Candidate Genes Selection in Powdery Mildew-induced Resistance of Rose Plant to Beet Armyworms and the Bioinformatics Analysis on CYP71
-
摘要:
目的 通过检测白粉菌侵染月季后转录组基因的表达量变化,筛选白粉菌诱导月季产生对甜菜夜蛾抗性的关键候选基因,为月季抗虫基因的功能研究及抗虫品种的培育提供参考。 方法 以月季品种艳粉(Rosa chinensis Jacq.)为研究材料,利用二代测序技术对白粉菌侵染月季前后基因的表达量进行转录组测序。利用RSEM对基因的表达水平进行定量分析,DESeq2软件进行表达差异分析,利用KOBAS将得到的差异表达基因进行KEGG富集分析。对筛选出的可能参与三萜类物质生物合成的CYP71D差异表达基因(Differentially expressed genes,DEGs)进行生物信息学分析,并分析了CYP71D蛋白与抗虫性的关系。 结果 转录组测序共检测到差异表达基因1 646个,共643个差异表达基因被富集到81条KEGG通路中,其中31个差异表达基因与萜类合成相关。生物信息学分析结果表明了CYP71D亚家族的物种特异性。在植物中CYP71A主要参与类单萜的生物合成,CYP71D主要参与单萜类、倍半萜类、二萜类、三萜类等与抗病、虫有关的次生代谢物的生物合成。 结论 月季细胞色素P450超家族蛋白酶中CYP71簇的CYP71A、CYP71D亚家族可能与三萜化合物Dehydro (11,12) ursolic acid lactone(DUA)的生物合成有关,表明CYP71D家族蛋白参与修饰三萜化合物的底物识别位点,本研究为探索寄主植物介导的间接的病虫互作机理的研究提供了一定的思路。 Abstract:Objective The transcriptomes of rose plants artificially infected by powdery mildew were obtained to identify the genes responsible for the resistance to infestation by beet armyworms. Method Transcriptomes of Yanfen rose (Rosa chinensis Jacq.) before and after being infected by powdery mildew were obtained using the second-generation sequencing technology. RSEM was used to quantitatively analyze the gene expressions, DESeq2 software for the expression differences, and KOBAS for the KEGG enrichment analysis on the differentially expressed genes (DEGs). Bioinformatics of the DEGs of CYP71D susceptible of associating with triterpenoids biosynthesis was secured to study the relationship between the CYP71D and the insect resistance. Result A total of 1 646 DEGs were detected by the transcriptome sequencing. Of which, 643 were enriched into 81 KEGG pathways with 31 DEGs related to terpenoid synthesis. The bioinformatics on them showed a species specificity of CYP71D subfamily. In plants, CYP71A were mainly involved in the biosynthesis of monoterpenes, while CYP71D in that of the disease and insect resistance-related secondary metabolites, such as monoterpenes, sesquiterpenes, diterpenes, and triterpenoids. Conclusion The CYP71A and CYP71D subfamilies of the cytochrome P450 enzyme in the rose might relate to the synthesis of dehydro (11,12) ursolic acid lactone (DUA). It suggested a possible association of CYP71D with the formation of triterpenoids. The results provided information for the study on the relationship between the genes in host plants and infecting insects. -
Key words:
- Rosa chinensis Jacq. /
- powdery mildew /
- triterpenoids /
- beet armyworm /
- CYP71 /
- bioinformatics
-
表 1 转录组测序数据
Table 1. Transcriptome sequences
样本名称
Sample总条目数
Raw reads质控总条目数
Clean reads质控总数据量
Clean data/Gb错误率
