Determination and Index Selection on Tolerance of Soybean Seedlings to Phosphorus Deficiency in Soil
-
摘要:
目的 研究不同基因型大豆苗期的耐低磷特性,筛选耐低磷鉴定指标,为耐低磷大豆育种及其在西南地区的优化应用提供参考依据。 方法 以10个大豆品种为试验材料,设置低磷胁迫和正常供磷浓度2个处理,采用营养液水培法,测定株高、叶面积、地上部和地下部生物量、根长、根体积、根表面积、叶绿素含量、光合速率、蒸腾速率等19个形态指标及生理生化指标。以各项指标的耐低磷系数为耐低磷指标,通过因子分析、隶属函数、聚类分析和灰色关联度分析相结合的方法,综合评价大豆耐低磷性,并筛选评价指标。 结果 灰色关联度分析表明地上部鲜重、蒸腾速率、地上部干重、气孔导度、叶面积、株高、茎粗和根体积与大豆耐低磷性关系密切;主成分分析和隶属函数法计算大豆耐低磷能力D值,根据D值进行聚类分析,可将10个供试大豆品种按耐低磷强弱划分为3类:耐低磷型、中度耐低磷型和弱耐低磷型。 结论 苗期磷吸收和利用能力最强的大豆品种是铁丰31号、滇86-4。地上部鲜重、蒸腾速率、地上部干重、气孔导度、叶面积、株高、茎粗和根体积是评价大豆苗期耐低磷性的首选指标。 Abstract:Objective Tolerance to deficient supply of phosphorus of soybean varieties at seedling stage was determined, and viable identification indicators selected to aid the breeding and resource utilization of soybean germplasms in southwest China. Method Ten soybean germplasms were treated by varying degrees of phosphorus stress along with a blank control in a hydroponic experiment. Nineteen morphological, physical, and biochemical properties on the seedlings, including plant height, leaf area, shoot and root biomass, root length, root volume, root surface area, chlorophyll content, photosynthetic rate, and transpiration rate, were monitored during the treatment for the index selection. The low-phosphorus tolerance coefficient on each indicator was then used to finalize the selection based on the analyses of factor, membership function, cluster, and grey correlation. Result The Grey correlation analysis showed that the shoot fresh weight, transpiration rate, shoot dry weight, stomatal conductance, leaf area, plant height, stem diameter, and root volume closely related to the tolerance of a soybean plant. The cluster analysis grouped the 10 soybean varieties into highly tolerant, moderately tolerant, and weakly tolerant categories. Conclusion Among the tested varieties Tiefeng No.31 and Dian 86-4 exhibited the strongest phosphorus absorption and utilization ability at seedling stage. The shoot fresh weight, transpiration rate, shoot dry weight, stomatal conductance, leaf area, plant height, stem diameter, and root volume were the choice indicators for evaluating the tolerance to deficient phosphorus supply of soybean plants at seedling stage. -
Key words:
- Soybean /
- low-phosphate tolerance /
- screening index /
- comprehensive evaluation
-
表 1 不同基因型大豆苗期各单项指标的耐低磷系数
Table 1. Low-phosphorus tolerance coefficients of soybean varieties at seedling stage
指标
Index矮选
Aixuan川豆14
Chuandou
14滇86-4
Dian
86-4汾豆62号
Fendou
No.62冀豆12号
Jidou
No.12晋豆23号
Jindou
No.23黔豆11号
Qiandou
No.11黔豆7号
Qiandou
No.7铁豆40号
Tiedou
No.40铁丰31号
Tiefeng
