• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

白粉菌诱导月季对甜菜夜蛾产生抗性的关键候选基因筛选及CYP71的生物信息学分析

刘思琪 杨琦 王科建 李云仙 杨发忠

刘思琪,杨琦,王科建,等. 白粉菌诱导月季对甜菜夜蛾产生抗性的关键候选基因筛选及CYP71的生物信息学分析 [J]. 福建农业学报,2022,37(12):1601−1611 doi: 10.19303/j.issn.1008-0384.2022.012.012
引用本文: 刘思琪,杨琦,王科建,等. 白粉菌诱导月季对甜菜夜蛾产生抗性的关键候选基因筛选及CYP71的生物信息学分析 [J]. 福建农业学报,2022,37(12):1601−1611 doi: 10.19303/j.issn.1008-0384.2022.012.012
LIU S Q, YANG Q, WANG K J, et al. Candidate Genes Selection in Powdery Mildew-induced Resistance of Rose Plant to Beet Armyworms and the Bioinformatics Analysis on CYP71 [J]. Fujian Journal of Agricultural Sciences,2022,37(12):1601−1611 doi: 10.19303/j.issn.1008-0384.2022.012.012
Citation: LIU S Q, YANG Q, WANG K J, et al. Candidate Genes Selection in Powdery Mildew-induced Resistance of Rose Plant to Beet Armyworms and the Bioinformatics Analysis on CYP71 [J]. Fujian Journal of Agricultural Sciences,2022,37(12):1601−1611 doi: 10.19303/j.issn.1008-0384.2022.012.012

白粉菌诱导月季对甜菜夜蛾产生抗性的关键候选基因筛选及CYP71的生物信息学分析

doi: 10.19303/j.issn.1008-0384.2022.012.012
基金项目: 国家自然科学基金项目(32060695、31560517);云南省农业联合专项面上项目(202101BD070001-107)
详细信息
    作者简介:

    刘思琪(2001−),女,主要从事生物分子学研究(E-mail:2586724449@qq.com

    通讯作者:

    杨发忠(1974−),男,副教授,博士,主要从事生物分子学研究(E-mail:yangfazhong105@163.com

  • 中图分类号: S 436

Candidate Genes Selection in Powdery Mildew-induced Resistance of Rose Plant to Beet Armyworms and the Bioinformatics Analysis on CYP71

  • 摘要:   目的  通过检测白粉菌侵染月季后转录组基因的表达量变化,筛选白粉菌诱导月季产生对甜菜夜蛾抗性的关键候选基因,为月季抗虫基因的功能研究及抗虫品种的培育提供参考。   方法  以月季品种艳粉(Rosa chinensis Jacq.)为研究材料,利用二代测序技术对白粉菌侵染月季前后基因的表达量进行转录组测序。利用RSEM对基因的表达水平进行定量分析,DESeq2软件进行表达差异分析,利用KOBAS将得到的差异表达基因进行KEGG富集分析。对筛选出的可能参与三萜类物质生物合成的CYP71D差异表达基因(Differentially expressed genes,DEGs)进行生物信息学分析,并分析了CYP71D蛋白与抗虫性的关系。   结果  转录组测序共检测到差异表达基因1 646个,共643个差异表达基因被富集到81条KEGG通路中,其中31个差异表达基因与萜类合成相关。生物信息学分析结果表明了CYP71D亚家族的物种特异性。在植物中CYP71A主要参与类单萜的生物合成,CYP71D主要参与单萜类、倍半萜类、二萜类、三萜类等与抗病、虫有关的次生代谢物的生物合成。   结论  月季细胞色素P450超家族蛋白酶中CYP71簇的CYP71A、CYP71D亚家族可能与三萜化合物Dehydro (11,12) ursolic acid lactone(DUA)的生物合成有关,表明CYP71D家族蛋白参与修饰三萜化合物的底物识别位点,本研究为探索寄主植物介导的间接的病虫互作机理的研究提供了一定的思路。
  • 图  1  差异表达基因排名前十的KEGG代谢通路