Error rate/%Q20/% Q30/% 健康样本1 CK1 46403668 46118398 6.88 0.0244 98.30 94.63 健康样本2 CK2 51906926 51578808 7.68 0.0244 98.31 94.68 健康样本3 CK3 54877772 54487558 8.12 0.0248 98.17 94.32 感病样本1 Ta1 52578650 52226040 7.78 0.0245 98.29 94.61 感病样本2 Ta2 51390748 51052798 7.59 0.0247 98.20 94.39 感病样本3 Ta3 48584868 48273580 7.18 0.0246 98.25 94.52 Q20、Q30分别指测序质量在99%和99.9%以上的碱基占总碱基的百分比。
Q20 and Q30 refer to the percentage of bases with sequencing quality above 99% and 99.9%, respectively.表 2 Reads与参考基因组的比对结果
Table 2. Comparison between Reads and reference genome
(单位:%) 样本
SampleClean reads数目总量
Total mapped编码区
CDS基因区间
Intergenic内含子区
Introns3′非编码区
3′UTR5′非编码区
5′UTR健康样本1 CK1 86.53 86.85 0.78 1.91 5.81 4.65 健康样本2 CK2 86.82 87.20 0.73 1.78 5.52 4.77 健康样本3 CK3 86.60 87.29 0.70 1.68 5.71 4.63 感病样本1 Ta1 86.74 86.90 0.74 1.91 5.88 4.56 感病样本2 Ta2 86.40 86.54 0.75 1.99 5.75 4.96 感病样本3 Ta3 86.30 85.84 0.77 2.04 6.56 4.78 表 3 CPY71蛋白的理化性质及亚细胞定位
Table 3. Physicochemical properties and subcellular localization of CPY71 protein
基因ID
Gene ID蛋白质登录号
Protein accession氨基酸长度
Amino acid
length/aa分子质量
Molecular weight /kDa理论等电点
Theoretical pI不稳定性系数
Instability index平均亲水性系数
GRAVY亚细胞定位预测
Subcellular localizationLOC112176060 XP_024169643.1 510 58.18 5.74 46.17 −0.022 内质网
Endoplasmic reticulumLOC112195754 XP_024191713.1 510 58.33 8.78 41.88 −0.139 内质网
Endoplasmic reticulumLOC112195786 XP_024191752.1 512 58.01 7.01 42.50 −0.200 内质网
Endoplasmic reticulumLOC112198434 XP_024195327.1 513 58.64 7.26 46.55 −0.166 内质网
Endoplasmic reticulumLOC112177305 XP_040369681.1 515 58.38 7.71 36.81 −0.187 内质网
Endoplasmic reticulumLOC112166540 XP_024159180.1 512 58.54 8.76 41.76 −0.212 内质网
Endoplasmic reticulum表 4 CYP71簇的亚家族分类及其功能特征
Table 4. Classification and functional characteristics of CYP71 subfamilies
亚家族
Subfamily代谢指向性
Metabolism功能/代谢产物的类别
Function/class of metabolitesCYP71A 专一 类单萜 Monoterpenoid CYP71AR 专一 类单萜 Monoterpenoid CYP71AV 专一 倍半萜 Sesquiterpenoid CYP76B 专一 环烯醚萜 Iridoid,类单萜 Monoterpenoid,解毒异生素 Xenobiotics Detoxification CYP71BA 专一 倍半萜 Sesquiterpenoid CYP71BL 专一 倍半萜 Sesquiterpenoid CYP71D 专一 类单萜 Monoterpenoid,倍半萜 Sesquiterpenoid,二萜 Diterpenoid,吲哚生物碱 Indole Alkaloid,类黄酮 Flavonoid CYP71Z 专一 二萜 Diterpenoid CYP76M 专一 二萜 Diterpenoid CYP82G 专一 萜类衍生物 Terpenoid-derived CYP93E 专一 三萜 Triterpenoid CYP99A 专一 二萜 Diterpenoid CYP701A 一般 二萜类植物激素 GA Diterpenoid Phytohormone GA CYP701A 专一 二萜 Diterpenoid CYP705A 专一 三萜 Triterpenoid CYP706B 专一 倍半萜 Sesquiterpenoid -
[1] YANG F, LI Y, YANG B. The inhibitory effects of rose powdery mildew infection on the oviposition behaviour and performance of beet armyworms [J]. Entomologia Experimentalis et Applicata, 2013, 148(1): 39−47. doi: 10.1111/eea.12069 [2] 张怡, 沈迎春, 王宁. 设施栽培月季白粉病防治药剂筛选与应用 [J]. 江苏农业科学, 2021(4):70−73. doi: 10.15889/j.issn.1002-1302.2021.04.013ZHANG Y, SHEN Y C, WANG N. Screening and application of agents controlling Chinese rose powdery mildew in facility culture [J]. Jiangsu Agricultural Sciences, 2021(4): 70−73.