No.31X1 0.757 1.038 0.999 0.809 0.872 0.745 0.983 0.862 0.963 1.088 X2 0.829 0.938 0.992 0.885 1.121 0.908 1.197 0.994 0.974 1.016 X3 0.793 0.927 0.980 0.939 1.148 0.834 0.762 0.824 0.849 0.964 X4 0.633 0.810 0.990 0.547 0.893 0.564 0.834 0.844 0.869 0.936 X5 0.721 0.869 0.969 0.746 0.931 0.793 0.842 0.836 0.904 1.030 X6 0.995 1.057 1.350 1.430 1.480 1.085 0.910 1.326 1.387 1.254 X7 1.104 1.224 1.597 1.570 1.475 1.613 0.836 1.076 1.432 1.452 X8 0.790 0.788 1.210 1.362 1.482 1.166 0.825 1.060 0.952 1.218 X9 1.080 1.017 1.376 0.869 0.925 0.941 1.025 1.019 1.160 1.446 X10 0.853 1.176 2.192 0.515 0.593 0.594 0.940 0.808 1.514 1.447 X11 1.291 1.307 1.139 0.658 0.623 0.743 1.243 1.015 1.197 1.194 X12 1.237 0.486 0.648 1.741 1.597 1.289 0.343 1.399 1.135 0.353 X13 1.553 1.394 1.636 2.097 1.627 2.059 0.971 1.241 1.579 1.353 X14 1.003 0.786 1.096 0.904 0.879 1.127 1.097 0.980 0.607 0.628 X15 1.001 0.931 0.903 0.983 0.938 1.153 1.008 1.084 1.070 1.053 X16 0.750 0.564 0.439 0.766 0.984 1.787 0.904 0.719 0.932 0.828 X17 0.746 0.652 0.587 0.756 0.866 1.081 0.826 0.692 0.649 0.667 X18 0.988 0.808 0.940 0.457 1.391 1.386 1.043 0.832 1.331 1.199 X19 1.018 1.021 0.977 1.180 1.416 1.151 1.100 0.965 1.355 1.143 X1,株高;X2,茎粗;X3,叶面积;X4,地上部鲜重;X5,地上部干重;X6,地下部鲜重;X7,地下部干重;X8,根长;X9,根表面积;X10,根体积;X11,根平均直径;X12,根尖数;X13,根冠比;X14,光合速率;X15,胞间CO2浓度;X16,气孔导度;X17,蒸腾速率;X18,类胡萝卜素含量;X19,叶绿素含量;下表同。
X1: Plant height; X2: Stem diameter; X3: Leaf area; X4: Shoot fresh weight; X5: Shoot dry weight; X6: Root fresh weight; X7: Root dry weight; X8: Root length; X9: Root surface area; X10: Root volume; X11: Root average diameter; X12: Root tips; X13: Root shoot ratio; X14: Photosynthetic rate; X15: Intercellular CO2 concentration; X16: Stomatal conductance; X17: Transpiration rate; X18: Carotenoid content; X19: Chlorophyll content. Same for the following tables.表 2 各单项指标耐低磷系数的相关系数矩阵
Table 2. Correlation coefficient matrix of low-phosphorus tolerance coefficients on individual indices
指标
IndexX1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X1 1 X2 0.477 1 X3 0.217 0.209 1 X4 0.793** 0.615 0.371 1 X5 0.804** 0.512 0.543 0.881** 1 X6 0.014 0.014 0.680* 0.265 0.364 1 X7 −0.101 −0.341 0.588 −0.082 0.273 0.631 1 X8 −0.150 0.129 0.760* 0.049 0.306 0.779** 0.720* 1 X9 0.668* 0.075 0.082 0.670* 0.731* 0.055 0.150 −0.051 1 X10 0.693* 0.079 0.087 0.710* 0.664* 0.106 0.178 −0.152 0.863** 1 X11 0.557 −0.002 −0.490 0.389 0.180 −0.561 −0.559 −0.833** 0.565 0.588 1 X12 −0.809** −0.367 0.190 −0.538 −0.523 0.534 0.331 0.489 −0.644* −0.619 −0.758* 1 X13 −0.583 −0.615 0.278 −0.612 −0.325 0.398 0.819** 0.540 −0.309 −0.250 −0.677* 0.641* 1 X14 −0.511 0.038 −0.281 −0.317 −0.464 −0.373 −0.176 −0.029 −0.321 −0.217 −0.211 0.121 0.098 1 X15 −0.346 −0.162 −0.544 −0.360 −0.211 −0.161 −0.007 −0.089 −0.100 −0.325 −0.118 0.176 0.110 −0.023 1 X16 −0.508 −0.029 −0.175 −0.494 −0.240 −0.172 0.253 0.180 −0.377 −0.508 −0.482 0.287 0.414 0.214 0.735* 1 X17 −0.633* 0.058 −0.097 −0.587 −0.409 −0.259 0.106 0.217 −0.597 −0.704* −0.593 0.360 0.380 0.468 0.494 0.906** 1 X18 0.037 0.336 0.142 0.283 0.410 −0.019 0.168 0.098 0.195 0.077 −0.049 −0.092 −0.053 −0.146 0.374 0.595 0.417 1 X19 −0.061 0.292 0.470 0.031 0.206 0.488 0.375 0.472 −0.236 −0.249 −0.492 0.378 0.285 −0.460 0.083 0.392 0.303 0.550 1 *、**分别表示在5%和1%水平差异显著。
* and ** indicate significant differences at P<5% and P<1%, respectively.表 3 各综合指标主成分的特征向量及贡献率
Table 3. Eigenvectors and contribution rates of principal components of individual comprehensive index
指标
Index因子载荷 Factor loading CI1 CI2 CI3 CI4 CI5 X1 0.345 0.100 0.078 −0.017 −0.052 X2 0.141 0.395 −0.172 −0.031 −0.166 X3 0.013 0.387 −0.036 −0.095 0.203 X4 0.318 0.347 −0.101 0.356 0.199 X5 0.262 0.289 0.256 −0.085 −0.389 X6 −0.041 0.130 0.514 0.162 0.019 X7 −0.115 −0.112 0.321 0.355 −0.171 X8 −0.135 0.088 0.354 −0.482 0.101 X9 −0.154 −0.191 −0.026 −0.192 0.679 X10 −0.685 0.181 0.126 −0.127 0.063 X11 −0.780 0.118 −0.167 −0.080 −0.205 X12 −0.720 0.095 −0.069 0.287 0.221 X13 −0.361 −0.049 0.326 −0.053 0.223 X14 0.770 −0.246 0.005 0.174 −0.125 X15 0.803 0.098 0.030 0.354 0.179 X16 0.779 0.175 −0.192 0.300 0.129 X17 −0.815 0.288 0.187 0.051 0.103 X18 −0.020 −0.008 0.402 0.199 0.095 X19 −0.303 0.404 −0.077 −0.195 0.093 特征值
Eigenvalue6.822 4.742 2.694 1.801 1.253 贡献率
Contributive ratio/%35.905 24.960 14.181 9.479 6.592 累积贡献率
Cumulative contributive ratio/%35.905 60.865 75.046 84.525 91.117 表 4 各基因型大豆的综合指标值、权重、u( Xj)值及综合评价(D)
Table 4. Comprehensive index, index weight, u( Xj), and comprehensive evaluation value (D) of soybean cultivars
品种 Variety CI1 CI2 CI3 CI4 CI5 u( X1) u( X2) u( X3) u( X4) u( X5) D值 D value 位次 Rank 矮选 Aixuan −0.892 −3.017 −1.120 0.575 −0.433 0.487 0.000 0.350 0.728 0.348 0.347 9 川豆14 Chuandou 14 2.083 −1.253 −1.053 −0.221 −0.376 0.880 0.261 0.364 0.517 0.361 0.431 7 滇86−4 Dian86−4 2.975 1.596 −1.622 0.554 2.303 0.998 0.683 0.245 0.722 1.000 0.766 2 汾豆62号 Fendou No.62 −3.383 0.944 −2.801 −0.436 −0.563 0.158 0.586 0.000 0.460 0.317 0.294 10 冀豆12号 Jidou No.12 −1.631 3.741 1.099 −2.174 −0.146 0.390 1.000 0.811 0.000 0.416 0.584 4 晋豆23号 Jindou No.23 −4.580 −0.645 1.970 1.603 1.119 0.000 0.351 0.992 1.000 0.718 0.407 8 黔豆11号 Qiandou No.11 1.570 −2.939 2.007 −1.906 0.510 0.812 0.012 1.000 0.071 0.572 0.528 5 黔豆7号 Qiandou No.7 −0.086 −1.206 −0.514 −0.757 −0.433 0.594 0.268 0.476 0.375 0.348 0.446 6 铁豆40号 Tiedou No.40 0.953 1.106 0.913 1.434 −1.891 0.731 0.610 0.772 0.955 0.000 0.675 3 铁丰31号 Tiefeng No.31 2.991 1.673 1.121 1.327 −0.090 1.000 0.694 0.816 0.927 0.429 0.839 1 权重 Weight 0.394 0.274 0.156 0.104 0.072 表 5 各指标与耐低磷系数的关联度及位次