    Figure  1.  KEGG enrichment of DEGs top 10

    图  2  CPY71基因结构及在染色体上的分布

    Figure  2.  Structure and chromosome distribution of CPY71 gene

    图  3  CYP71蛋白的跨膜区域与信号肽预测

    Figure  3.  Predicted transmembrane region and signal peptide of CYP71 proteins

    图  4  CPY71家族蛋白的二级与三级结构预测

    Figure  4.  Predicted secondary and tertiary structures of CPY71 family proteins

    图  5  CYP71的保守结构域

    Figure  5.  Conserved domain of CYP71 protein

    图  6  3个CYP71亚家族的系统进化树

    Figure  6.  Phylogenetic tree of 3 CYP71 subfamilies

    图  7  CYP71D蛋白和烟草、大麻的CYP71D蛋白多序列比对

    Figure  7.  Multiple sequence alignment of CYP71D protein with CYP71D proteins of tobacco and cannabis

    表  1  转录组测序数据

    Table  1.   Transcriptome sequences

    样本名称
    Sample
    总条目数
    Raw reads
    质控总条目数
    Clean reads
    质控总数据量
    Clean data/Gb
    错误率
    Error rate/%
    Q20/%Q30/%
    健康样本1 CK146403668461183986.880.024498.3094.63
    健康样本2 CK251906926515788087.680.024498.3194.68
    健康样本3 CK354877772544875588.120.024898.1794.32
    感病样本1 Ta152578650522260407.780.024598.2994.61
    感病样本2 Ta251390748510527987.590.024798.2094.39
    感病样本3 Ta348584868482735807.180.024698.2594.52
    Q20、Q30分别指测序质量在99%和99.9%以上的碱基占总碱基的百分比。
    Q20 and Q30 refer to the percentage of bases with sequencing quality above 99% and 99.9%, respectively.
    下载: 导出CSV

    表  2  Reads与参考基因组的比对结果

    Table  2.   Comparison between Reads and reference genome (单位:%)

    样本
    Sample
    Clean reads数目总量
    Total mapped
    编码区
    CDS
    基因区间
    Intergenic
    内含子区
    Introns
    3′非编码区
    3′UTR
    5′非编码区
    5′UTR
    健康样本1 CK186.5386.850.781.915.814.65
    健康样本2 CK286.8287.200.731.785.524.77
    健康样本3 CK386.6087.290.701.685.714.63
    感病样本1 Ta186.7486.900.741.915.884.56
    感病样本2 Ta286.4086.540.751.995.754.96
    感病样本3 Ta386.3085.840.772.046.564.78
    下载: 导出CSV

    表  3  CPY71蛋白的理化性质及亚细胞定位

    Table  3.   Physicochemical properties and subcellular localization of CPY71 protein

    基因ID
    Gene ID
    蛋白质登录号
    Protein accession
    氨基酸长度
    Amino acid
    length/aa
    分子质量
    Molecular weight /kDa
    理论等电点
    Theoretical pI
    不稳定性系数
    Instability index
    平均亲水性系数
    GRAVY
    亚细胞定位预测
    Subcellular localization
    LOC112176060 XP_024169643.1 510 58.18 5.74 46.17 −0.022 内质网
    Endoplasmic reticulum
    LOC112195754 XP_024191713.1 510 58.33 8.78 41.88 −0.139 内质网
    Endoplasmic reticulum
    LOC112195786 XP_024191752.1 512 58.01 7.01 42.50 −0.200 内质网
    Endoplasmic reticulum
    LOC112198434 XP_024195327.1 513 58.64 7.26 46.55 −0.166 内质网
    Endoplasmic reticulum
    LOC112177305 XP_040369681.1 515 58.38 7.71 36.81 −0.187 内质网
    Endoplasmic reticulum
    LOC112166540 XP_024159180.1 512 58.54 8.76 41.76 −0.212 内质网
    Endoplasmic reticulum
    下载: 导出CSV