(in Chinese) doi: 10.15889/j.issn.1002-1302.2021.04.013 [3] HUANG J M, ZHAO Y X, SUN H, et al. Monitoring and mechanisms of insecticide resistance in Spodoptera exigua (Lepidoptera: Noctuidae), with special reference to diamides [J]. Pestic Biochem Physiol, 2021, 174: 104831. doi: 10.1016/j.pestbp.2021.104831 [4] HU B, HUANG H, HU S, et al. Changes in both trans- and Cis-regulatory elements mediate insecticide resistance in a lepidopteron pest, Spodoptera exigua [J]. PLoS Genetics, 2021, 17(3): e1009403. doi: 10.1371/journal.pgen.1009403 [5] KARBAN R, ADAMCHAK R, SCHNATHORST W C. Induced resistance and interspecific competition between spider mites and a vascular wilt fungus [J]. Science, 1987, 235(4789): 678−680. doi: 10.1126/science.235.4789.678 [6] 杨发忠. 中国月季介导的植物病虫互作关系[D]. 昆明: 云南农业大学, 2015.YANG F Z. The plant-mediated interaction relationship between phytopathogenic fungi and herbivory insects on rose plants[D]. Kunming: Yunnan Agricultural University, 2015. (in Chinese) [7] 杨发忠, 杨德强, 杨斌, 等. 中国月季感染白粉菌对甜菜夜蛾取食行为的影响及原因初探 [J]. 广东农业科学, 2015, 42(17):67−71. doi: 10.3969/j.issn.1004-874X.2015.17.012YANG F Z, YANG D Q, YANG B, et al. Effects of rose infected by powdery midew on feeding behaviour of beet armyworm and its mechanism [J]. Guangdong Agricultural Sciences, 2015, 42(17): 67−71.(in Chinese) doi: 10.3969/j.issn.1004-874X.2015.17.012 [8] CHENG J, YIN L, ZHOU S, et al. The Inhibitory Effect of Powdery Mildew-Induced Volatiles from Rose on Host Selection Behavior of Beet Armyworm Moths (Lepidoptera: Noctuidae) [J]. Journal of Entomological Science, 2022, 57(1): 96−113. doi: 10.18474/JES21-13 [9] MORTIBOYS H, AASLY J, BANDMANN O. Ursocholanic acid rescues mitochondrial function in common forms of familial Parkinson's disease [J]. Brain, 2013, 136(10): 3038−3050. doi: 10.1093/brain/awt224 [10] 彭少麟, 南蓬, 钟扬. 高等植物中的萜类化合物及其在生态系统中的作用 [J]. 生态学杂志, 2002, 21(3):33−38. doi: 10.3321/j.issn:1000-4890.2002.03.009PENG S L, NAN P, ZHONG Y. Terpenoids in higher plants and their roles in ecosystems [J]. Chinese Journal of Ecology, 2002, 21(3): 33−38.(in Chinese) doi: 10.3321/j.issn:1000-4890.2002.03.009 [11] 谭世强, 马琳, 许永华, 等. 植物三萜类物质的生态学功能研究进展 [J]. 人参研究, 2015, 27(3):36−38. doi: 10.3969/j.issn.1671-1521.2015.03.013TAN S Q, MA L, XU Y H, et al. Research Advances in ecological activities of Triterpenoids [J]. Ginseng Research, 2015, 27(3): 36−38.