Table 5. Correlation and rank on low-phosphorus tolerance coefficients of individual indices
指标 Index 关联度 γ Correlation degree γ 权重 Weight 位次 Rank 株高 Plant height 0.716 0.057 6 茎粗 Stem diameter 0.682 0.054 7 叶面积 Leaf area 0.729 0.058 5 地上部鲜重 Shoot fresh weight 0.789 0.062 1 地上部干重 Shoot dry weight 0.742 0.059 3 地下部鲜重 Root fresh weight 0.580 0.046 17 地下部干重 Root dry weight 0.547 0.043 18 根长 Root length 0.644 0.051 13 根表面积 Root surface area 0.629 0.050 15 根体积 Root volume 0.678 0.054 8 根平均直径 Root average diameter 0.669 0.053 10 根尖数 Root tips 0.638 0.050 14 根冠比 Root shoot ratio 0.496 0.039 19 光合速率 Photosynthetic rate 0.649 0.051 12 胞间CO2浓度 Intercellular CO2 concentration 0.673 0.053 9 气孔导度 Stomatal conductance 0.736 0.058 4 蒸腾速率 Transpiration rat 0.775 0.061 2 类胡萝卜素含量 Carotenoid content 0.668 0.053 11 叶绿素含量 Chlorophyll content 0.619 0.049 16 -
[1] 刘萍, 董文汉, 王明君, 等. 低磷胁迫条件下大豆磷高效近等基因系主要农艺性状分析 [J]. 西南农业学报, 2018, 31(8):1553−1558.LIU P, DONG W H, WANG M J, et al. Analysis of main agronomic characters of soybean inbred lines with high Phosphorus-efficient at low Phosphorus conditions [J]. Southwest China Journal of Agricultural Sciences, 2018, 31(8): 1553−1558.(in Chinese) [2] 张秋红. 大豆低聚糖的生理功能及在食品中的应用 [J]. 粮食加工, 2005, 30(5):47−48, 58.ZHANG Q H. Physiological functions and applications in food of soybean oligosaccharide [J]. Grain Processing, 2005, 30(5): 47−48, 58.(in Chinese) [3] GRAHAM P H, VANCE C P. Legumes: Importance and constraints to greater use [J]. Plant Physiology, 2003, 131(3): 872−877. doi: 10.1104/pp.017004 [4] 尚强民. 我国粮食消费需求增加并发生结构性变化引发大豆进口量井喷式增长 [J]. 中国粮食经济, 2005(10):15−17.SHANG Q M. The increase of China's grain consumption demand and structural changes have led to the blowout growth of soybean import [J]. China Grain Economy, 2005(10): 15−17.(in Chinese) [5] 盖钧镒. 发展我国大豆科技, 保障国内大豆供给[C]//2003中国作物学会学术年会文集. 南京, 2003: 28–34. [6] 徐青萍, 罗超云, 廖红, 等. 大豆不同品种对磷胁迫反应的研究 [J]. 大豆科学, 2003, 22(2):108−114.XU Q P, LUO C Y, LIAO H, et al. Study on the response of soybean varieties to P deficiency [J]. Soybean Science, 2003, 22(2): 108−114.(in Chinese) [7] CORDELL D, DRANGERT J O, WHITE S. The story of phosphorus: Global food security and food for thought [J]. Global Environmental Change, 2009, 19(2): 292−305. doi: 10.1016/j.gloenvcha.2008.10.009 [8] 李庆逵. 现代磷肥研究的进展 [J]. 土壤学进展, 1986, 14(2):1−7.LI Q K. Research progress of modern phosphate fertilizer [J]. Advances in Soil Science, 1986, 14(2): 1−7.