    表  4  CYP71簇的亚家族分类及其功能特征

    Table  4.   Classification and functional characteristics of CYP71 subfamilies

    亚家族
    Subfamily
    代谢指向性
    Metabolism
    功能/代谢产物的类别
    Function/class of metabolites
    CYP71A 专一 类单萜 Monoterpenoid
    CYP71AR 专一 类单萜 Monoterpenoid
    CYP71AV 专一 倍半萜 Sesquiterpenoid
    CYP76B 专一 环烯醚萜 Iridoid,类单萜 Monoterpenoid,解毒异生素 Xenobiotics Detoxification
    CYP71BA 专一 倍半萜 Sesquiterpenoid
    CYP71BL 专一 倍半萜 Sesquiterpenoid
    CYP71D 专一 类单萜 Monoterpenoid,倍半萜 Sesquiterpenoid,二萜 Diterpenoid,吲哚生物碱 Indole Alkaloid,类黄酮 Flavonoid
    CYP71Z 专一 二萜 Diterpenoid
    CYP76M 专一 二萜 Diterpenoid
    CYP82G 专一 萜类衍生物 Terpenoid-derived
    CYP93E 专一 三萜 Triterpenoid
    CYP99A 专一 二萜 Diterpenoid
    CYP701A 一般 二萜类植物激素 GA Diterpenoid Phytohormone GA
    CYP701A 专一 二萜 Diterpenoid
    CYP705A 专一 三萜 Triterpenoid
    CYP706B 专一 倍半萜 Sesquiterpenoid
    下载: 导出CSV
  • [1] YANG F, LI Y, YANG B. The inhibitory effects of rose powdery mildew infection on the oviposition behaviour and performance of beet armyworms [J]. Entomologia Experimentalis et Applicata, 2013, 148(1): 39−47. doi: 10.1111/eea.12069
    [2] 张怡, 沈迎春, 王宁. 设施栽培月季白粉病防治药剂筛选与应用 [J]. 江苏农业科学, 2021(4):70−73. doi: 10.15889/j.issn.1002-1302.2021.04.013

    ZHANG Y, SHEN Y C, WANG N. Screening and application of agents controlling Chinese rose powdery mildew in facility culture [J]. Jiangsu Agricultural Sciences, 2021(4): 70−73.(in Chinese) doi: 10.15889/j.issn.1002-1302.2021.04.013
    [3] HUANG J M, ZHAO Y X, SUN H, et al. Monitoring and mechanisms of insecticide resistance in Spodoptera exigua (Lepidoptera: Noctuidae), with special reference to diamides [J]. Pestic Biochem Physiol, 2021, 174: 104831. doi: 10.1016/j.pestbp.2021.104831
    [4] HU B, HUANG H, HU S, et al. Changes in both trans- and Cis-regulatory elements mediate insecticide resistance in a lepidopteron pest, Spodoptera exigua [J]. PLoS Genetics, 2021, 17(3): e1009403. doi: 10.1371/journal.pgen.1009403
    [5] KARBAN R, ADAMCHAK R, SCHNATHORST W C. Induced resistance and interspecific competition between spider mites and a vascular wilt fungus [J]. Science, 1987, 235(4789): 678−680. doi: 10.1126/science.235.4789.678
    [6] 杨发忠. 中国月季介导的植物病虫互作关系[D]. 昆明: 云南农业大学, 2015.

    YANG F Z. The plant-mediated interaction relationship between phytopathogenic fungi and herbivory insects on rose plants[D]. Kunming: Yunnan Agricultural University, 2015. (in Chinese)
    [7] 杨发忠, 杨德强, 杨斌, 等. 中国月季感染白粉菌对甜菜夜蛾取食行为的影响及原因初探 [J]. 广东农业科学, 2015, 42(17):67−71. doi: 10.3969/j.issn.1004-874X.2015.17.012

    YANG F Z, YANG D Q, YANG B, et al. Effects of rose infected by powdery midew on feeding behaviour of beet armyworm and its mechanism [J]. Guangdong Agricultural Sciences, 2015, 42(17): 67−71.(in Chinese) doi: 10.3969/j.issn.1004-874X.2015.17.012
    [8] CHENG J, YIN L, ZHOU S, et al. The Inhibitory Effect of Powdery Mildew-Induced Volatiles from Rose on Host Selection Behavior of Beet Armyworm Moths (Lepidoptera: Noctuidae) [J]. Journal of Entomological Science, 2022, 57(1): 96−113. doi: 10.18474/JES21-13
    [9] MORTIBOYS H, AASLY J, BANDMANN O. Ursocholanic acid rescues mitochondrial function in common forms of familial Parkinson's disease [J]. Brain, 2013, 136(10): 3038−3050. doi: 10.1093/brain/awt224
    [10] 彭少麟, 南蓬, 钟扬. 高等植物中的萜类化合物及其在生态系统中的作用 [J]. 生态学杂志, 2002, 21(3):33−38. doi: 10.3321/j.issn:1000-4890.2002.03.009

    PENG S L, NAN P, ZHONG Y. Terpenoids in higher plants and their roles in ecosystems [J]. Chinese Journal of Ecology, 2002, 21(3): 33−38.(in Chinese) doi: 10.3321/j.issn:1000-4890.2002.03.009
    [11] 谭世强, 马琳, 许永华, 等. 植物三萜类物质的生态学功能研究进展 [J]. 人参研究, 2015, 27(3):36−38. doi: 10.3969/j.issn.1671-1521.2015.03.013