(in Chinese) doi: 10.3969/j.issn.1671-1521.2015.03.013 [12] LAKHANPAL S, FAN J S, LUAN S, et al. Structural and functional analyses of the PPIase domain of Arabidopsis thaliana CYP71 reveal its catalytic activity toward histone H3 [J]. FEBS Letters, 2021, 595(1): 145−154. doi: 10.1002/1873-3468.13965 [13] IRMISCH S, CLAVIJO MCCORMICK A, GÜNTHER J, et al. Herbivore-induced poplar cytochrome P450 enzymes of the CYP71 family convert aldoximes to nitriles which repel a generalist caterpillar [J]. The Plant Journal, 2014, 80(6): 1095−1107. doi: 10.1111/tpj.12711 [14] ZHOU J H, LI Z Y, XIAO G Q, et al. CYP71D8L is a key regulator involved in growth and stress responses by mediating gibberellin homeostasis in rice [J]. Journal of Experimental Botany, 2019, 71(3): 1160−1170. [15] MA Y, CUI G, CHEN T, et al. Expansion within the CYP71D subfamily drives the heterocyclization of tanshinones synthesis in Salvia miltiorrhiza [J]. Nature communications, 2021, 12(1): 1−11. doi: 10.1038/s41467-020-20314-w [16] DANIELE W R, RENE F. Cytochromes P450: A success story [J]. Genome Biology, 2000, 1(6): 1−9. [17] 戴素明, 周程爱, 谢丙炎, 等. 细胞色素P450表达在植物防御反应中的作用 [J]. 石河子大学学报(自然科学版), 2004(S1):184−187. doi: 10.13880/j.cnki.65-1174/n.2004.s1.060DAI S M, ZHOU C A, XIE B Y, et al. Role of cytochromes P450 expression in plant defence responding to pathogens [J]. Journal of Shihezi University (Natural Science), 2004(S1): 184−187.(in Chinese) doi: 10.13880/j.cnki.65-1174/n.2004.s1.060 [18] GRUNSEICH J M, THOMPSON M N, AGUIRRE N M, et al. The role of plant-associated microbes in mediating host-plant selection by insect herbivores [J]. Plants (Basel, Switzerland), 2019, 9(1): E6. [19] BERTEA C M, CASACCI L P, BONELLI S, et al. Chemical, physiological and molecular responses of host plants to lepidopteran egg-laying [J]. Frontiers in Plant Science, 2019, 10: 1768. [20] 凌冰, 张茂新, 王玉赞. 葫芦素的生态功能及其应用前景 [J]. 生态学报, 2010, 30(3):780−793.LING B, ZHANG M X, WANG Y Z. Ecological function and prospects for utilization of cucurbitacins [J]. Acta Ecologica Sinica, 2010, 30(3): 780−793.(in Chinese) [21] CHANDRAVADANA M V. Identification of triterpenoid feeding deterrent of red pumpkin beetles (Aulacophora foveicollis) from Momordica charantia [J]. Journal of chemical ecology, 1987, 13(7): 1689−1694. doi: 10.1007/BF00980210 [22] 周琼, 熊正燕, 欧晓明. 苍耳甾醇物质对菜青虫取食、血淋巴和中肠酶活性及中肠组织的影响 [J]. 昆虫学报, 2011, 49(5):1034−1041. doi: 10.16380/j.kcxb.2011.09.012ZHOU Q, XIONG Z Y, OU X M. Effects of sterols from Xanthium sibiricum (Compositae) on feeding, enzyme activities in the hemolymph and midgut, and midgut tissues of Pieris rapae (Lepidoptera: Pieridae) larvae [J]. Acta Entomologica Sinica, 2011, 49(5): 1034−1041.(in Chinese) doi: 10.16380/j.kcxb.2011.09.012 [23] JING X, GREBENOK R J, BEHMER S T. Diet micronutrient balance matters: How the ratio of dietary sterols/steroids affects development, growth and reproduction in two lepidopteran insects [J]. Journal of Insect Physiology, 2014, 67: 85−96. doi: 10.1016/j.jinsphys.2014.06.004 [24] 谭世强, 张爱华, 谢敬宇, 等. 人参总皂苷对苜蓿夜蛾幼虫的拒食作用 [J]. 