(in Chinese) [9] 严小龙, 张福锁. 植物营养遗传学[M]. 北京: 中国农业出版社, 1997. [10] 年海, 郭志华, 余让才, 等. 不同来源大豆品种耐低磷能力的评价 [J]. 大豆科学, 1998, 17(2):108−114.NIAN H, GUO Z H, YU R C, et al. Evaluations for low-p tolerance of soybean cultivars from different geographical origins [J]. Soybean Science, 1998, 17(2): 108−114.(in Chinese) [11] 曹敏建, 佟占昌, 韩明祺, 等. 磷高效利用的大豆遗传资源的筛选与评价 [J]. 作物杂志, 2001(4):22−24.CAO M J, TONG Z C, HAN M Q, et al. Screening and evaluation of soybean genetic resources with high phosphorus utilization efficiency [J]. Crops, 2001(4): 22−24.(in Chinese) [12] 童学军, 严小龙, 卢永根, 等. 广东大豆地方种质磷效率特性研究 Ⅰ. 大豆基因型磷效率特性差异及其与土壤有效磷含量的关系 [J]. 土壤学报, 1999, 36(3):404−412.TONG X J, YAN X L, LU Y G, et al. Study on characteristics of phosphorus efficiency of soybean native germplasm in Guangdong Province ⅰ. differences of soybean genotypes in characteristics of phosphorus efficiency and relationship between phosphorus efficiency and content of soil [J]. Acta Pedologica Sinica, 1999, 36(3): 404−412.(in Chinese) [13] 张丹, 宋海娜, 程浩, 等. 大豆耐低磷相关基因的定位与克隆 [J]. 遗传, 2015, 37(4):336−343.ZHANG D, SONG H N, CHENG H, et al. Mapping and cloning of low phosphorus tolerance genes in soybeans [J]. Hereditas, 2015, 37(4): 336−343.(in Chinese) [14] 陈娇, 谢小玉, 张小短, 等. 甘蓝型油菜苗期抗旱性鉴定及综合抗旱指标筛选 [J]. 中国油料作物学报, 2019, 41(5):713−722.CHEN J, XIE X Y, ZHANG X D, et al. Seedling drought resistance and parameter screening of rapeseed [J]. Chinese Journal of Oil Crop Sciences, 2019, 41(5): 713−722.(in Chinese) [15] 汪灿, 周棱波, 张国兵, 等. 酒用糯高粱资源成株期抗旱性鉴定及抗旱指标筛选 [J]. 中国农业科学, 2017, 50(8):1388−1402.WANG C, ZHOU L B, ZHANG G B, et al. Drought resistance identification and drought resistance indices screening of liquor-making waxy Sorghum resources at adult plant stage [J]. Scientia Agricultura Sinica, 2017, 50(8): 1388−1402.(in Chinese) [16] 李春红, 姚兴东, 鞠宝韬, 等. 不同基因型大豆耐荫性分析及其鉴定指标的筛选 [J]. 中国农业科学, 2014, 47(15):2927−2939.LI C H, YAO X D, JU B T, et al. Analysis of shade-tolerance and determination of shade-tolerance evaluation indicators in different soybean genotypes [J]. Scientia Agricultura Sinica, 2014, 47(15): 2927−2939.(in Chinese) [17] 武辉, 侯丽丽, 周艳飞, 等. 不同棉花基因型幼苗耐寒性分析及其鉴定指标筛选 [J]. 中国农业科学, 2014, 45(9):1703−1713.WU H, HOU L L, ZHOU Y F, et al. Analysis of chilling-tolerance and determination of chilling-tolerance evaluation indicators in cotton of different genotypes [J]. Scientia Agricultura Sinica, 2014, 45(9): 1703−1713.(in Chinese) [18] 马帅国, 田蓉蓉, 胡慧, 等. 粳稻种质资源苗期耐盐性综合评价与筛选 [J]. 植物遗传资源学报, 2020, 21(5):1089−1101.MA S G, TIAN R R, HU H, et al. Comprehensive evaluation and selection of rice(Oryza sativa japonica)germplasm for saline tolerance at seedling stage [J]. Journal of Plant Genetic Resources, 2020, 21(5): 1089−1101.