    TAN S Q, MA L, XU Y H, et al. Research Advances in ecological activities of Triterpenoids [J]. Ginseng Research, 2015, 27(3): 36−38.(in Chinese) doi: 10.3969/j.issn.1671-1521.2015.03.013
    [12] LAKHANPAL S, FAN J S, LUAN S, et al. Structural and functional analyses of the PPIase domain of Arabidopsis thaliana CYP71 reveal its catalytic activity toward histone H3 [J]. FEBS Letters, 2021, 595(1): 145−154. doi: 10.1002/1873-3468.13965
    [13] IRMISCH S, CLAVIJO MCCORMICK A, GÜNTHER J, et al. Herbivore-induced poplar cytochrome P450 enzymes of the CYP71 family convert aldoximes to nitriles which repel a generalist caterpillar [J]. The Plant Journal, 2014, 80(6): 1095−1107. doi: 10.1111/tpj.12711
    [14] ZHOU J H, LI Z Y, XIAO G Q, et al. CYP71D8L is a key regulator involved in growth and stress responses by mediating gibberellin homeostasis in rice [J]. Journal of Experimental Botany, 2019, 71(3): 1160−1170.
    [15] MA Y, CUI G, CHEN T, et al. Expansion within the CYP71D subfamily drives the heterocyclization of tanshinones synthesis in Salvia miltiorrhiza [J]. Nature communications, 2021, 12(1): 1−11. doi: 10.1038/s41467-020-20314-w
    [16] DANIELE W R, RENE F. Cytochromes P450: A success story [J]. Genome Biology, 2000, 1(6): 1−9.
    [17] 戴素明, 周程爱, 谢丙炎, 等. 细胞色素P450表达在植物防御反应中的作用 [J]. 石河子大学学报(自然科学版), 2004(S1):184−187. doi: 10.13880/j.cnki.65-1174/n.2004.s1.060

    DAI S M, ZHOU C A, XIE B Y, et al. Role of cytochromes P450 expression in plant defence responding to pathogens [J]. Journal of Shihezi University (Natural Science), 2004(S1): 184−187.(in Chinese) doi: 10.13880/j.cnki.65-1174/n.2004.s1.060
    [18] GRUNSEICH J M, THOMPSON M N, AGUIRRE N M, et al. The role of plant-associated microbes in mediating host-plant selection by insect herbivores [J]. Plants (Basel, Switzerland), 2019, 9(1): E6.
    [19] BERTEA C M, CASACCI L P, BONELLI S, et al. Chemical, physiological and molecular responses of host plants to lepidopteran egg-laying [J]. Frontiers in Plant Science, 2019, 10: 1768.
    [20] 凌冰, 张茂新, 王玉赞. 葫芦素的生态功能及其应用前景 [J]. 生态学报, 2010, 30(3):780−793.

    LING B, ZHANG M X, WANG Y Z. Ecological function and prospects for utilization of cucurbitacins [J]. Acta Ecologica Sinica, 2010, 30(3): 780−793.(in Chinese)
    [21] CHANDRAVADANA M V. Identification of triterpenoid feeding deterrent of red pumpkin beetles (Aulacophora foveicollis) from Momordica charantia [J]. Journal of chemical ecology, 1987, 13(7): 1689−1694. doi: 10.1007/BF00980210
    [22] 周琼, 熊正燕, 欧晓明. 苍耳甾醇物质对菜青虫取食、血淋巴和中肠酶活性及中肠组织的影响 [J]. 昆虫学报, 2011, 49(5):1034−1041. doi: 10.16380/j.kcxb.2011.09.012

    ZHOU Q, XIONG Z Y, OU X M. Effects of sterols from Xanthium sibiricum (Compositae) on feeding, enzyme activities in the hemolymph and midgut, and midgut tissues of Pieris rapae (Lepidoptera: Pieridae) larvae [J]. Acta Entomologica Sinica, 2011, 49(5): 1034−1041.(in Chinese) doi: 10.16380/j.kcxb.2011.09.012
    [23] JING X, GREBENOK R J, BEHMER S T. Diet micronutrient balance matters: How the ratio of dietary sterols/steroids affects development, growth and reproduction in two lepidopteran insects [J]. Journal of Insect Physiology, 2014, 67: 85−96. doi: 10.1016/j.jinsphys.2014.06.004
    [24] 谭世强, 张爱华, 谢敬宇, 等. 人参总皂苷对苜蓿夜蛾幼虫的拒食作用 [J]. 中国中药杂志, 2013, 38(1):37−39.

