.557 −0.271 −0.111 0.620 伯克霍尔德氏菌-卡巴拉尼亚-帕拉伯克霍尔德氏菌属
Burkholderia-Caballeronia-Paraburkholderia−0.990 0.963** −0.600 −0.184 *表示在P<0.05水平上显著相关;**表示在P<0.01水平上显著相关。
* Indicates significant correlation at P< 0.05 level; ** indicates significant correlation at P< 0.01 level. -
[1] TRIVEDI P, LEACH J E, TRINGE S G, et al. Plant-microbiome interactions: From community assembly to plant health [J]. Nature Reviews Microbiology, 2020, 18(11): 607−621. doi: 10.1038/s41579-020-0412-1 [2] LAJOIE G, KEMBEL S W. Host neighborhood shapes bacterial community assembly and specialization on tree species across a latitudinal gradient [J]. Ecological Monographs, 2021, 91(2): 668−672. [3] GUPTA R, ELKABETZ D, LEIBMAN-MARKUS M, et al. Cytokinin drives assembly of the phyllosphere microbiome and promotes disease resistance through structural and chemical cues [J]. The ISME Journal, 2022, 16(1): 122−137. doi: 10.1038/s41396-021-01060-3 [4] WANG H B, KOU X H, WU C E, et al. Methyl jasmonate induces the resistance of postharvest blueberry to gray mold caused by Botrytis cinerea [J]. Journal of the Science of Food and Agriculture, 2020, 100(11): 4272−4281. doi: 10.1002/jsfa.10469 [5] KĘPCZYŃSKA E, KRÓL P. The phytohormone methyl jasmonate as an activator of induced resistance against the necrotrophAlternaria porrif. sp. solani in tomato plants [J]. Journal of Plant Interactions, 2012, 7(4): 307−315. doi: 10.1080/17429145.2011.645169 [6] 宾金华, 姜胜, 黄胜琴, 等. 茉莉酸甲酯诱导烟草幼苗抗炭疽病与PAL活性及细胞壁物质的关系 [J]. 植物生理学报, 2000, 26(1):1−6. doi: 10.3321/j.issn:1671-3877.2000.01.001BIN J H, JIANG S, HUANG S Q, et al. The relationship between methyl jasmonate induced anthracnose resistance of tobacco seedlings and phenylalanine ammonia lyase activity and cell wall substances [J]. Acta Photophysiologica Sinica, 2000, 26(1): 1−6.(in Chinese) doi: 10.3321/j.issn:1671-3877.2000.01.001 [7] 盘柳依, 赵显阳, 陈明, 等. 茉莉酸甲酯调控防御酶活性诱导猕猴桃果实抗采后软腐病 [J]. 植物保护, 2019, 45(1):75−80.PAN L Y, ZHAO X Y, CHEN M, et al. Regulation of defense enzymes by methyl jasmonate to induce the resistance of kiwifruits against soft rot [J]. Plant Protection, 2019, 45(1): 75−80.(in Chinese) [8] SAAVEDRA G M, SANFUENTES E, FIGUEROA P M, et al. Independent preharvest applications of methyl jasmonate and chitosan elicit differential upregulation of defense-related genes with reduced incidence of gray mold decay during postharvest storage of Fragaria chiloensis fruit [J]. International Journal of Molecular Sciences, 2017, 18(7): 1420. doi: 10.3390/ijms18071420 [9] MOTALLEBI P, NIKNAM V, EBRAHIMZADEH H, et al. Exogenous methyl jasmonate treatment induces defense response against Fusarium culmorum in wheat seedlings [J]. Journal of Plant Growth Regulation, 2017, 36(1): 71−82. doi: 10.1007/s00344-016-9620-3 [10] ALI N D, SORKHOH N, SALAMAH S, et al. The potential of epiphytic hydrocarbon-utilizing bacteria on legume leaves for attenuation of atmospheric hydrocarbon pollutants [J]. Journal of Environmental Management, 2012, 93(1): 113−120. [11] YU X X, ZHANG W J, ZHANG Y, et al. The roles of methyl jasmonate to stress in plants [J]. Functional Plant Biology:FPB, 2019, 46(3): 197−212. doi: 10.1071/FP18106 [12] 吴莹莹, 吴碧球, 陈燕, 等. 茉莉酸甲酯诱导水稻对褐飞虱抗性与植株总酚含量的关系研究 [J]. 西南农业学报, 2012, 25(2):462−466. doi: 10.3969/j.issn.1001-4829.2012.02.022WU Y Y, WU B Q, CHEN Y, et al. Relations between resistance of rice induced by methyl jasmonate, brown plant hopper(Nilaparvata lugens) and total phenol content [J]. Southwest China Journal of Agricultural Sciences, 2012, 25(2): 462−466.(in Chinese) doi: 10.3969/j.issn.1001-4829.2012.02.022 [13] 赵显阳, 盘柳依, 陈明, 等. 茉莉酸甲酯对辣椒抗青枯病的诱导效应及抗氧化酶活性的影响 [J]. 植物保护学报, 2018, 45(5):1103−1111.ZHAO X Y, PAN L Y, CHEN M, et al. Inductive effect of methyl jasmonate to bacterial wilt and the effects on the activities of antioxidant enzymes in pepper seedlings [J]. Journal of Plant Protection, 2018, 45(5): 1103−1111.(in Chinese) [14] ROMAN-REYNA V, PINILI D, BORJA F N, et al. The rice leaf microbiome has a conserved community structure controlled by complex host-microbe interactions[J]. bioRxiv, 2019, DOI:10.1101/615278. [15] HAN G Z. Origin and evolution of the plant immune system [J]. The New Phytologist, 2019, 222(1): 70−83. doi: 10.1111/nph.15596 [16] BABALOLA O O. Beneficial bacteria of agricultural importance [J]. Biotechnology Letters, 2010, 32(11): 1559−1570. doi: 10.1007/s10529-010-0347-0 [17] PAWLIK M, PIOTROWSKA-SEGET Z. Endophytic bacteria associated with Hieracium piloselloides: Their potential for hydrocarbon-utilizing and plant growth-promotion [J]. Journal of Toxicology and Environmental Health Part A, 2015, 78(13/14): 860−870. [18] FÜRNKRANZ M, WANEK W, RICHTER A, et al. Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica [J]. The ISME Journal, 2008, 2(5): 561−570. doi: 10.1038/ismej.2008.14 [19] LINDOW S E, BRANDL M T. Microbiology of the phyllosphere [J]. Applied and Environmental Microbiology, 2003, 69(4): 1875−1883. doi: 10.1128/AEM.69.4.1875-1883.2003 [20] BERLEC A. Novel techniques and findings in the study of plant microbiota: Search for plant probiotics [J]. Plant Science, 2012, 193/194: 96−102. doi: 10.1016/j.plantsci.2012.05.010 [21] VAN ELSAS J D, CHIURAZZI M, MALLON C A, et al. Microbial diversity determines the invasion of soil by a bacterial pathogen [J]. PNAS, 2012, 109(4): 1159−1164. doi: 10.1073/pnas.1109326109 [22] MOTALLEBI P, NIKNAM V, EBRAHIMZADEH H, et al. Methyl jasmonate strengthens wheat plants against root and crown rot pathogen Fusarium culmorum infection [J]. Journal of Plant Growth Regulation, 2015, 34(3): 624−636. doi: 10.1007/s00344-015-9496-7