(in Chinese) [19] 武兆云, 郭娜, 赵晋铭, 等. 大豆苗期耐低磷主成分及隶属函数分析 [J]. 大豆科学, 2012, 31(1):42−46.WU Z Y, GUO N, ZHAO J M, et al. Principal components and membership function analysis of low phosphate tolerance at seedling stage in soybean [J]. Soybean Science, 2012, 31(1): 42−46.(in Chinese) [20] 栗振义, 张绮芯, 仝宗永, 等. 不同紫花苜蓿品种对低磷环境的形态与生理响应分析 [J]. 中国农业科学, 2017, 50(20):3898−3907.LI Z Y, ZHANG Q X, TONG Z Y, et al. Analysis of morphological and physiological responses to low pi stress in different alfalfas [J]. Scientia Agricultura Sinica, 2017, 50(20): 3898−3907.(in Chinese) [21] 杨春婷, 张永清, 马星星, 等. 苦荞耐低磷基因型筛选及评价指标的鉴定 [J]. 应用生态学报, 2018, 29(9):2997−3007.YANG C T, ZHANG Y Q, MA X X, et al. Screening genotypes and identifying indicators of different Fagopyrum tataricum varieties with low phosphorus tolerance [J]. Chinese Journal of Applied Ecology, 2018, 29(9): 2997−3007.(in Chinese) [22] 廖红, 李欣欣. 一种大豆水培营养液: CN108558519A[P]. 2018-09-21. [23] LIU L L, WANG J C, YAO L R, et al. Evaluation of low phosphorus tolerance and germplasm screening of spring wheat [J]. Chinese Journal of Eco-Agriculture, 2020, 28(7): 999−1009. [24] 武晓玲, 梁海媛, 杨峰, 等. 大豆苗期耐荫性综合评价及其鉴定指标的筛选 [J]. 中国农业科学, 2015, 48(13):2497−2507.WU X L, LIANG H Y, YANG F, et al. Comprehensive evaluation and screening identification indexes of shade tolerance at seedling in soybean [J]. Scientia Agricultura Sinica, 2015, 48(13): 2497−2507.(in Chinese) [25] 梁晓, 祁永, 吝亚杰, 等. 应用综合指标法和灰色关联度法对10个紫花苜蓿品种进行耐盐性评价 [J]. 作物杂志, 2017(4):44−49.LIANG X, QI Y, LIN Y J, et al. Comprehensive evaluation on salinity performance of 10 alfalfa varieties by comprehensive index and gray correlation methods [J]. Crops, 2017(4): 44−49.(in Chinese) [26] 管志勇, 陈发棣, 滕年军, 等. 5种菊花近缘种属植物的耐盐性比较 [J]. 中国农业科学, 2010, 43(4):787−794.GUAN Z Y, CHEN F D, TENG N J, et al. Study on the NaCl tolerance in five plant species from Dendranthema and its relatives [J]. Scientia Agricultura Sinica, 2010, 43(4): 787−794.(in Chinese) [27] DU E Z, TERRER C, PELLEGRINI A F A, et al. Global patterns of terrestrial nitrogen and phosphorus limitation [J]. Nature Geoscience, 2020, 13(3): 221−226. [28] 展晓莹, 任意, 张淑香, 等. 中国主要土壤有效磷演变及其与磷平衡的响应关系 [J]. 中国农业科学, 2015, 48(23):4728−4737.ZHAN X Y, REN Y, ZHANG S X, et al. Changes in olsen phosphorus concentration and its response to Phosphorus balance in the main types of soil in China [J]. Scientia Agricultura Sinica, 2015, 48(23): 4728−4737.(in Chinese) [29] 敖雪. 磷素对不同磷效率基因型大豆的影响[D]. 