    TAN S Q, ZHANG A H, XIE J Y, et al. Anti-feeding effect of total ginsenoside from Panax ginseng on Heliothis dipsacea larvae [J]. China Journal of Chinese Materia Medica, 2013, 38(1): 37−39.(in Chinese)
    [25] 安素芳. 不同菊属近缘种植物叶片萜类化合物对斜纹夜蛾抗性的研究[D]. 南京: 南京农业大学, 2020.

    AN S F. Study on the effect of terpenoids in leaves on the defense to Spodoptera litura in different chrysanthemum species[D]. Nanjing: Nanjing Agricultural University, 2020. (in Chinese)
    [26] 王蕾, 赵泽玉, 陈明丽, 等. 烟草CYP71D亚家族的生物信息学分析 [J]. 中国烟草科学, 2020, 41(2):79−85,92. doi: 10.13496/j.issn.1007-5119.2020.02.014

    WANG L, ZHAO Z Y, CHEN M L, et al. Bioinformatic analysis of CYP71D subfamily genes in tobacco(Nicotiana tabacum L. ) [J]. Chinese Tobacco Science, 2020, 41(2): 79−85,92.(in Chinese) doi: 10.13496/j.issn.1007-5119.2020.02.014
    [27] 王珺霞, 毕杰, 卢星宇, 等. 哺乳动物细胞色素P450酶中底物识别位点与功能的进化关系 [J]. 生物物理学报, 2015, 31(2):154−164.

    WANG J X, BI J, LU X Y, et al. Evolutionary relationship of substrate recognition sites with protein functions of mammalian cytochrome P450 enzymes [J]. Acta Biophysica Sinica, 2015, 31(2): 154−164.(in Chinese)
    [28] 解敏敏, 龚达平, 李凤霞, 等. 烟草细胞色素P450的基因组学分析 [J]. 遗传, 2013, 35(3):379−387.

    XIE M M, GONG D P, LI F X, et al. Genome-wide analysis of cytochrome P450 monooxygenase genes in the tobacco [J]. Inheritance, 2013, 35(3): 379−387.(in Chinese)
    [29] BATHE U, TISSIER A. Cytochrome P450 enzymes: A driving force of plant diterpene diversity [J]. Phytochemistry, 2019, 161: 149−162. doi: 10.1016/j.phytochem.2018.12.003
    [30] CHEN Y, KLINKHAMER P G L, MEMELINK J, et al. Diversity and evolution of cytochrome P450s of Jacobaea vulgaris and Jacobaea aquatica [J]. BMC Plant Biology, 2020, 20(1): 1−14. doi: 10.1186/s12870-019-2170-7
    [31] 芦海平, 舒庆尧, 富昊伟, 等. 水稻基因CYP71A1和5-羟色胺在调控水稻植株抗虫性中的应用: CN107217061B[P]. 2019-07-09.
    [32] ZHOU N, TOOTLE T L, GLAZEBROOK J. Arabidopsis PAD3, a gene required for camalexin biosynthesis, encodes a putative cytochrome P450 monooxygenase [J]. The Plant Cell, 1999, 11(12): 2419−2428. doi: 10.1105/tpc.11.12.2419
    [33] WANG E, WANG R, DEPARASIS J, et al. Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance [J]. Nature Biotechnology, 2001, 19(4): 371−374. doi: 10.1038/86770
    [34] OH B J, KO M K, KIM Y S, et al. A cytochrome P450 gene is differentially expressed in compatible and incompatible interactions between pepper (Capsicum annuum) and the anthracnose fungus, Colletotrichum gloeosporioides [J]. Molecular Plant-Microbe Interactions, 1999, 12(12): 1044−1052. doi: 10.1094/MPMI.1999.12.12.1044
    [35] RALSTON L, KWON S T, SCHOENBECK M, et al. Cloning, heterologous expression, and functional characterization of 5-epi-aristolochene-1, 3-dihydroxylase from tobacco (Nicotiana tabacum) [J]. Archives of biochemistry and biophysics, 2001, 393(2): 222−235. doi: 10.1006/abbi.2001.2483
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  692
  • HTML全文浏览量:  180
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-08
  • 修回日期:  2022-10-22
  • 网络出版日期:  2022-12-28
  • 刊出日期:  2022-03-28

目录

    /

    返回文章
    返回