中国中药杂志, 2013, 38(1):37−39.TAN S Q, ZHANG A H, XIE J Y, et al. Anti-feeding effect of total ginsenoside from Panax ginseng on Heliothis dipsacea larvae [J]. China Journal of Chinese Materia Medica, 2013, 38(1): 37−39.(in Chinese) [25] 安素芳. 不同菊属近缘种植物叶片萜类化合物对斜纹夜蛾抗性的研究[D]. 南京: 南京农业大学, 2020.AN S F. Study on the effect of terpenoids in leaves on the defense to Spodoptera litura in different chrysanthemum species[D]. Nanjing: Nanjing Agricultural University, 2020. (in Chinese) [26] 王蕾, 赵泽玉, 陈明丽, 等. 烟草CYP71D亚家族的生物信息学分析 [J]. 中国烟草科学, 2020, 41(2):79−85,92. doi: 10.13496/j.issn.1007-5119.2020.02.014WANG L, ZHAO Z Y, CHEN M L, et al. Bioinformatic analysis of CYP71D subfamily genes in tobacco(Nicotiana tabacum L. ) [J]. Chinese Tobacco Science, 2020, 41(2): 79−85,92.(in Chinese) doi: 10.13496/j.issn.1007-5119.2020.02.014 [27] 王珺霞, 毕杰, 卢星宇, 等. 哺乳动物细胞色素P450酶中底物识别位点与功能的进化关系 [J]. 生物物理学报, 2015, 31(2):154−164.WANG J X, BI J, LU X Y, et al. Evolutionary relationship of substrate recognition sites with protein functions of mammalian cytochrome P450 enzymes [J]. Acta Biophysica Sinica, 2015, 31(2): 154−164.(in Chinese) [28] 解敏敏, 龚达平, 李凤霞, 等. 烟草细胞色素P450的基因组学分析 [J]. 遗传, 2013, 35(3):379−387.XIE M M, GONG D P, LI F X, et al. Genome-wide analysis of cytochrome P450 monooxygenase genes in the tobacco [J]. Inheritance, 2013, 35(3): 379−387.(in Chinese) [29] BATHE U, TISSIER A. Cytochrome P450 enzymes: A driving force of plant diterpene diversity [J]. Phytochemistry, 2019, 161: 149−162. doi: 10.1016/j.phytochem.2018.12.003 [30] CHEN Y, KLINKHAMER P G L, MEMELINK J, et al. Diversity and evolution of cytochrome P450s of Jacobaea vulgaris and Jacobaea aquatica [J]. BMC Plant Biology, 2020, 20(1): 1−14. doi: 10.1186/s12870-019-2170-7 [31] 芦海平, 舒庆尧, 富昊伟, 等. 水稻基因CYP71A1和5-羟色胺在调控水稻植株抗虫性中的应用: CN107217061B[P]. 2019-07-09. [32] ZHOU N, TOOTLE T L, GLAZEBROOK J. Arabidopsis PAD3, a gene required for camalexin biosynthesis, encodes a putative cytochrome P450 monooxygenase [J]. The Plant Cell, 1999, 11(12): 2419−2428. doi: 10.1105/tpc.11.12.2419 [33] WANG E, WANG R, DEPARASIS J, et al. Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance [J]. Nature Biotechnology, 2001, 19(4): 371−374. doi: 10.1038/86770 [34] OH B J, KO M K, KIM Y S, et al. A cytochrome P450 gene is differentially expressed in compatible and incompatible interactions between pepper (Capsicum annuum) and the anthracnose fungus, Colletotrichum gloeosporioides [J]. Molecular Plant-Microbe Interactions, 1999, 12(12): 1044−1052. doi: 10.1094/MPMI.1999.12.12.1044 [35] RALSTON L, KWON S T, SCHOENBECK M, et al. Cloning, heterologous expression, and functional characterization of 5-epi-aristolochene-1, 3-dihydroxylase from tobacco (Nicotiana tabacum) [J]. Archives of biochemistry and biophysics, 2001, 393(2): 222−235. doi: 10.1006/abbi.2001.2483