沈阳: 沈阳农业大学, 2009.AO X. Effects of phosphorus on soybean cultivars with different phosphorus efficiency[D]. Shenyang: Shenyang Agricultural University, 2009. (in Chinese) [30] VAN DE WIEL C C M, VAN DER LINDEN C G, SCHOLTEN O E. Improving phosphorus use efficiency in agriculture: Opportunities for breeding [J]. Euphytica, 2016, 207(1): 1−22. doi: 10.1007/s10681-015-1572-3 [31] ZHOU J, XIE J N, LIAO H, et al. Overexpression of β-expansin gene GmEXPB2 improves phosphorus efficiency in soybean [J]. Physiologia Plantarum, 2014, 150(2): 194−204. [32] ZENG H Q, ZHU Y Y, HUANG S Q, et al. Analysis of phosphorus-deficient responsive miRNAs and cis-elements from soybean (Glycine max L. ) [J]. Journal of Plant Physiology, 2010, 167(15): 1289−1297. doi: 10.1016/j.jplph.2010.04.017 [33] NIU Y F, CHAI R S, JIN G L, et al. Responses of root architecture development to low phosphorus availability: A review [J]. Annals of Botany, 2012, 112(2): 391−408. doi: 10.1093/aob/mcs285 [34] 刘海旭, 吴俊江, 王金生, 等. 大豆耐低磷研究进展 [J]. 大豆科学, 2017, 36(4):639−644.LIU H X, WU J J, WANG J S, et al. Progress of research on tolerance to low-phosphorus stress in soybean [J]. Soybean Science, 2017, 36(4): 639−644.(in Chinese) [35] 陈俊意, 徐莉. 玉米苗期磷效率的相关和通径分析 [J]. 西南师范大学学报(自然科学版), 2008, 33(5):82−85.CHEN J Y, XU L. Correlation and path analysis of relative biologic characters and phosphorus efficiency in seedling of maize [J]. Journal of Southwest China Normal University (Natural Science Edition), 2008, 33(5): 82−85.(in Chinese) [36] 钟鹏, 吴俊江, 刘丽君, 等. 低磷和干旱胁迫对不同基因型大豆光合生理特性的影响 [J]. 大豆科学, 2009, 28(5):806−810.ZHONG P, WU J J, LIU L J, et al. Effects of phosphorus deficiency and drought stress on photosynthetic characters in different genotypic soybeans [J]. Soybean Science, 2009, 28(5): 806−810.(in Chinese) [37] 李青松. 大豆磷高效品种的筛选及磷高效生理机制的研究[D]. 郑州: 河南农业大学, 2006.LI Q S. Study on screening of soybean cultivars with high phosphorus efficiency and its physiological mechanism[D]. Zhengzhou: Henan Agricultural University, 2006. (in Chinese) [38] 张淼, 赵书岗, 耿丽平, 等. 缺磷对不同作物根系形态及体内养分浓度的影响 [J]. 植物营养与肥料学报, 2013, 19(3):577−585.ZHANG M, ZHAO S G, GENG L P, et al. Effects of phosphorus deficiency on root morphology and nutrients concentrations of different crops [J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(3): 577−585.(in Chinese) [39] 任立飞, 张文浩, 李衍素. 低磷胁迫对黄花苜蓿生理特性的影响 [J]. 草业学报, 2012, 21(3):242−249.REN L F, ZHANG W H, LI Y S. Effect of phosphorus deficiency on physiological properties of Medicago falcata [J]. Acta Prataculturae Sinica, 2012, 21(3): 242−249.(in Chinese) [40] 谢甫绨, 孙海姝, 张惠君, 等. 磷素对不同品质类型大豆光合生理的影响 [J]. 大豆科学, 2012, 31(2):232−236.XIE F T, SUN H S, ZHANG H J, et al. Effect of P2O5 on photosynthetic physiology of soybean cultivars with different quality types [J]. Soybean Science, 2012, 31(2): 232−236.(in Chinese) [41] JACOB J, LAWLOR D W. Stomatal and mesophyll limitations of photosynthesis in phosphate deficient sunflower, maize and wheat plants [J]. Journal of Experimental Botany, 1991, 42(8): 1003−1011. doi: 10.1093/jxb/42.8.1003 [42] 丁玉川, 陈明昌, 程滨, 等. 不同大豆品种磷吸收利用特性比较研究 [J]. 西北植物学报, 2005, 25(9):1791−1797.DING Y C, CHEN M C, CHENG B, et al. Phosphorous uptakes and uses of different soybean varieties [J]. Acta Botanica Boreali-Occidentalia Sinica, 2005, 25(9): 1791−1797.(in Chinese) [43] 刘渊, 李喜焕, 王瑞霞, 等. 大豆耐低磷指标筛选与耐低磷品种鉴定 [J]. 中国农业科技导报, 2015, 17(4):30−41.LIU Y, LI X H, WANG R X, et al. Screen indexes for soybean tolerance to phosphorus deficiency and identification of low phosphorus tolerant soybean cultivars [J]. Journal of Agricultural Science and Technology, 2015, 17(4): 30−41.(in Chinese) [44] 王英, 李喜焕, 张彩英. 河北大豆地方品种耐低磷种质筛选 [J]. 大豆科学, 2009, 28(4):588−594.WANG Y, LI X H, ZHANG C Y. Screening of low-P tolerant soybean landraces from Hebei growing-areas [J]. Soybean Science, 2009, 28(4): 588−594.(in Chinese) [45] 张美俊, 乔治军, 杨武德, 等. 不同糜子品种对低氮胁迫的生物学响应 [J]. 植物营养与肥料学报, 2014, 20(3):661−669.ZHANG M J, QIAO Z J, YANG W D, et al. Biological response of different cultivars of millet to low nitrogen stress [J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(3): 661−669.(in Chinese) [46] 张恩和, 张新慧, 王惠珍. 不同基因型春蚕豆对磷胁迫的适应性反应 [J]. 生态学报, 2004, 24(8):1589−1593.ZHANG E H, ZHANG X H, WANG H Z. Adaptable effects of phosphorus stress on different genotypes of faba-bean [J]. Acta Ecologica Sinica, 2004, 24(8): 1589−1593.(in Chinese) [47] 郑金凤, 米少艳, 婧姣姣, 等. 小麦代换系耐低磷生理性状的主成分分析及综合评价 [J]. 中国农业科学, 2013, 46(10):1993.ZHENG J F, MI S Y, JING J J, et al. Principal component analysis and comprehensive evaluation on physiological traits of tolerance to low Phosphorus stress in wheat substitution [J]. Scientia Agricultura Sinica, 2013, 46(10): 1993.(in Chinese) [48] 赵化田. 小麦耐低磷基因型筛选及磷效率相关性状QTL定位[D]. 雅安: 四川农业大学, 2011.ZHAO H T. Screening of low phosphorus tolerant wheat genotypes and QTL mapping of phosphorus efficency related traits in wheat[D]. Yaan: Sichuan Agricultural University, 2011. (in Chinese) [49] 张吉海, 高世斌, 潘光堂. 玉米苗期耐低磷基因型的筛选与鉴定 [J]. 玉米科学, 2006, 14(5):20−25.ZHANG J H, GAO S B, PAN G T. Screening and identification on maize inbred lines with tolerance to low-phosphorus stress at seedling stage [J]. Journal of Maize Sciences, 2006, 14(5): 20−25.(in Chinese) [50] 刘灵, 廖红, 王秀荣, 等. 不同根构型大豆对低磷的适应性变化及其与磷效率的关系 [J]. 中国农业科学, 2008, 41(4):1089−1099.LIU L, LIAO H, WANG X R, et al. Adaptive changes of soybean genotypes with different root architectures to low phosphorus availability as related to phosphorus efficiency [J]. Scientia Agricultura Sinica, 2008, 41(4): 1089−1099.(in Chinese)